
Views and Queries: Determinacy and Rewriting

Luc Segoufin
INRIA-Futurs, Université de Paris Sud

http://www-rocq.inria.fr/˜segoufin

Victor Vianu∗

U.C. San Diego
vianu@cs.ucsd.edu

ABSTRACT
We investigate the question of whether a query Q can
be answered using a set V of views. We first define
the problem in information-theoretic terms: we say that
V determines Q if V provides enough information to
uniquely determine the answer to Q. Next, we look at
the problem of rewriting Q in terms of V using a specific
language. Given a view language V and query language
Q, we say that a rewriting language R is complete for V-
to-Q rewritings if every Q ∈ Q can be rewritten in terms
of V∈ V using a query in R, whenever V determines Q.
While query rewriting using views has been extensively
investigated for some specific languages, the connection
to the information-theoretic notion of determinacy, and
the question of completeness of a rewriting language,
have received little attention. In this paper we inves-
tigate systematically the notion of determinacy and its
connection to rewriting. The results concern decidabil-
ity of determinacy for various view and query languages,
as well as the power required of complete rewriting lan-
guages. We consider languages ranging from first-order
to conjunctive queries.

1. INTRODUCTION
The question of whether a given set of queries on a
database can be used to answer another query arises
in many different contexts. Recently, this has been a
central issue in data integration, where the problem
is framed in terms of query rewriting using views. In
the exact local as view (LAV) flavor of the problem,
data sources are described by views of a virtual global
database. Queries against the global database are an-
swered, if possible, by rewriting them in terms of the
views specifying the sources. A similar problem arises in
∗Work supported in part by the NSF under grant num-
ber INT-0334764.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005 June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06 . . . $5.00.

semantic caching: answers to some set of queries against
a data source are cached, and one wishes to know if a
newly arrived query can be answered using the cached
information, without accessing the source. Yet another
framework where the same problem arises (only in re-
verse) is security and privacy. Suppose access to some
of the information in a database is provided by a set
of public views, but answers to other queries are to be
kept secret. This requires verifying that the disclosed
views do not provide enough information to answer the
secret queries.

The question of whether a query Q can be answered
using a set V of views can be formulated at several
levels. The most general definition is information the-
oretic: V determines Q (which we denote V�Q) iff
V(D1) = V(D2) → Q(D1) = Q(D2), for all database
instances D1 and D2. Intuitively, determinacy says that
V provides enough information to uniquely determine
the answer to Q. However, it does not say that this can
be done effectively, or using a particular query language.
The next formulation is language specific: a query Q
can be rewritten in terms of V using a rewriting lan-
guage R iff there exists some query R ∈ R such that
Q(D) = R(V(D)) for all databases D. Let us denote
this by Q ⇒V R. As usual, there are two flavors to the
above definitions, depending on whether database in-
stances are unrestricted (finite or infinite) or restricted
to be finite. The finite flavor is the default in all defini-
tions, unless stated otherwise.

What is the relationship between determinacy and rewrit-
ing? Clearly, if Q ⇒V R for some R then V�Q. The
converse is generally not true. Given a view language
V and query language Q, if R can be used to rewrite a
query Q in Q in terms of a set of views V in V whenever
V�Q, we say that R is a complete rewriting language
for V-to-Q rewritings. Clearly, a case of particular in-
terest is when Q itself is complete for V-to-Q rewritings,
because then there is no need to extend the query lan-
guage in order to take advantage of the available views.

Query rewriting using views has been investigated in the
context of data integration for some query languages,
primarily conjunctive queries (CQs). Determinacy, and
its connection to rewriting, has not been investigated in

the relational framework. For example, CQ rewritings
received much attention in the LAV data integration
context, but the question of whether CQ is complete as
a rewriting language for CQ views and queries has not
been addressed.

In this paper we undertake a systematic investigation of
these issues. We consider view languages V and query
languages Q ranging from first-order logic (FO) to CQ
and study two main questions:

(i) is it decidable whether V�Q for V in V and Q in
Q?

(ii) is Q complete for V-to-Q rewritings? If not, how
must Q be extended in order to express such rewrit-
ings?

It is easily seen that determinacy becomes undecidable
as soon as the query language Q is powerful enough so
that satisfiability of sentences in Q becomes undecid-
able. The same holds if validity of sentences in V is un-
decidable. Thus, (i) is moot for such languages, in par-
ticular for FO queries and views. However, determinacy
is also undecidable for much weaker languages. Indeed,
we show undecidability even for views and queries ex-
pressed as unions of conjunctive queries (UCQs). This
is shown by a direct reduction of the word problem for
finite monoids, known to be undecidable [19]. The ques-
tion remains open for CQs, and appears to be quite
challenging. Determinacy becomes decidable for spe-
cial classes of CQs, such as CQs with Boolean or unary
answer. Interestingly, the unrestricted variant of de-
terminacy is easier to settle: it is decidable for CQs,
and equivalent to the existence of a CQ rewriting of the
query in terms of the view.

Before summarizing our results on question (ii), we men-
tion two problems that are closely related, and that
can be fruitfully used to gain insight into (ii). Sup-
pose V�Q. Consider the query QV associating to each
view answer to V(D) the corresponding query answer
Q(D), where D is a database instance. In other words,
Q = QV ◦ V. To answer (ii), it is useful to understand
the properties of the queries QV, since this provides in-
formation on the rewriting language needed to express
them. One useful piece of information is the complexity
of computing the answer to QV given a view instance
V(D), also known as the query answering problem. We
occasionally consider the complexity of query answer-
ing as a tool for resolving (ii). Other useful information
on QV concerns properties such as (non-)monotonicity,
closure under extensions, etc. Again, we use such in-
formation to establish properties required of a language
for rewriting Q in terms of V.

We consider again languages ranging from FO to CQ.
We only mention the results for some key combinations
of query and view languages, that imply the results for
most other combinations. In the unrestricted case, FO

turns out to be complete for FO-to-FO rewritings, as a
consequence of Craig’s Interpolation theorem [10]. Un-
fortunately this does not extend to the finite case: FO
is no longer complete for FO-to-FO rewritings, and in-
deed the query answering problem for this case is Turing
complete. In fact, we show that any language complete
for FO-to-FO rewritings must express all computable
queries.

For views expressed in weaker languages, less powerful
rewriting languages are needed. If views are expressed
in ∃FO (existential FO), FO is still not complete for
∃FO-to-FO rewritings. However, both ∃SO and ∀SO
(existential and universal second-order logic formulas)
are complete for such rewritings. In fact, this is a lower
bound: we show that every language complete for ∃FO-
to-FO rewritings must be able to express all queries in
∃SO ∩ ∀SO. The lower bound holds even if views are
restricted to UCQs. The proof uses results on the ex-
pressive power of implicit definability [21, 16]. It turns
out that FO does not become complete as a rewriting
language even if queries are in CQ¬ (CQ with safe nega-
tion). This uses the fact, shown by Gurevich, that there
exist order-invariant queries defined by FO with access
to an order on the domain that are not definable in FO
without order (see Exercise 17.27 in [2]).

Consider UCQ views and queries. Similarly (but for dif-
ferent reasons), UCQ is not complete for UCQ-to-UCQ
rewritings, nor are much more powerful languages such
as Datalog �=. This is due the fact that, for UCQ views
V and queries Q such that V�Q, the query QV is gen-
erally not monotonic. Thus, any language complete for
UCQ-to-UCQ rewritings must be able to express non-
monotonic queries. This also turns out to hold for CQ�=-
to-CQ rewritings.

The rewriting problem remains open for CQs. Thus,
it is not known whether CQ is complete for CQ-to-CQ
rewritings. In fact, the following questions are all open
and turn out to be equivalent:

1. CQ is complete for CQ-to-CQ rewritings;

2. for CQ views V and queries Q, V�Q on finite
instances iff V�Q on unrestricted instances; and,

3. for CQ views V and queries Q, the query QV is
monotonic.

