
Composition of Mappings Given by Embedded
Dependencies

Alan Nash∗

Microsoft Research, USA
anash@math.ucsd.edu

Philip A. Bernstein
Microsoft Research, USA

philbe@microsoft.com

Sergey Melnik
Microsoft Research, USA
melnik@microsoft.com

ABSTRACT
Composition of mappings between schemas is essential to support
schema evolution, data exchange, data integration, and other data
management tasks. In many applications, mappings are given by
embedded dependencies. In this paper, we study the issues involved
in composing such mappings.

Our algorithms and results extend those of Fagin et al. [8] who
studied composition of mappings given by several kinds of con-
straints. In particular, they proved that full source-to-target tuple-
generating dependencies (tgds) are closed under composition, but
embedded source-to-target tgds are not. They introduced a class of
second-order constraints, SO tgds, that is closed under composition
and has desirable properties for data exchange.

We study constraints that need not be source-to-target and we
concentrate on obtaining (first-order) embedded dependencies. As
part of this study, we also consider full dependencies and second-
order constraints that arise from Skolemizing embedded dependen-
cies. For each of the three classes of mappings that we study, we
provide (a) an algorithm that attempts to compute the composition
and (b) sufficient conditions on the input mappings that guarantee
that the algorithm will succeed.

In addition, we give several negative results. In particular, we
show that full dependencies are not closed under composition, and
that second-order dependencies that are not limited to be source-
to-target are not closed under restricted composition. Furthermore,
we show that determining whether the composition can be given by
these kinds of dependencies is undecidable.

1. INTRODUCTION
Many data management tasks, such as data translation, information
integration, and database design require manipulation of database
schemas and mappings between schemas. A schema mapping de-
scribes the relationship between the data instances of two schemas.
Examples of schema mappings include SQL views, XSL transfor-
mations, integration constraints on schemas [11], and GLAV as-
sertions in peer-to-peer systems [9]. Mapping composition refers

∗Current affiliation: University of California, San Diego

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005 June 13-15, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-062-0/05/06 . . . $5.00.

to combining two mappings into a single one. If m12 is a map-
ping between schemas σ1 and σ2, and m23 is a mapping between
schemas σ2 and σ3, then the composition m12 ◦m23 of m12 and
m23 is a mapping that captures the same relationship between σ1

and σ3 as the two mappings m12 and m23.
Composition of mappings generalizes composition of queries,

which is implemented in most commercial database systems. It is
known that composition of two first-order queries (a.k.a. view un-
folding) is a first-order query. That is, first-order queries are closed
under composition. The same holds for CQ and UCQ queries.

Query composition corresponds to composition of functional
mappings. In a more general setting, the mappings to be composed
may be non-functional and this makes the problem of composing
them harder. For example, answering queries using views involves
the composition of the query and the inverse of the view. But invert-
ing a functional mapping often yields a non-functional mapping.

Composition was recently studied by Madhavan and Halevy [12]
and by Fagin, Kolaitis, Popa, and Tan [8] (see “Related Work” be-
low). Our work is closely related to that of Fagin et al. But whereas
part of their focus is on mappings given by second-order constraints
that are restricted to be source-to-target, we study constraints that
need not be source-to-target and we try to obtain embedded depen-
dencies as the result of our composition. We have several motiva-
tions for pursuing these directions, including the following:

• Allow schema constraints. If they are present, composition
yields mappings that may include functional dependencies or
inclusion dependencies that are not source-to-target.

• Support mappings that express equality of views and, more
generally, symmetric data exchange and peer-to-peer sys-
tems.

• Obtain closure under most basic mapping operators; in par-
ticular, composition and inverse.

• Ensure that checking whether a pair of instances is in a map-
ping has low complexity.

• Be able to deploy composition mappings in existing database
system products.