Interestingly, in the unrestricted case, CQ is complete
for CQ-to-CQ rewritings. However, the proof technique,
based on the chase, does not carry over to the finite case.

Related work Answering queries using views arises
in numerous contexts including data integration [26],
query optimization and semantic caching [12], data ware-
housing [4], support of physical data independence by
describing storage schemas as views [13, 25, 27], etc.

The problem comes in several flavors, depending on as-
sumptions on the views and their use. Mainly, the dif-
ferent settings vary along these dimensions:

(i) assumptions on the views: these may be exact (i.e.
contain precisely the set of tuples in their defini-
tions), or just sound (they provide only a subset
of the tuples in the answer)

(ii) how the views are used: query rewriting requires
reformulating the query in terms of the views, us-
ing some query language. One may require an
equivalent rewriting, or just a maximally contained
one. Another use of views is called query answer-
ing. This consists of finding all certain answers to
a query given an instance of the view [1].

In our investigation, we focus on exact view definitions,
and equivalent query rewritings, with the accompanying
information-theoretic notion of determinacy. We also
consider the complexity of the query answering prob-
lem, but only in the case when the view determines the
query (so the certain and possible answers coincide).
Results on equivalent query rewriting using exact views
have focused primarily on CQs and UCQs. It is shown
in [22] that it is NP-complete whether a given (U)CQ
query has an equivalent (U)CQ rewriting in terms of
given (U)CQ views. Several polynomial-time special
cases are identified for CQs in [11]. Answering queries
using views in the presence of binding patterns is con-
sidered in [24]. Views and queries defined by CQs with
arithmetic comparisons over dense orders are consid-
ered in [3], where it is shown that the existence of an
equivalent rewriting using Datalog with comparisons is
decidable. The problem for recursive queries is consid-
ered in [14], where it is shown that it is undecidable
if a Datalog query can be rewritten using some Data-
log program in terms of a set of CQ views. Answering
queries using views in semi-structured databases repre-
sented by directed labeled graphs is considered in [6,
7, 8]. Here the views and queries are defined by reg-
ular path expressions, possibly including inverse edge
navigation. In [6] it is shown that the exact rewriting
problem is 2expspace-complete.

The relation of rewriting to the information-theoretic
notion of determinacy has received little attention. In
[17, 18], Grumbach and Tininini consider the problem
of computing an aggregate function using a given set
of aggregate functions including count, average, sum,
product, maximum. In particular, [18] introduces the
notion of subsumption of a query by a view, which is
identical to our notion of determinacy. Using this, they
define completeness of a rewriting algorithm, and pro-
duce such an algorithm for simple aggregate functions
on a single relation. Despite the similarity in flavor,
none of the results transfer to the setting we consider.

In [8], the authors consider the notion of lossless view
with respect to a query, in the context of regular path

queries on semi-structured data. Losslessness is con-
sidered under the exact view assumption and under
the sound view assumption. In the first case, lossless-
ness is equivalent to determinacy and it remains open
whether losslessness is decidable for regular path views
and queries. In the second case, losslessness is shown
to be decidable using automata-theoretic techniques.
Again, these results have no bearing upon ours because
of the differences in the settings and because we consider
exact views.

Suppose a set of exact views V does not determine a
query Q. In this case one is typically interested to com-
pute from a view extent E the certain answers to Q,
that is certQ(E) = ∩{Q(D) | V(D) = E}. The rewrit-
ing problem is now to find a query R in some rewrit-
ing language R, such that for every extent E of V,
R(E) = certQ(E). If such R exists for every V ∈ V
and Q ∈ Q, let us say that R is complete for V-to-Q
rewritings of certain answers. Clearly, if V �Q then for
every database D, Q(D) = certQ(V(D)). Thus, every
rewriting language that is complete for V-to-Q rewrit-
ings of certain answers must also be complete for for
V-to-Q rewritings according to our definition. In par-
ticular, our lower bounds on the expressive power of
languages complete for V-to-Q rewritings still hold for
languages complete for V-to-Q rewritings of certain an-
swers. The analogous rewriting problem arises also in
the case of sound views, but there is no straightforward
connection to our results.

Organization After introducing some basic concepts
in Section 2, we discuss determinacy and rewriting in
the unrestricted case (in which instances can be finite
or infinite) in Section 3. Finite determinacy is discussed
next in Section 4 and finite rewriting in Section 5.

2. BASIC CONCEPTS AND NOTATION
We begin with some basic definitions and notation. A
database schema σ is a finite set of relation symbols with
associated non-negative arities. A relation with arity
zero is referred to as a proposition. A database instance
D over σ associates a relation D(R) of appropriate ar-
ity with values from some fixed infinite domain dom
to each relation symbol R in σ (true/false for propo-
sitions). The active domain of an instance D consists
of the set of elements in dom occurring in D and is
denoted adom(D). The set of all instances over σ is de-
noted by I(σ). By default, all instances are assumed to
be finite unless otherwise specified. Queries are defined
as usual, as computable mappings from instances of an
input schema to instances of an output schema that are
generic, i.e. commute with isomorphisms of dom (e.g.,
see [2]). We assume familiarity with the query languages
in Figure 1. As usual in query languages, all of these
languages (over relational vocabulary) may refer to val-
ues from dom, always interpreted as themselves. This
differs from constants in logic, which are part of the vo-
cabulary and are interpreted as arbitrary values from
the universe of the structure.

notation language

FO first-order logic over relations
∃FO existential FO
∃SO existential second-order logic
∀SO universal second-order logic
CQ conjunctive queries without =, �=
UCQ unions of conjunctive queries
(U)CQ= (U)CQs extended with =, �=
(U)CQ�=

Figure 1: Query languages used in the paper

Let σ and σV be database schemas. A view V from I(σ)
to I(σV) is a set consisting of one query QV : I(σ) →
I(V) for each V ∈ σV. We refer to σ and σV as the
input and output schemas of V, respectively.

Consider a query Q over schema σ and a view V with
input schema σ and output schema σV. We say that V
determines Q, denoted V�Q, iff for all D1, D2 ∈ I(σ),
if V(D1) = V(D2) then Q(D1) = Q(D2). Suppose
V�Q and let R be a query over I(σV). We say that Q
can be rewritten in terms of V using R iff for each D ∈
I(σ), Q(D) = R(V(D)). In other words, Q = R ◦ V.
This is denoted by Q ⇒V R. Note that several R’s
may satisfy this property, since such R’s may behave
differently on instances in I(σV) that are not in the
image of V.

Let Q be a query language and V a view language. A
query language R is complete for Q-to-V rewritings iff
for every Q ∈ Q and V ∈ V for which V�Q, there
exists R ∈ R such that Q ⇒V R.

3. UNRESTRICTED DETERMINACY
AND REWRITING

We begin by considering the unrestricted variant of de-
terminacy and rewriting, in which database instances
are allowed to be arbitrary (finite or infinite). We look
at the two important extremes along the spectrum of
languages we study: FO and CQ. For FO, determinacy
is clearly undecidable (the proof is the same as for the
finite case, see Proposition 4.1). However, FO is com-
plete for FO-to-FO rewritings. For CQ, determinacy is
decidable and CQ is complete for CQ-to-CQ rewritings.

We begin with the completeness of FO.

Theorem 3.1. In the unrestricted case, FO is com-
plete for FO-to-FO rewritings.

Proof. In this proof we will consider extensions of
relational schemas with a finite set of constant sym-
bols. If the schema contains constants, an instance over
the schema provides values to the constants in addition
to the relations. For FO sentences ϕ, ψ over the same
schema, we use the notation ϕ |= ψ to mean that every
instance (finite or infinite) satisfying ϕ also satisfies ψ.