In this new context, we extend the results of Fagin et al. [8] in
several directions. We study the composition of three related kinds
of mappings:

1. ∀CQ=
0 -mappings (given by full dependencies)

2. ∀CQ=-mappings (given by embedded dependencies)
3. Sk∀CQ=-mappings (given by second-order constraints)

and the corresponding mappings without equality. ∀CQ=-
mappings subsume source-to-target tuple-generating dependencies
(st-tgds), functional dependencies and inclusion dependencies,
and can express view definitions. Sk∀CQ= constraints subsume
the second order (SO) tgds of [8], which in our terminology are
source-to-target Sk∀CQ constraints.

The case of most interest to us is that of ∀CQ=-mappings. We
show that one way to compose them is to:

1. Skolemize the ∀CQ=-mappings to get Sk∀CQ=-mappings,
2. find a finite Sk∀CQ= axiomatization of all Sk∀CQ= con-

straints that hold for the composition, and
3. de-Skolemize the finite Sk∀CQ= axiomatization to get a

∀CQ=-mapping.

The first step is easy; the difficulties arise in Steps 2 and 3. In
the work [8] of Fagin et al., the source-to-target restriction simpli-
fies Step 2. And since the composition they consider is given by
second-order constraints, Step 3 does not apply.

In Step 3, our goal is to obtain embedded dependencies, which
requires eliminating second-order quantifiers.

In the case of Sk∀CQ we consider both restricted composition,
in which we are not allowed to introduce new function symbols,
and unrestricted composition, in which we are free to introduce
new function symbols.

Observe that our mapping languages are capable of expressing
within-schema constraints, such as inclusion and functional depen-
dencies. In this paper, we assume that schema constraints are part
of each mapping that mentions the schema. So we do not need to
refer to them explicitly.
Contributions To list our contributions, we need to refer to many
classes of mappings. To simplify the presentation, we use the fol-
lowing convention. Whenever we refer to a class of constraints
without equality (for example, ∀CQ) we imply that the result also
holds for the corresponding class of constraints with equality (for
example, ∀CQ=), unless otherwise stated. In contrast, whenever
we refer to a class of constraints with equality, we do not imply
the result holds for the corresponding class of constraints without
equality. Furthermore our negative results do not require the use
of constants and our positive results allow constants. Our contribu-
tions include the following.

Negative results:

1. We show that ∀CQ0-mappings are not closed under com-
position and that Sk∀CQ-mappings are not closed under re-
stricted composition (Theorem 1).

2. We show that the problem of determining whether the
composition of two ∀CQ0-mappings is a ∀CQ0-mapping
is undecidable (Theorem 2). This result carries over to
∀CQ-mappings and to restricted composition of Sk∀CQ-
mappings.

3. Expressing the composition of two ∀CQ0-mappings may
require ∀CQ0 constraints that are exponentially larger in
size than the input mappings, even over fixed schemas (Ex-
ample 4). This result carries over to ∀CQ-mappings and
Sk∀CQ-mappings. We show that there are ∀CQ-mappings
that require exponentially larger expressions in Sk∀CQ than
in ∀CQ (Theorem 8). That is, an exponential increase in size
may occur independently at each of the Steps 2 and 3 of the
algorithm outlined above.

Positive results:

4. We present necessary and sufficient (but uncomputable) syn-
tactic conditions for composition of ∀CQ0 and Sk∀CQ-
mappings (Theorem 3 and Theorem 6).

5. We present algorithms that compute the composition of
∀CQ0 and Sk∀CQ-mappings whenever they terminate
(Corollary 1). These algorithms are very similar to each
other and can be seen as an extension of the algorithm
in [8] to handle mappings that are not restricted to being
source-to-target.

6. We introduce exponential-time sufficient conditions for the
algorithms above to terminate (Theorem 4).

7. We present an algorithm to compute the composition of
∀CQ-mappings, which consists of three steps as outlined
above: (1) Skolemize, (2) invoke the composition algorithm
for Sk∀CQ-mappings, and (3) de-Skolemize.

8. The de-Skolemization step may fail1. We show how to check
in polynomial time whether it will succeed and whether its
output will be exponentially larger than its input (Proposi-
tion 3).