Suppose V�Q over arbitrary instances, where V and
Q are FO views and queries over schema σ. Let σ1, σ2

be disjoint copies of σ, and Vi, Qi, i = 1, 2, be the
versions of V and Q using σ1 and σ2. Given two queries
Q and Q′ with the same output schema we will write
Q = Q′ for the formula ∀x̄ Q(x̄) ↔ Q′(x̄). We will
also write Vi = σV for

∧
V ∈σV

Qi
V = V and V1 = V2

for
∧

V ∈σV
Q1

V = Q2
V . Because V�Q, we have that

V1 = V2 |= Q1 = Q2. In other words, for instances
over the schema σ1 ∪ σ2 ∪ σV we have:

V1 = σV ∧ V2 = σV |= Q1 = Q2.

Let k be the arity of Q and let c̄ be a vector of k constant
symbols. For instances over the schema σ1 ∪σ2 ∪σV ∪ c̄
we have:

(V1 = σV ∧ V2 = σV) |= Q1(c̄) ↔ Q2(c̄)

This implies:

(V1 = σV ∧ Q1(c̄)) |= (V2 = σV → Q2(c̄))

Note that the schema common to both sentences is σV∪
c̄. We can now apply Craig’s Interpolation Theorem (see
[10]) to the sentences above and obtain an FO formula
θ(σV)(c̄) over schema σV ∪ c̄ such that:

(†) (V1 = σV ∧ Q1(c̄)) |= θ(σV)(c̄)

and

(‡) θ(σV)(c̄) |= (V2 = σV → Q2(c̄))

We now show that θ(σV) is a rewriting of Q using V .
From (†) we obtain (renaming symbols in σ1 to symbols
in σ): V = σV |= Q(c̄) → θ(σV)(c̄) and from (‡) V =
σV |= θ(σV)(c̄) → Q(c̄). We thus have: V = σV |=
q(σ)(c̄) ↔ θ(σV)(c̄) and by universality of constants
V = σV |= Q = θ(σV).

The proof of Theorem 3.1 relies crucially on Craig’s In-
terpolation Theorem. This fundamental result in model
theory holds for unrestricted instances but fails in the
finite case [15]. Indeed, Theorem 3.1 does not hold in
the finite case, as shown next.

Example 3.2 Let σ be a database schema and σ≤ the
extension of σ with a binary relation “≤”. Let ϕ(≤)
be an FO sentence over σ≤. Let ψ be the FO sentence
checking that ≤ is a linear order. Now consider the set
of views V with σV = σ ∪ {Rψ}, where Rψ is zero-ary.
V returns the value of ψ (in Rψ) and the content of R
for each R ∈ σ. Let Qϕ be the query ψ∧ϕ(≤). It it easy
to verify that if ϕ is order invariant (i.e. its answer is
independent of the choice of the order relation ≤) then
V�Qϕ. If FO is complete for FO-to-FO rewritings in
the finite, then there exists an FO query θ over σV =
σ ∪ {Rψ} such that Qϕ is equivalent to θ. On ordered

finite instances, this means that ϕ(≤) is equivalent to
θ(true/Rψ), obtained by replacing the proposition Rψ

with true in θ. However, Gurevich has shown that there
exist order-invariant FO queries ϕ(≤) expressing queries
that are not finitely definable in FO (see Exercise 17.27
in [2]). This is a contradiction.

We now proceed to CQs.

Theorem 3.3. In the unrestricted case, CQ is com-
plete for CQ-to-CQ rewritings.

Proof. We start by developing the notation and ter-
minology needed for the proof. Let σ be a database
schema and Q(x̄) a CQ over σ with free variables x̄.
The frozen body of Q, denoted [Q], is the instance over
σ such that (x1, . . . , xk) ∈ R iff R(x1, . . . , xk) is an atom
in Q. For a set V of CQs, [V] is the union of the [Q]’s
for all Q ∈ V. For a mapping α from variables to vari-
ables and constants, we denote by α([Q]) the instance
obtained by applying α to all variables in [Q].

Recall that a tuple c̄ is in Q(D) iff there exists a ho-
momorphism hc̄ from [Q] to D such that hc̄(x̄) = c̄. In
this case we say that hc̄ witnesses c̄ ∈ Q(D), or that
c̄ ∈ Q(D) via hc̄.

Given two database instances D and D′ over σ, we say
that D′ is an extension of D if adom(D) ⊆ adom(D′)
and the restriction of D′ to adom(D) is D.

Let V be a CQ view from I(σ) to I(σV). Let D be
a database instance over σ and S be V(D). For each
extension S′ of S we define the V-inverse of S′ relative
to D, denoted V−1

D (S′), as the instance D′ ⊇ D over σ
defined as follows. Let V be a relation in σV, with cor-
responding query QV (x̄). For every tuple ȳ belonging
to V in S′ such that ȳ contains at least one element not
in adom(S), we add to D the tuples of αȳ([QV]) where
αȳ(x̄) = ȳ and αȳ maps every variable of [QV] not in x̄
to some new distinct value. In other words, V−1

D (S′) is
obtained as a chase of S′ starting from D.

We will use the following classical lemma:

Lemma 3.4. Let D be a database instance, S = V(D),
and D′ = V−1

∅ (S). Then there exists a homomorphism
h from D′ to D which is the identity on adom(D).

We can now prove the following key observation:

Proposition 3.5. Let Q(x̄) be a CQ and S = V([Q]).
Let QV(x̄) be the CQ over σV for which [QV] = S. We
have the following:

(i) QV ◦V is equivalent to the CQ whose frozen body
is V−1

∅ (S);

(ii) Q ⊆ QV ◦ V;

(iii) If x̄ ∈ Q(V−1
∅ (S)) then Q = QV◦V. In particular,

V�Q.

Proof. Part (i) is obvious from the definition of
V−1

∅ (S), which is essentially an unfolding of QV ◦ V.
Part (ii) follows from (i) and Lemma 3.4 with D = [Q].
Consider (iii). If x̄ ∈ Q(V−1

∅ (S)) this means that there
exists a homomorphism from [Q] to V−1

∅ (S) that fixes
x̄. By the Homomorphism Theorem for CQs [9], the
query whose frozen body is V−1

∅ (S) is included in Q.
By (i), QV ◦ V ⊆ Q. In conjunction with (ii), this
implies Q = QV ◦ V.

We next show that V�Q implies Q = QV ◦ V. The
proof is by contradiction. Suppose V�Q but Q �= QV ◦
V. By (iii) above, this means that x̄ �∈ Q(V−1

∅ (S)).
Under this assumption, we will construct two instances
D∞ and D′

∞ such that V(D∞) = V(D′
∞) but Q(D∞) �=

Q(D′
∞), thus reaching a contradiction.

D∞ and D′
∞ are constructed as follows. We first define

inductively a sequence of instances {Dk, Sk, S′
k, D′

k}k≥0,
constructed essentially by a chase procedure. We will
define D∞ =

⋃
k Dk and D′

∞ =
⋃

k D′
k. For the basis,

D0 = [Q], S0 = V([Q]), S′
0 = ∅, and D′

0 = V−1
∅ (S0). In-

ductively, S′
k+1 = V(D′

k), Dk+1 = V−1
Dk

(S′
k+1), Sk+1 =

V(Dk+1), and D′
k+1 = V−1

D′
k
(S′

k+1). We have the follow-
ing useful properties which can be proved by induction
on k.