9. We identify exponential-time recognizable subsets of ∀CQ0

and Sk∀CQ that are closed under composition and inverse
and that include source-to-target constraints and constraints
that express view definitions (Theorem 5). We do not provide
such a subset of ∀CQ since the conditions on it would be
very restrictive (to ensure that de-Skolemization succeeds).

Additional (minor) results for second-order constraints:

10. We show that Sk∀CQ requires special semantics (Exam-
ple 8) and point out that under these semantics the safety
condition is not needed to ensure domain-independence. Fur-
thermore, unsafe source-to-target Sk∀CQ have NP data
complexity, just as safe source-to-target Sk∀CQ.

11. We identify two different kinds of composition of Sk∀CQ-
mappings: restricted and unrestricted.

12. We show that unsafe Sk∀CQ=-mappings are closed under
unrestricted composition and present a linear-time compo-
sition algorithm (Theorem 9). This algorithm “cheats” by
encoding the intermediate instance in the composition in an
uninformative way, exploiting the special semantics.

13. We introduce another fragment of second-order logic,
∃SO∀CQ=. We show that every finite set of source-to-
target constraints Sk∀CQ= is equivalent, under the special
semantics, to a finite set of source-to-target ∃SO∀CQ= con-
straints under the usual semantics for ∃SO (Theorem 10).

Composition is only one of many useful operations on map-
pings. Bernstein et al. [2, 3] introduced a general framework, called
model management, in which operators on schemas and mappings
are used to simplify the development of metadata-intensive appli-
cations. The basic operators include domain, range, composition,
and inverse.

14. We show that domain, range, and composition are closely
related and can be reduced to each other (Proposition 5).

This is one reason why, in this context, composition and inverse are
fundamental. The latter is easy if we use symmetric restrictions on
the languages that define our mappings. Thus, ∀CQ=

0 ,∀CQ=, and
Sk∀CQ= mappings have trivial inverse mappings. On the other
hand, composition turns out to be very hard and is the primary sub-
ject of this paper.
Related Work A first semantics for composition of mappings was
proposed in the pioneering work [12] by Madhavan and Halevy.
Under their definition, m13 is a composition of m12 and m23 if
the certain answers obtained by way of m13 for any query in a
class of queries L against schema σ3 are precisely those that can
be obtained by using m23 and m12 in sequence. Notice that in
their definition, composition depends on the query class L. They
focused on the relational case and considered mappings given by a
certain class of tgds, which they call GLAV formulas.

1After all, Sk∀CQ has more expressive power than ∀CQ since, as
shown in [8], it can encode NP-complete problems.

Madhavan and Halevy showed that the result of composition
may be an infinite set of formulas when the query language L is
that of conjunctive queries, and proposed algorithms for the cases
when composition can be done. Their definition has some disad-
vantages. In particular, the result of composition varies depending
on the choice of the query language L. Also, the definition is asym-
metric. That is, it is based on queries over σ3 and does not consider
queries over σ1.

An alternative, language-invariant semantics for mapping com-
position was proposed independently by Fagin et al. [8] and Mel-
nik [13, Chapter 4]. They considered mappings as binary rela-
tions on instances of schemas and defined mapping composition
as a set-theoretic composition of such binary relations. This se-
mantics makes the result of mapping composition unique and does
not depend on a specific logical formalism chosen for representing
mappings and queries.

Fagin et al. [8] were the first to embark on a systematic investiga-
tion of mapping composition under these natural semantics. They
presented many fundamental results; we survey only some of them
here. First, they showed that full st-tgds are closed under composi-
tion, but that embedded st-tgds are not. To obtain closure in a more
general setting, they introduced SO tgds, a second-order extension
of st-tgds. These arise from Skolemizing embedded st-tgds. They
showed that SO tgds are strictly more expressive than st-tgds and
are closed under composition. This makes them a suitable mapping
language for data exchange and query-rewriting scenarios [7, 16].
Further results in [8] are that composition of mappings given by st-
tgds may give mappings undefinable in Lω

∞ω and that composition
of FO-mappings may give uncomputable mappings.