Proposition 3.6. For every k ≥ 0:

1. there exists a homomorphism gk from D′
k to Dk

which is the identity on adom(Dk)

2. S′
k+1 is an extension of Sk

3. Dk+1 is an extension of Dk and there exists a ho-
momorphism hk from Dk+1 to Dk which is the
identity on adom(Dk)

4. Sk+1 is an extension of S′
k+1

5. D′
k+1 is an extension of D′

k and there exists a ho-
momorphism h′

k from D′
k+1 to D′

k which is the
identity on adom(D′

k)

Continuing with the proof of Theorem 3.3, recall that
D∞ =

⋃
k Dk and D′

∞ =
⋃

k D′
k, and let S∞ =

⋃
k Sk

and S′
∞ =

⋃
k S′

k. From parts 2 and 4 of Proposi-
tion 3.6 it follows that S∞ = S′

∞. By construction,
V(D∞) = S∞ and S′

∞ = V(D′
∞). Therefore we have

V(D∞) = V(D′
∞). On the other hand, Q(D∞) �=

Q(D′
∞). Indeed, x̄ ∈ Q([Q]) = Q(D0), so x̄ ∈ Q(D∞).

However, x̄ �∈ Q(D′
∞). Indeed, suppose x̄ ∈ Q(D′

∞).
Since the {D′

k}k≥0 is a chain of extensions, x̄ ∈ Q(D′
k)

for some k. By repeatedly applying the homomorphism

h′
k from part 3 of Proposition 3.6 and using the fact

that x̄ ∈ adom(D′
0), it follows that x̄ ∈ Q(D′

0). In other
words, x̄ ∈ Q(V−1

∅ (V([Q]))) a contradiction.

Altogether we have seen that, given V and Q in CQ,
V�Q iff x̄ ∈ Q(D′). By Proposition 3.5 this implies
that V�Q iff Q can be rewritten in terms of V using
QV in CQ. This concludes the proof of Theorem 3.3.

The proof of Theorem 3.3 also provides a decision proce-
dure for determinacy of CQ views and queries in the un-
restricted case: V�Q iff Q is equivalent to V−1

∅ (V([Q])).
Thus, we have:

Theorem 3.7. In the unrestricted case, it is decid-
able if V�Q for conjunctive views V and query Q.

Unfortunately, the positive results on CQs do not ex-
tend even to slightly more powerful languages, such as
UCQs. Indeed, we can show the following.

Theorem 3.8. (i) In the unrestricted case, given UCQs
V and Q, it is undecidable whether V�Q.
(ii) In the unrestricted case, no monotonic language is
complete for UCQ-to-UCQ rewritings.

Proof. In Section 4 (Theorem 4.5), we show (i) for
the finite case by reduction from the word problem for fi-
nite monoids, known to be undecidable. Since the word
problem remains undecidable for arbitrary monoids [23],
the same reduction shows (i) in the unrestricted case.
Part (ii) follows from the fact that there exist UCQ
views V and query Q such that V�Q but QV is non-
monotonic. This is shown for the finite case in Propo-
sition 5.8, and carries over to the unrestricted case.

4. FINITE DETERMINACY
In this section, we consider determinacy when database
instances are restricted to be finite. Instances are hence-
forth assumed to be finite in all definitions, including
determinacy. We begin with several easy but useful ob-
servations.

Proposition 4.1. Let Q and V be languages such
that satisfiability of sentences in Q is undecidable or
validity of sentences in V is undecidable. Then it is un-
decidable whether V�Q, where Q is in Q and V is a
set of views defined in V.

Proof. Suppose first that satisfiability of sentences
in Q is undecidable. Let ϕ be a sentence in Q over
database schema σ. Consider the database schema σ ∪
{R} where R is unary. Let V be empty and Q = ϕ ∧
R(x). Clearly, V�Q iff ϕ is unsatisfiable.

Next, suppose validity of sentences in V is undecidable.
Let ϕ be a sentence in V over schema σ. Consider the

database schema σ∪{R} with R unary, and V consisting
of the view ϕ ∧ R(x). Let Q consist of the query R(x).
Clearly, V�Q iff ϕ is valid.

Corollary 4.2. If V is FO or Q is FO, it is unde-
cidable whether V�Q for views V in V and queries Q
in Q.

In looking for fragments of FO for which determinacy
might be decidable, it is tempting to reduce determinacy
to satisfiability testing. This can be done as follows. Let
σ be a database schema and V and Q be views and a
query over σ. Let σ1 and σ2 be two disjoint copies of σ,
and Vi, Qi (i = 1, 2) versions of V and Q operating on
σ1 and σ2. Consider the FO sentence ϕ over σ1 ∪ σ2:

∀x̄(V1(x̄) ↔ V2(x̄)) ∧ ∃ȳ(Q1(ȳ) ∧ ¬Q2(ȳ)).

Clearly, V�Q iff ϕ is not finitely satisfiable. Unfortu-
nately, even for CQ views and queries, ϕ does not belong
to an FO fragment known to have a decidable satisfia-
bility problem [5]. Thus, we need to take advantage of
the finer structure of the query languages we consider
in order to settle decidability of determinacy.

Finally, suppose V�Q. The following provides useful
information on the behavior of the mapping QV asso-
ciating to every instance V(D) in the image of V the
corresponding Q(D).

Proposition 4.3. Suppose V and Q are computable
views and queries over database schema σ and V�Q.
Let QV be the mapping associating to every instance
in the image of V the corresponding value of Q. Then
QV is generic and computable. In particular, for all
D ∈ I(σ): (i) adom(Q(D)) ⊆ adom(V(D)), and (ii)
every permutation of dom that is an automorphism of
V(D) is also an automorphism of Q(D).

Remark 4.4. Suppose V and Q are as in Proposi-
tion 4.3 and QV halts on every instance in the im-
age of V. One may wonder if QV can be extended to
a computable, halting query on all of I(σV). A sim-
ple recursion-theoretic argument shows that this is not
the case. In fact, there exist V and Q both in FO for
which V�Q but QV cannot be extended to a halting
computable query on all of I(σV).

Unions of conjunctive queries We have seen that
determinacy is undecidable for FO views and queries,
and indeed for any query language with undecidable
satisfiability problem and any view language with un-
decidable validity problem. However, determinacy re-
mains undecidable for much weaker languages. We show
next that this holds even for UCQs. The undecidability
result is quite strong, as it holds for a fixed database
schema, a fixed view, and UCQs using no constant val-
ues.

Theorem 4.5. There exists a database schema σ and
a fixed view V over σ defined by UCQs without con-
stants, for which it is undecidable, given a UCQ query
Q without constants over σ, whether V�Q.

Proof. The proof is by reduction from the word
problem for finite monoids: Consider a finite set H of
equations of the form x · y = z, where x, y, z are sym-
bols. Let F be an equation of the form x = y. Given a
monoid (M, ◦), the symbols are interpreted as elements
in M and · as the operation ◦ of the monoid. Given H
and F as above, the word problem for finite monoids
asks whether H implies F over all finite monoids. This
is known to be undecidable [19].

For the purpose of this proof, we will not work directly
on monoids but rather on monoidal operations. Let X
be a finite set. A function f : X ×X → X is said to be
monoidal if it is complete (total and onto) and defines
an associative operation. The operation of a monoid
is always monoidal due to the presence of an identity
element. It is immediate to extend Gurevich’s unde-
cidability result to monoidal functions by augmenting a
monoidal function, if needed, with an identity element.

We construct a view V and, given H and F as above,
a query QH,F such that V �QH,F iff H implies F over
all finite monoidal functions. We proceed in two steps.
We construct V and QH,F in UCQ=, then we show how
equality can be removed.

Consider the database schema σ = {R, p1, p2} where R
is ternary and p1, p2 are zero-ary (propositions). We
intend to represent x · y = z by R(x, y, z).

A ternary relation R is monoidal if it is the graph of
a monoidal function. That is, R is the graph of a (i)
complete (ii) function which is (iii) associative. We
construct a view V which essentially checks that R is
monoidal.