We extend the seminal work of Fagin et al. [8] in two princi-
pal directions: (1) we study constraints that need not be source-to-
target and (2) we concentrate on obtaining embedded dependencies
(which are first-order). Very roughly speaking, the main two chal-
lenges that we face involve recursion and de-Skolemization.
Outline This paper is structured as follows. In Section 2, we give a
formal definition of mapping composition and specify the mapping
languages that we consider. In Section 3 we present the deductive
system used in our proofs. In Sections 4, 5, and 6 we study the
composition of mappings given by, respectively, full, second-order,
and embedded dependencies. In Section 7 we examine the seman-
tics of Sk∀CQ= and study unrestricted composition. In Section 8
we briefly consider how some other basic operators on mappings
such as domain and range relate to composition. Section 9 is the
conclusion. Due to space limitations, some proofs are only outlined
and others are entirely omitted.

2. PRELIMINARIES
Queries. CQ is the set of conjunctive queries and CQ0 is the set of
queries with conjunction but no existential quantifiers.2 CQ= and
CQ=

0 are the corresponding query classes that also include equality.
Constraints. A constraint is a boolean query. We denote sets
of constraints with capital Greek letters and individual constraints
with lowercase Greek letters. We will need to refer to the following
kinds of constraints:

Name Form
∀CQ0 ∀x̄(φ(x̄) → ψ(x̄))
∀CQ ∀x̄(φ(x̄) → ∃ȳ ξ(x̄, ȳ))
Sk∀CQ ∃f̄∀x̄(φ(x̄), χ(x̄) → ψ(x̄))
∃SO∀CQ ∃R̄∀x̄(φ(x̄) → ∃ȳ ξ(x̄, ȳ))

where φ(x̄) is a conjunction of relational atoms with variables in x̄,

2We are not aware of any standard notation for this class.

χ(x̄) is a set of equations between variables or between a variable
and a term, ψ(x̄) is a conjunction of relational atoms with variables
in x̄, and ξ(x̄, ȳ) is a conjunction of relational atoms with variables
in x̄ and ȳ. Terms are built from variables and functions in f̄ .

We further require that every variable in x̄ be safe. A variable is
safe if it appears in a relational atom in φ(x̄) or alone on one side
of an equation in χ where the other side is a term constructed from
safe variables.

We define ∀CQ=
0 , ∀CQ=, Sk∀CQ=, and ∃SO∀CQ= the same

way, except that we also allow equations on the right hand side
of →. The intuition for these names is that ∀CQ0 and ∀CQ are
constraints given by inclusion of CQ0 and CQ queries respectively.
Skolemizing ∀CQ constraints gives Sk∀CQ constraints (but not all
Sk∀CQ constraints correspond to Skolemized ∀CQ constraints).
∃SO∀CQ constraints are obtained by adding existential second-
order quantification over relations to ∀CQ.

The Skolemization of a formula is the result of applying the fol-
lowing replacement: for every ocurrence of a first-order existential
quantifier v, remove ∃v and replace the quantified variable wher-
ever it appears in the scope of the quantifier with a new term of
the form f(x̄) where f is a new function symbol. In addition,
introduce a second-order quantifier f just outside the scope of x̄.
For example, the Skolemization of ∀xy(R(xy) → ∃z S(xz)) is
∀xy(R(xy) → S(y, f(xy)). The classes of constraints in Sk∀CQ
we define here are in unnested form, so we would rewrite this as
∀xy(R(xy), z = f(xy) → S(yz)). We overload notation and as-
sume that Sk∀CQ also contains nested formulas of the kind above
to simplify the presentation. The existential second-order quantifi-
cation in Sk∀CQ and ∃SO∀CQ apply to a finite set of constraints,
not necessarily just one (this is not easy to illustrate in the table
above). Formally, we achieve this through a single sentence, which
is the conjunction of the constraints in this finite set.

Given a source signature σS and a target signature σT disjoint
from σS , a constraint is source-to-target (ST) if all the relational
atoms in φ are over σS or R̄ and all relational atoms in ψ or ξ are
over σR or R̄. The following table compares our names to some
of the existing names for classes of constraints (“tgd” stands for
tuple-generating dependency).