In order to do this we check that

(i) {x | ∃y, z R(x, y, z)} = {y | ∃x, z R(x, y, z)} =
{z | ∃x, y R(x, y, z)},

(ii) {(z, z′) | ∃x, yR(x, y, z)∧R(x, y, z′)} = {(z, z′) | z =
z′},

(iii) {(w, w′) | ∃x, y, z, u, v R(x, y, u) ∧ R(u, z, w) ∧
R(y, z, v) ∧ R(x, v, w′)} = {(w, w′) | w = w′}.

This is encoded in the view V as follows.

Let QV1(x, y, z) be R(x, y, z), QV2 be p1 ∨ p2, QV3 be
p1 ∧ p2, and, for each equation α of the form S = T in
the list above let QVα be (p1 ∧ S) ∨ (p2 ∧ T). Let V
consist of the queries QVi and QVα so defined.

We thus have: If D1 and D2 are such that V(D1) =

V(D2) and exactly one of p1, p2 is true in D1 and the
other in D2, then R is monoidal.

We now define QH,F . Given H and F = {x = y}, we
set ψH,F (x, y) to ∃ū

∧
u1·u2=u3∈H R(u1, u2, u3) (in the

formula all the variables are quantified except for x and
y). Let QH,F (x, y) be (p1 ∧ p2)∨ (p1 ∧ψH,F (x, y)∧ x =
y) ∨ (p2 ∧ ψH,F (x, y)).

We claim that V�QH,F iff H implies F over all finite
monoidal functions.

Assume first that H implies F on all finite monoidal
functions. Consider D1 and D2 such that V(D1) =
V(D2). If V3 is true then QH,F (D1) = QH,F (D2) =
adom(R) × adom(R). If V3 and V2 are false then
QH,F (D1) = QH,F (D2) = ∅. In the remaining case
exactly one of p1, p2 is true in D1 and in D2. If it
is the same for D1 and D2 then we immediately have
QH,F (D1) = QH,F (D2). Otherwise we have that D1

and D2 agree on R (by V1) and R is monoidal (by the
remark above). Since H implies F on monoidal func-
tions, ψH,F (x, y) ⇒ x = y. This yields QH,F (D1) =
QH,F (D2).

Assume now that V�QH,F . Let R be a monoidal
graph. Consider the extension D1 of R with p1 true and
p2 false, and the extension D2 of R with p1 false and
p2 true. We have D1 |= p1 ∧ ¬p2, D2 |= ¬p1 ∧ p2 and
V(D1) = V(D2). Therefore QH,F (D1) = QH,F (D2)
and ψH,F (x, y) ⇒ x = y. Thus R verifies H implies F .

In the above, equality is used explicitly in the view and
query. Equality can be avoided as follows. A relation R
is said to be pseudo-monoidal if there exists an equiva-
lence relation � over the domain of R such that � is a
congruence for R and R/ � is monoidal. In other words,
R(x, y, z) and R(x, y, z′) may hold for distinct z and z′,
but z and z′ are equivalent with respect to R, i.e. they
cannot be distinguished using R. This can be enforced
using the following equalities:

{(u, v, z, z′) | ∃x, y R(x, y, z)∧R(x, y, z′)∧R(z, u, v)} =
{(u, v, z, z′) | ∃x, y R(x, y, z) ∧ R(x, y, z′) ∧ R(z′, u, v)},

{(u, v, z, z′) | ∃x, y R(x, y, z)∧R(x, y, z′)∧R(u, z, v)} =
{(u, v, z, z′) | ∃x, y R(x, y, z) ∧ R(x, y, z′) ∧ R(u, z′, v)},
and

{(u, v, z, z′) | ∃x, y R(x, y, z)∧R(x, y, z′)∧R(u, v, z)} =
{(u, v, z, z′) | ∃x, y R(x, y, z) ∧ R(x, y, z′) ∧ R(u, v, z′)}.

We modify V by replacing the query that checks that
R is the graph of a function (equation (ii)) by a set
of queries corresponding to the new equations above
and, replacing in the others all equalities x = y by
∃u, v R(u, v, x) ∧ R(u, v, y). We also modify the query
QH,F , by replacing all equalities x = y by ∃u, v R(u, v, x)∧
R(u, v, y).

As before, we can show that V�QH,F iff H implies
F over all finite pseudo-monoidal functions. The lat-
ter is undecidable, since implication over finite pseudo-
monoidal functions is the same as implication over finite
monoidal functions. This follows from the fact that a
pseudo-monoidal function can be turned into a monoidal
function by taking the quotient with � defined by x � y
iff ∃u, v R(u, v, x) ∧ R(u, v, y).

Finally, note that the zero-ary relations p1 and p2 can
be avoided in the database schema if so desired by using
instead two Boolean CQs over some non-zero-ary rela-
tion, whose truth values are independent of each other.
For example, such sentences using a binary relation P
might be p1 = ∃x, y, z P (x, y) ∧ P (y, z) ∧ P (z, x) and
p2 = ∃x, y P (x, y) ∧ P (y, x).

Conjunctive queries The decidability of determinacy
for conjunctive views and queries remains open, and ap-
pears to be a hard question. The problem is only settled
for some special fragments of CQs. We can show that
determinacy is decidable for Boolean or single unary CQ
views, and arbitrary CQ queries. Furthermore, CQ is
complete for rewritings of such queries and views.

Theorem 4.6. It is decidable, given a CQ view V
with Boolean or unary answer and a CQ query Q, whether
V �Q.

The above result can be extended to (U)CQ(�=) queries.

5. FINITE REWRITING
In this section we consider the problem of rewriting a
query Q in terms of a view V, assuming that V�Q.

In the unrestricted case, we have seen that FO is com-
plete for FO-to-FO rewritings. The proof relied on Craig’s
Interpolation theorem. As we have seen (Example 3.2),
neither the proof technique nor the result carry over to
the finite case. Indeed, we show the following.

Theorem 5.1. If R is complete for FO-to-FO rewrit-
ings then R expresses all computable queries.

Proof. Let M be an arbitrary Turing machine ex-
pressing a total, computable query q whose inputs and
outputs are graphs (the argument can be easily extended
to arbitrary schemas). More precisely, consider a di-
rected graph G with sets of nodes adom(G), and ≤ a
total order on the nodes. We consider a standard en-
coding enc≤(G) of G as a string in {0, 1}∗ of length
|adom(G)|2 whose < i, j >-th position in lexicographic
order is 1 iff < ai, aj >∈ E where ai and aj have rank
i resp. j with respect to the order ≤. M computes q iff
M on input enc≤(G) halts with output enc≤(q(G)), for
every total order ≤ on adom(G). Consider the database

schema σ = {R1, R2,≤, T} where R1, R2 and ≤ are bi-
nary, and T is ternary. The intended meaning is that
R1 is the input graph, ≤ is a total order over some
set D ⊇ adom(R1) with adom(R1) as initial elements,
and T represents a halting computation of M on in-
put enc≤(R1), with output enc≤(R2). More specifically,
T (i, j, c) holds if in the i-th configuration of M , the con-
tent of the j-th tape cell is c (the position of the head
and the state are encoded in tape symbols). In the en-
coding, i is represented by the element of rank i in the
ordering ≤. Using standard techniques (see for instance
[2]) one can construct an FO sentence ϕM over σ stat-
ing that ≤ is indeed a total order including adom(G) as
initial elements, and that T is a correct representation
of a halting computation of M on input enc≤(R1), with
output enc≤(R2). Let V be the view with σV = {R1}
defined by QR1 = ϕM ∧ R1(x, y), and Q be the query
ϕM ∧ R2(x, y).

We claim that V�Q and Q = q ◦ V. Indeed if V is
empty then either ϕM is false or R1 is empty. In both
cases Q is empty (note that by genericity q(∅) = ∅) and
so Q = q ◦ V. If V is not empty then ϕM holds and
V returns R1. Therefore Q equals R2 = q(R1). Thus,
Q = q ◦ V.