∀CQ0 Full tgds [1]
∀CQ=

0 Full dependencies [1]
∀CQ Embedded tgds [1]
∀CQ= Embedded dependencies [1]
ST Sk∀CQ SO tgds [8]

A signature is a function from a set of relation symbols to posi-
tive integers which give their arities. In this paper, we use the terms
signature and schema synonymously. Given a set of constraints Σ
over the signature σ1∪σ2, Σ|σ1 is the set of constraints in Σ which
contain only relation symbols in σ1.
Mappings. A schema mapping is a binary relation on instances of
database schemas. (An instance of a database schema is a database
that conforms to that schema.) Given a class of constraints L, we
associate to every expression of the form (σ1, σ2,Σ12) the map-
ping

{〈A,B〉 : (A,B) |= Σ12}.
Here Σ12 is a finite subset of L over the signature σ1∪σ2, σ1 is the
input (or source) signature, σ2 is the output (or target) signature,A
is a database with signature σ1, and B is a database with signature
σ2. To simplify the presentation, we require that σ1 and σ2 be
disjoint (otherwise, we do some renaming). (A,B) is the database
with signature σ1 ∪ σ2 obtained from taking all the relations in A
and B together. Its domain is the union of the domains ofA andB.

We say that m is given by expression E if the mapping that cor-
responds to E is m. Furthermore, we say that m is an L-mapping
if m is given by an expression (σ1, σ2,Σ12) where Σ12 is a finite
subset of L.
Composition. Given two mappings m12 and m23, the composi-
tion m12 ◦m23 is the unique mapping

{〈A,C〉 : ∃B(〈A,B〉 ∈ m12 ∧ 〈B,C〉 ∈ m23)}.
We are concerned here with the following problem: given two ex-
pressions of the form specified above, find an expression for the
composition. That is, we are concerned with the syntactic counter-
part to the semantic operation defined above. We say that two L-
mappings given by the expressions (σ1, σ2,Σ12) and (σ3, σ4,Σ12)
are compatible if σ2 = σ3 and σ1, σ2, σ4 are pairwise disjoint. We
only consider composition of compatible L-mappings and there-
fore we have only a partial composition operation on expressions.
We say that L is closed under composition if the composition of
any two compatible L-mappings is an L-mapping. Closure under
inverse is defined similarly.

Notice that under this definition, it is possible to get a language
that is closed under both inverse and composition by considering
the set of Sk∀CQ-mappings which are either source-to-target (ST),
target-to-source (TS), or both (B) (the mapping given by the empty
set of constraints is the only one that is both). This is because the
composition of ST with ST gives ST, of TS with TS gives TS, and
any other combination gives B. Furthermore, the inverse of ST is
TS, of TS is ST, and of B is B.

3. DEDUCTIONS
In some of the following results and algorithms, we will need to

refer to some specific deductive system. Here we outline its basics;
the details are not essential.

We write ∀CQ0 or Sk∀CQ constraints augmented with con-
stants as rules of the form φ(x̄), χ(x̄) → ψ(x̄)) leaving the second-
order quantifiers over functions ∃f̄ and the first-order universal
quantifiers ∀x̄ implicit. We call φ(x̄), χ(x̄) the premise and ψ(x̄)
the conclusion. (Similarly for ∀CQ=

0 or Sk∀CQ= constraints.) If
the premise is empty, we write only the conclusion. We call rules of
the form ψ(c̄), where c̄ is a tuple of constants, facts. In most cases
we will assume, without loss of generality, that our rules have a
single atom in the conclusion since every rule with k atoms in the
conclusion can always be rewritten as k rules each with a single
atom in the conclusion.

DEFINITION 1. A deduction from rules Σ is a sequence of
rules, each obtained in one of three ways:

1. by copying a rule from Σ,
2. by adding atoms to the premise of a rule and/or renaming

variables in a rule appearing earlier in the sequence, or
3. by applying resolution on two rules appearing earlier in the

sequence.

We call such rules axiom rules, expand/rename rules, and resolu-
tion rules respectively. We say that a deduction has length n if it
consists of n lines.

A rule r obtained by expand/rename from rule r′ may have addi-
tional atoms in the premise, may have variables replaced (consis-
tently) by arbitrary terms, may have equations of the form v = t
between a variable v and a term t removed whenever v does not
appear elsewhere in the rule, and may have replacements in the
conclusion consistent with equations in the premise. A rule ξ is a
variant of ξ′ if ξ can be deduced from ξ′ without using resolution

and conversely. Since each rule has a single atom in the conclu-
sion, a rule r obtained by resolution from rules p, q consists of the
conclusion of q and the premises in p and q that do not appear in
the conclusion of p.

To illustrate the deductions introduced in Definition 1, consider
the following examples: The rule R(xy), z = f(xy) → S(xz) is
a valid result of applying expand/rename toR(uv) → S(uf(uv)).
The rule R(xy), S(yz) → S(xz) is the result of applying resolu-
tion to rules R(xy) → S(xy) and S(xy), S(yz) → S(xz).

We call a resolution step a σ2-resolution if it involves the elimi-
nation of an atom with a relation symbol from σ2. In the example
above, if σ2 contains S, then we have a σ2-resolution.

We annotate our deductions by numbering the rules in them in
ascending order and by adding annotations to each line indicating
how that line was obtained. It is enough to annotate a resolution
rule with just two numbers and an expand/rename rule with a sin-
gle number and a variable assignment. Axiom rules are indicated
through a lack of any other annotation. A variable assignment is a
list of items of the form x := y where x is a variable and y is a
term.

EXAMPLE 1. Given

• ∆ := {R(1, 1)} and
• Σ := {R(xy) → S(xy), S(zz) → T (zz)},

the following is a valid deduction from Σ ∪ ∆:
1. R(1, 1)
2. R(xy) → S(xy)
3. R(1, 1) → S(1, 1) [2] x := 1, y := 1
4. S(1, 1) [1,3]
5. S(zz) → T (zz)
6. S(1, 1) → T (1, 1) [5] z := 1
7. T (1, 1) [4,6]

Here rules 1, 2, and 5 are axioms, 3 and 6 are expand/rename, and
4 and 7 are resolution.

We call a sequence of at most two rename-only steps followed by
a resolution step on the results of these steps a rename-resolution.
In the example above, 4 is obtained by rename-resolution from 1
and 2 and 7 is obtain by rename-resolution from 4 and 5. A σ2-
rename-resolution is a rename-resolution where the resolution step
is a σ2-resolution.

If there is a deduction from a set of constraints Σ where the last
line contains a constraint ξ, we say that ξ is deduced from Σ which
we write Σ
 ξ. We write Σ
 Σ′ in case Σ
 ξ for every ξ ∈ Σ′.
The L-deductive closure of Σ is

DC(L,Σ) := {ξ ∈ L : Σ
 ξ}.
We write DC(Σ) when L is clear from the context.

We write D |= Σ if all constraints in Σ are true in D. We write
Σ |= Σ′ if, for all instances D, D |= Σ implies D |= Σ′. It is
easy to check that if Σ
 Σ′ then also Σ |= Σ′; i.e., the deductive
system is sound.
Chase. Here we define a modified chase procedure which is
needed in the proof of several results below.

DEFINITION 2. Given an instance D, the result of chasing D
with constraints Σ ⊆ Sk∀CQ= and the set of Skolem functions
F , which we denote chase(D,Σ, F) is the database D′′ obtained
from

D′ := {Ri(c̄) : Σ ∪ ∆ ∪ Φ
 Ri(c̄)}
where

• c̄ is a tuple of constants,
• ∆ is the set of facts given by D:

∆ := {Ri(c̄) : D |= Ri(c̄)}
• and Φ is the set of facts given by F :

Φ := {f(c̄) = a : f ∈ F, f(c̄) = a}
as follows. Define

c0 ≡ c1 iff Σ ∪ ∆ ∪ Φ
 c0 = c1.