Existential FO views We have seen in Theorem
5.1 that for FO views and queries, the query answer-
ing problem is Turing complete. We now show that,
when the views are defined in ∃FO, the complexity of
query answering goes down to NP ∩ co-NP. By Fagin’s
Theorem (see [20]) this implies that ∃SO and ∀SO are
complete for ∃FO-to-FO rewritings. We also show that
this bound is tight using a logical characterization of
NP ∩ co-NP by means of implicit definability [21, 16].
First, we show:

Theorem 5.2. ∃SO and ∀SO are both complete for
∃FO-to-FO rewritings.

Proof. Let V be a view from I(σ) to I(σV) defined
in ∃FO. Let S be an instance over I(σV) in the image
of V. We start with the following lemma showing that
among the database instances D such that V(D) = S
there is one of size polynomial in |S|.

Lemma 5.3. Let V be defined in ∃FO and k be the
maximum number of variables in a view definition of V,
in prenex form. If S ∈ I(σV) and S is in the image of
V then there exists D ∈ I(σ) such that V(D) = S and
|adom(D)| ≤ k|adom(S)|k.

Proof. Let S,V be as in the statement. Let D′ ∈
I(σ) be such that V(D′) = S. Consider V ∈ V with
corresponding view QV and let c̄ be a tuple in S(V)
(its arity is at most k). Each such c̄ is witnessed by an
assignment θc̄ extending c̄ to the existentially quantified
variables of QV . Let A be the set of all elements of D′

occurring in θc̄ for some tuple c̄ of S. Let D be the
restriction of D′ to A. By construction, each assignment
θc̄ still witnesses c̄. Therefore, S ⊆ V(D). Because
V is in ∃FO, V is closed under extension, so V(D) ⊆
V(D′) = S. Altogether V(D) = S and adom(D) = A
has size bounded by k|adom(S)|k.

Assume now that Q is in FO and that V�Q. Let QV be
the mapping associating to every instance S in the im-
age of V the corresponding value of Q. Recall that, by
Proposition 4.3, adom(QV(S)) ⊆ adom(S). By Lemma
5.3 a non-deterministic polynomial algorithm for check-
ing whether a tuple c̄ over adom(S) is in QV(S) goes
as follows: guess a database instance D over σ of size
polynomial in |S|, check that V(D) = S and check that
c̄ ∈ Q(D). Also from Lemma 5.3 we have the follow-
ing universal polynomial algorithm: For all database
instances D of size polynomial in |S|, if V(D) = S,
check that c̄ ∈ Q(D). The first algorithm is in NP
while the second is in co-NP. By Fagin’s theorem this
implies that c̄ ∈ QV(S) can be expressed by both ∃SO
and ∀SO formulas ϕ(c̄). By universality of constants,
it follows that there are ∃SO and ∀SO formulas ϕ(x̄)
defining QV.

We next show that Theorem 5.2 is tight, i.e. every
rewriting language complete for ∃FO-to-FO rewritings
must be able to express all properties in ∃SO ∩ ∀SO. In
fact, the lower bound holds even for UCQ-to-FO rewrit-
ings.

Theorem 5.4. Let τ be a schema. For every query q
of instances over τ definable in ∃SO ∩ ∀SO there exists
a set V of UCQ views and and an FO sentence Q such
that V�Q and QV defines q.

Proof. We use a result of [21] (see also [16]) on the
expressive power of implicit definability over finite struc-
tures. We briefly recall the result and related defini-
tions. Let τ be a database schema. Let q be a query
over τ returning a k-ary relation. Such a query q is said
to be implicitly definable over τ if the exists a schema
τ ′ = τ ∪ {T, S̄} where T is k-ary and a FO(τ ′) sen-
tence ϕ(T, S̄) such that (i) for all D ∈ I(τ) there ex-
ists a sequence S̄ of relation over adom(D) such that
D |= ϕ(q(D), S̄) and (ii) for all relations T and S̄ over
adom(R) we have D |= ϕ(T, S̄) implies T = Q(D).

The set of queries implicitly definable over τ is denoted
by GIMP(τ). We use the following known result [21, 16]:
GIMP(τ) consists of all queries whose data complexity
is NP ∩ co-NP. In view of Fagin’s Theorem, this yields:

Theorem 5.5. [21, 16] GIMP(τ) consists of all queries
over τ expressible in ∃SO ∩ ∀SO.

Thus, to establish Theorem 5.4 it is enough to show
that every language complete for UCQ-to-FO rewritings
must express every query in GIMP(τ).

Let τ be a schema and q a query in GIMP(τ). Thus,
there exists an FO sentence ϕ(T, S̄) over τ ′ = τ ∪{T, S̄}
such that q is implicitly defined over τ by ϕ(T, S̄). We
may assume wlog that ϕ(T, S̄) uses only ∧,¬, ∃.

We construct Q and V as follows. We first augment τ ′

with some new relation symbols. For each subformula
θ(x̄) of ϕ with n free variables consider two relation
symbols Rθ and R̄θ of arity n. In particular, Rϕ is a
proposition. Let σ be the set of such relations, and
τ ′′ = τ ′ ∪ σ. Given D ∈ I(τ ′), the intent is for Rθ to
contain θ(D(τ ′)) and for R̄θ to be the complement of
Rθ (for technical reasons, R̄θ is needed even when ¬θ
is not a subformula of ϕ). The interest of the auxiliary
relations is that ϕ can be checked by verifying that each
Rθ has the expected content using a straightforward
structural induction on θ. This is done by checking
simple connections between the relations in σ:

1. R̄θ = adom(D)k − Rθ, R¬θ = R̄θ,

2. Rθ1∧θ2(x̄, ȳ, z̄) = Rθ1(x̄, ȳ) ∧ Rθ2(ȳ, z̄), and

3. R∃x θ(x,ȳ)(ȳ) = ∃x Rθ(x,ȳ)(x, ȳ).

Let ψ be an FO(τ ′′) formula which checks that all re-
lations Rθ, R̄θ ∈ σ satisfy (1)-(3) above. Let Q be the
query ψ ∧ ϕ(T, S̄) ∧ T (x̄). Thus, for for D ∈ I(τ ′′)
satisfying ϕ and for which additionally the relations of
D(σ) satisfy (1)-(3), Q(D) returns D(T) = q(D(τ)).

We now define a set V of UCQ views. On input D ∈
I(τ ′′), a first subset Vτ of V simply returns D(τ). In
particular, Vτ provides the active domain A of D. A
second set of views, Vσ, allows verifying whether the
relations in σ satisfy (1)-(3). Specifically, Vσ contains
the following:

(i) Views allowing to check (1). To verify that R̄θ

is the complement of Rθ, we use two views: the
first is defined by Rθ(x̄) ∧ R̄θ(x̄) and the second
Rθ(x̄) ∨ R̄θ(x̄). If k is the arity of Rθ, (1) holds
iff the first view returns ∅ and the second returns
Ak.

(ii) Views allowing to check (2). Let θ(x̄, ȳ, z̄) = θ1(x̄, ȳ)∧
θ2(ȳ, z̄), where x̄, ȳ, z̄ are disjoint sequences of free
variables. We use three views. The first is de-
fined by Rθ1(x̄, ȳ)∧Rθ2(ȳ, z̄)∧ R̄θ(x̄, ȳ, z̄), the sec-
ond by Rθ(x̄, ȳ, z̄) ∧ R̄θ1(x̄, ȳ), and the third by
Rθ(x̄, ȳ, z̄) ∧ R̄θ2(ȳ, z̄). Note that (2) holds for θ
iff the three views return the empty set.