Now to obtainD′′ fromD′, pick one constant c0 from every equiv-
alence class and replace every constant in that equivalence class
with c0. That is, D′′ := D′/ ≡. All functions in F are required
to have the same domain which includes D. If they have finite
domain, then chase(D,Σ, F) is finite.

This definition is a variation on the usual definition, where the
functions F are constructed during the chase process.

The important property we need of this modified chase is:

PROPOSITION 1. chase(D,Σ, F) |= Σ.

4. FULL DEPENDENCIES
We start by studying composition of ∀CQ=

0 -mappings; that is,
mappings given by full dependencies. All results in this section
apply to both ∀CQ=

0 and ∀CQ0-mappings (mappings given by full
tgds). We will see that the techniques introduced to handle these
cases can be extended to handle Sk∀CQ= and ∀CQ=-mappings.
We first show that ∀CQ0 is not closed under composition (Theo-
rem 1) and, furthermore, that determining whether the composition
of two ∀CQ=

0 -mappings is a ∀CQ=
0 -mapping is undecidable (The-

orem 2). Then we give necessary and sufficient, non-computable
conditions for the composition of two ∀CQ0-mappings to be a
∀CQ0-mapping (Theorem 3). Theorem 3 suggests the following
algorithm to compute the composition of two ∀CQ=

0 -mappings
given by (σ1, σ2,Σ12) and (σ2, σ3,Σ23):

Procedure ∀CQ=
0 COMPOSE(Σ12,Σ23)

Set Σ := Σ12 ∪ Σ23

Repeat
Set Σ′ := ∅
For every pair φ, ψ ∈ Σ

For every way in which φ, ψ can be σ2-rename-resolved
to yield ξ and if there is no variant of ξ in Σ

set Σ′ := Σ′ ∪ {ξ}
Set Σ := Σ ∪ Σ′

Until Σ′ = ∅
Return Σ13 := Σ|σ13

∀CQ=
0 COMPOSE works correctly on ∀CQ=

0 -mappings satisfying
the conditions of Theorem 4, which can be checked in exponential
time (see also Corollary 1). It is clear that the obstacle to com-
position is recursion, yet recursion is not always a problem (Ex-
ample 2). We also define good-∀CQ=

0 , a subset of ∀CQ=
0 rec-

ognizable in exponential time, which is closed under composition
(Theorem 5). It is tempting to conjecture that total and surjective
∀CQ=

0 -mappings (or ∀CQ0-mappings) are closed under composi-
tion. Such mappings do not imply any within-schema constraints
and have desirable properties for view integration (they are called
conflict-free in [4]). We show that this conjecture does not hold
(Example 5).

THEOREM 1. There are ∀CQ0-mappings whose composition is
not an FO-mapping. In particular, ∀CQ0 is not closed under com-
position.

PROOF. Consider the ∀CQ0-mappings m12 and m23 given by
(σ1, σ2,Σ12) and (σ2, σ3,Σ23) where

Σ12 is R(xy) → S(xy)
S(xy), S(yz) → S(xz)

Σ23 is S(xy) → T (xy)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T}. Together, these
constraints say that R ⊆ S ⊆ T and that S is transitively closed.
The composition m12 ◦m23 is the set of all pairs (R,T) such that
tc(R) ⊆ T . Intuitively, the ∀CQ=

0 -constraints which express the
composition are constraints of the form

R(x, v1), R(v1, v2), . . . , R(vi−1, vi), R(vi, y) → T (x, y)

but no finite set of them expresses tc(R) ⊆ T .
In fact, the compositionm12◦m23 is not even expressible in FO,

since if we had an FO sentence φ such that

〈R,T 〉 ∈ m12 ◦m23 iff (R,T) |= φ

we could create an FO formula ψ(x, y) obtained by replacing ev-
ery occurrence of T (u, v) in φ with x �= u ∨ y �= v. Then
given a domain D with R ⊆ D2 we would have R |= ψ[a, b] iff
(R,D2 − 〈a, b〉) |= φ iff tc(R) ⊆ D2 − 〈a, b〉 iff 〈a, b〉 �∈ tc(R)
and therefore ∀x∀y¬ψ(x, y) would say that R is a connected
graph, contradicting the fact that this can not be expressed in FO
(see, e.g., Example 2.3.8 in [6]).