(iii) Views allowing to check (3). Let θ(ȳ) = ∃xθ1(x, ȳ).
We use two views. The first is defined by ∃xRθ1(x, ȳ)∧
R̄θ(ȳ), and the second by ∃xRθ1(x, ȳ) ∨ R̄θ(ȳ). If
k is the arity of θ then (3) holds iff the first view
is empty while the second is Ak.

Finally, V contains a view Vϕ that returns the value
of Rϕ, which coincides with that of ϕ. We now claim

that V�Q. Consider D ∈ I(τ ′′). As described above,
the views Vσ provide enough information to determine
if the relations in σ satisfy (1)-(3). In particular, this
determines the value of ψ. If ψ is false then Q(D) = ∅.
If ψ is true, Vϕ provides the value of ϕ. If ϕ is false
then Q(D) = ∅. If ϕ is true then Q(D) returns D(T) =
q(D(τ)) which is uniquely determined by D(τ) by defi-
nition of GIMP. Since Vτ provides D(τ), it follows that
V�Q.

Now consider QV. By definition, QV computes q(D(τ))
on instances D ∈ I(σV)) extending D(τ) to σV with
relations ∅ or adom(D(τ))k for the view relations in Vσ

corresponding to the case when ϕ is satisfied by the
pre-image of the view, as described in (i)-(iii), and with
and with true for Vϕ, corresponding to the case when
the pre-image satisfies ϕ. This extension is trivial, and
easily expressible from D(τ).

Note that Theorem 5.4 requires only UCQ views and
therefore Theorem 5.2 is also tight when views are re-
stricted to UCQs. As an immediate consequence of The-
orem 5.4 we have:

Corollary 5.6. Datalog ¬ and fixpoint logic1

FO+LFP are not complete for UCQ-to-FO rewritings.

We can show that FO is not a complete rewriting lan-
guage even if the views are restricted to CQ¬, where
CQ¬ is CQ extended with safe negation.

Proposition 5.7. FO is not complete for CQ¬-to-
FO rewritings.

Proof. We revisit Example 3.2. We use a strict lin-
ear order < rather than ≤. As in the example, we use
schemas σ and σ<, an FO sentence ψ checking that <
is a strict total order, and the FO query Qϕ = ψ∧ϕ(<)
for some order-invariant FO(σ<) sentence ϕ which is
not FO-definable over σ alone.

Let V consist of the following views:

1. x < y ∧ y < x

2. x < y ∧ y < z ∧ ¬(x < z),

3. for each R ∈ σ of arity k and distinct i, j ∈ [1, k],
one view R(x1, . . . , xi, . . . , xj , . . . , xk)∧¬(xi < xj)∧
¬(xj < xi)

4. for each pair of relations R1, R2 ∈ σ and appropri-
ate i, j, one view R1(. . . , xi, . . .)∧R2(. . . , yj , . . .)∧
¬(xi < xj) ∧ ¬(xj < xi)

5. for each R ∈ σ, one view returning R.
1FO+LFP is FO extended with a least fixpoint opera-
tor, see [15].

We claim that V�Qϕ. First, note that ψ holds (i.e.
< is a strict total order on the domain) iff views (1)-
(4) are empty. Indeed, this ensures antisymmetry (1),
transitivity (2), and totality (3,4). If any of these views
is not empty, then ψ is false so Q is false. Otherwise, Q
returns the value of ϕ(<) on the relations in σ<, which
by the order invariance of ϕ(<) depends only on the
relations in σ. These are provided by the views (5).
Thus, V�Q and QV allows defining ϕ(<) using just
the relations in σ, which cannot be done in FO.

UCQ views and queries We consider now the case
when the views and queries are in UCQ. Unfortunately,
UCQ is not complete for UCQ-to-UCQ rewritings, nor
are much more powerful languages such as Datalog�=.
Indeed, the following shows that no monotonic language
can be complete even for UCQ-to-CQ rewritings. In
fact, this holds even for unary databases, views, and
queries.

Proposition 5.8. Any language complete for UCQ-
to-CQ rewritings must express non-monotonic queries.
Moreover, this holds even if the database relations, views,
and query are restricted to be unary.

Proof. Consider the schema σ = {R, P} where R
and P are unary. Let V be the set consisting of the
following three views:

QV1(x) : ∃uR(u) ∧ P (x)
QV2(x) : R(x) ∨ P (x)
QV3(x) : R(x).

Let Q(x) be the query P (x). It is easily seen that V�Q.
Indeed, if R �= ∅ then V1 provides the answer to Q;
if R = ∅ then V2 provides the answer to Q. Finally,
V3 provides R. Therefore, V�Q. Now consider QV,
associating Q(D) to V(D). We show that QV is not
monotonic. Indeed, let D1 be the database instance
where P = {a, b} and R is empty. Let D2 consist of
P = {a} and R = {b}. Then V(D1) = 〈∅, {a, b}, ∅〉,
V(D2) = 〈{a}, {a, b}, {b}〉, so V(D1) ⊆ V(D2). How-
ever, Q(D1) = {a, b}, Q(D2) = {a}, and Q(D1) �⊆
Q(D2).

As an immediate consequence of Proposition 5.8, we
have:

Corollary 5.9. Datalog �= is not complete for UCQ-
to-CQ rewritings, even if the database, views, and query
are restricted to be unary.

Proposition 5.8 provides a lower bound of sorts for any
rewriting language complete for UCQ-to-UCQ rewrit-
ings. Another kind of lower bound on the power of
rewriting languages complete for UCQ-to-UCQ rewrit-
ings follows from the undecidability of determinacy for
UCQ views and queries (Theorem 5.2).

Proposition 5.10. If R is complete for UCQ-to-UCQ
rewritings, then it is undecidable whether a UCQ query
Q can be rewritten in terms of a set of UCQ views V
using a query in R.

Proposition 5.10 provides an immediate alternate proof
that UCQ is not complete for UCQ-to-UCQ rewritings.
Indeed, by Theorem 3.9 in [22], it is decidable if a UCQ
query Q can be rewritten in terms of a set of UCQ views
V using a UCQ.

Recall that, from Theorem 5.2, we know that ∃SO and
∀SO are both complete for UCQ-to-UCQ rewritings. It
remains open if we can do better. In particular, we do
not know if FO is complete for UCQ-to-UCQ rewritings.

CQ views and queries Conjunctive queries are the
most widely used in practice, and the most studied in
relation to answering queries using views. Given CQ
views V and a CQ query Q, it is decidable whether
Q can be rewritten in terms of V using another CQ
([22]). However, it remains open whether CQ is com-
plete for CQ-to-CQ rewritings. Note that a positive an-
swer immediately implies decidability of whether V�Q,
by the above result of [22]. Recall from Section 4 that
this problem is also open. Also recall that in the un-
restricted case, determinacy is decidable for CQ views
and queries (Theorem 3.7), and CQ is complete for CQ-
to-CQ rewritings (Theorem 3.3). One way of showing
that CQ is complete for CQ-to-CQ rewritings in the
finite case would be to show that for CQs, V�Q on
finite instances iff V�Q on unrestricted instances and
then apply Theorem 3.3. But this problem turns out to
be as difficult as the original. When V�Q, one may
also wonder what properties are required of QV. For
instance, can QV be non-monotonic, as in the case of
UCQs? Surprisingly, this question turns out to be again
as hard as the original. Indeed, we can show:

Theorem 5.11. The following are equivalent:

1. CQ is complete for CQ-to-CQ rewritings;

2. for CQ views V and queries Q, V�Q on finite
instances iff V�Q on unrestricted instances; and,

3. for CQ views V and queries Q for which V�Q,
the query QV is monotonic.

Proof. 1 → 2. Suppose 1 holds. Let V and Q be
CQs and suppose V�Q on finite instances. By 1 this
implies that Q = QV ◦V over finite instances, for some
QV in CQ. Since unrestricted and finite CQ equivalence
coincide, Q = QV ◦ V also for unrestricted instances.
Therefore V�Q over unrestricted instances. The con-
verse is trivially true.

2 → 3. Suppose 2 holds. Let V and Q be CQs such that
V�Q. In particular, V�Q over unrestricted instances.

By Theorem 3.3, Q = QV ◦V for some QV in CQ. This
implies that QV is monotonic.

3 → 1. Suppose 3 holds. Let V and Q(x̄) be CQs such
that V�Q (finitely). Let QV be such that Q = QV◦V.
By 3, QV is monotonic. We wish to show that QV is
in CQ. We use the notation developed in the proof of
Theorem 3.3. Let D = [Q], S = V(D), D′ = V−1

∅ (S)
and, S′ = V(D′). By construction we have x̄ ∈ Q(D).
Therefore x̄ ∈ QV(S). By Proposition 3.6 (part 2 with
k = 0) we have S ⊆ S′. Therefore, by monotonicity of
QV, we have x̄ ∈ QV(S′). This implies x̄ ∈ Q(D′). By
part (iii) of Proposition 3.5, QV is equivalent to the CQ
defined there.

While Theorem 5.2 guarantees that both ∃SO and ∀SO
are complete for CQ-to-CQ rewritings, one may wonder
if a less powerful language remains complete for such
rewritings. This remains open. In particular, we do not
know if FO is a complete for CQ-to-CQ rewritings. In-
terestingly, if inequality is allowed in view definitions,
we can show that CQ is not a complete rewriting lan-
guage. In fact, the following provides a lower bound
similar to Proposition 5.8.

Proposition 5.12. Any language complete for CQ �=-
to-CQ rewritings must express non-monotonic queries.
Moreover, this holds even if the views and query are re-
stricted to be unary.

Proof. Let σ = {R}, where R is binary. Consider
the view V defined as follows: QV1(x) = ∃y R(x, y) ∧
R(y, x), QV2(x) = ∃y R(x, y) ∧ R(y, x) ∧ x �= y and
QV3(x) = ∃y R(x, x)∧R(x, y)∧R(y, x)∧ x �= y. Con-
sider the query Q(x) defined by R(x, x). It is easy to
check that V�Q. Indeed Q can be defined by (V1 ∧
¬V2) ∨ V3. Consider the databases instances D and
D′ where R is respectively {(a, a)} and {(a, b), (b, a)}.
Then V(D) = 〈{a}, ∅, ∅〉, V(D′) = 〈{a, b}, {a, b}, ∅〉,
Q(D) = {a} and Q(D′) = ∅. Thus, V(D) ⊂ V(D′)
but Q(D) �⊆ Q(D′). Therefore Q cannot be rewritten
in terms of V using a monotonic language.

From Proposition 5.12 we immediately have:

Corollary 5.13. Datalog �= is not complete for
CQ �=-to-CQ rewritings, even if the views and query are
restricted to be unary.

6. CONCLUSION
The contribution of this paper is a systematic study of
determinacy and its connection to rewriting for a va-
riety of view and query languages ranging from FO to
CQ, in both the unrestricted and finite cases. While
the questions were settled for many languages, several
interesting problems remain open. First and foremost,
little is known about CQ in the finite case: it remains

open whether determinacy is decidable, or whether CQ
is complete for CQ-to-CQ rewritings. We have made
some inroads by settling some special cases, and show-
ing the equivalence of several open questions about CQs.

For UCQ, we know that no monotonic language is com-
plete for UCQ-to-CQ rewritings (and similarly for
CQ ¬-to-CQ rewritings) and we know that ∃SO and
∀SO are complete for such rewritings. It is of inter-
est to know if there are languages less powerful than
∃SO and ∀SO that remain complete for UCQ-to-UCQ
rewritings, such as FO or FO+LFP. Similarly, short of
settling whether CQ is complete for CQ-to-CQ rewrit-
ings, it would be of interest to find languages less power-
ful than ∃SO and ∀SO that are complete for CQ-to-CQ
rewritings.

Determinacy and rewriting naturally lead to the follow-
ing general problem (solved so far only for simple lan-
guages). Suppose R is complete for V-to-Q rewritings.
Is there an algorithm that, given V ∈ V and Q ∈ Q
such that V�Q, produces R ∈ R such that Q ⇒V R ?

Finally, an interesting direction to be explored is instance-
based determinacy and rewriting, where determinacy
and rewriting are considered relative to a given view
instance. Such results have been obtained for regular
path queries in [8].

7. REFERENCES

[1] S. Abiteboul and O. Duschka. Complexity of
answering queries using materialized views. PODS
1998, 254-263.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison Wesley, 1995.

[3] F. Afrati, C. Li, and P. Mitra. Answering queries
using views with arithmetic comparisons. PODS
2002, 209-220.

[4] S. Agrawal, S. Chaudhuri, and V. Narasayya.
Automated selection of materialized views and
indexes in Microsoft SQL Server. VLDB 2000,
496-505.

[5] Egon Börger, Erich Gräel, and Yuri Gurevich.
The Classical Decision Problem. Springer, 1997.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M.Y. Vardi. Rewriting of regular expressions and
regular path queries. PODS 1999, 194-204.

[7] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M.Y. Vardi. View-based query processing for
regular path queries with inverse. PODS 2000,
58-66.

[8] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M.Y. Vardi. Lossless regular views. PODS 2002,
247-258.

[9] A.K. Chandra and P.M. Merlin. Optimal
implementation of conjunctive queries in
relational databases. STOC 1977, 77-90.

[10] C. C. Chang and H. J. Keisler. Model Theory.
North-Holland, 1977.

[11] C. Chekuri and A. Rajaraman. Conjunctive query
containment revisited. ICDT 1997, 56-70.

[12] S. Dar, M.J. Franklin, B. Jonsson, D. Srivastava
and M. Tan. Semantic data caching and
replacement. VLDB 1996, 330-341.

[13] A. Deutsch, L. Popa, and V. Tannen. Physical
data independence, constraints and optimization
with universal plans. VLDB 1999, 459-470.

[14] O. Duschka and M.R. Genesereth. Answering
recursive queries using views. PODS 1997,
109-116.

[15] H-D Ebbinghaus and J. Flum. Finite Model
Theory. Springer, 1995.

[16] S. Grumbach, Z. Lacroix, and S. Lindell.
Generalized implicit definitions on finite
structures. In Computer Science Logic, 1995,
252-265.

[17] S. Grumbach, M. Rafanelli, and L. Tininini.
Querying aggregate data. PODS 1999, 174-184.

[18] S. Grumbach and L. Tininini. On the content of
materialized aggregate views. PODS 2000, 47-57.

[19] Yuri Gurevich. The word problem for some classes
of semigroups. Algebra and Logic, 5(4):25–35,
1966. (Russian).

[20] Leonid Libkin. Elements of finite model theory.
Springer, 2004.

[21] S. Lindell. The Logical Complexity of Queries on
Unordered Graphs. PhD thesis, University of
California at Los Angeles, 1987.

[22] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua
Sagiv, and Divesh Srivastava. Answering queries
using views. PODS 1995, 95–104.

[23] Emil L. Post. Recursive unsolvability of a problem
of Thue. Journal on Symbolic Logic, 12(1):1–11,
1947.

[24] A. Rajaraman, Y. Sagiv, and J.D. Ullman.
Answering queries using templates with binding
patterns. PODS 1995, 105-112.

[25] O.G. Tsatalos, M.H. Solomon and Y.E. Ioannidis.
Describing and using query capabilities of
heterogeneous sources. VLDB 1997, 256-265.

[26] J.D. Ullman. Information integration using logical
views. ICDT 1997, 19-40.

[27] H.Z. Yang and P.A. LArson. Query
transformation for PSJ-queries. VLDB 1987,
245-254.