THEOREM 2. Checking whether the composition of two ∀CQ0-
mapping is a ∀CQ0-mappings is undecidable (in fact, coRE-hard).

PROOF. (Outline) We reduce Post’s correspondence problem
(PCP)—known to be undecidable (see, e.g., [15])—to the prob-
lem of deciding whether m12 ◦ m23 is a ∀CQ0-mapping where
m12 and m23 are ∀CQ0 mappings. This reduction is partially in-
spired by an undecidability proof by Christoph Koch (Theorem 3.1
in [10]). Given a PCP problem, we define m23 so that there is a
solution to the PCP problem iffm12 ◦m23 is not a ∀CQ0-mapping
(m12 does not depend on the PCP problem). In fact, we will have
that the composition is the mapping given by the empty set of con-
straints in case the PCP problem has no solution and a mapping that
requires infinitely many ∀CQ0constraints in case the PCP problem
has a solution.

The ∀CQ0-mappings m12,m23 are given by (σ1, σ2,Σ12) and
(σ2, σ3,Σ23) where

• σ1 = {A,B,O, Z},
• σ2 = {Â, B̂, Ô, Ẑ}, and
• σ3 = {T}

with A,B unary and all other relations binary and with Σ12 and
Σ23 as described below.

We write x0011y for the set of atoms

A(x), Z(xa), Z(ab), O(bc), O(cy), B(y)

over σ1 which corresponds to a path from A to B through Z,O
(Z stands for “zero” and O stands for “one”). Similarly, we write
x
x′0011

y
y′ for the set of atoms

Â(xx′), Ẑ(xa), Ẑ(ab), Ô(bc), Ô(cy),

Ẑ(x′a′), Ẑ(a′b′), Ô(b′c′), Ô(c′y′), B̂(yy′) (1)

over σ2. Σ12 contains the constraint

A(x), Z(xy),A(x′), Z(x′y′) → Â(xx′), Ẑ(xy), Ẑ(x′y′)

(let us call this an AZ pattern) and all corresponding constraints for
the patterns AO,ZZ, ZO,OZ,OO, ZB,OB. These constraints
allow us to deduce xSy, x′Sy′ → x

x′S
y
y′ for any string S.

We encode each PCP “domino” by a constraint in Σ23 as follows.
For example, we encode the domino 0011/011 as the constraint

Â(xx′), Ẑ(xa), Ẑ(ab), Ô(bc), Ô(cy),

Ẑ(x′a′), Ô(a′b′), Ô(b′y′) → Â(xx′), Â(yy′) (2)

Finally, we add to Σ23 the constraint

Â(xx′), Â(yy′), B̂(yy′) → T (xy).

If the PCP problem has a solution for the string S over {0, 1}∗.
Then we can only deduce infinitely many constraints of the form

xSky, x′Sky′ → T (xy)

and their variants, where Sk is the string S repeated k times. Notice
that these constraints are over σ1 ∪ σ3 and that none of them can
be obtained from any other.

Conversely, any constraint over σ1∪σ2 that can be deduced from
Σ12 ∪Σ23 must be of the form xSy, x′Sy′ → T (xy) (or a variant)
and it encodes a solution to the PCP problem.

THEOREM 3. If the ∀CQ=
0 -mappings m12,m23 are given by

(σ1, σ2,Σ12) and (σ2, σ3,Σ23) with Σ123 := Σ12 ∪ Σ23 and
σ13 = σ1 ∪ σ3, then the following are equivalent

1. There is a finite set of constraints Σ13 ⊆ ∀CQ=
0 over

the signature σ13 such that m := m12 ◦ m23 is given by
(σ1, σ3,Σ13).

2. There is a finite set of constraints Σ13 ⊆ ∀CQ=
0 over the

signature σ13 such that

DC(∀CQ=
0 ,Σ123)|σ13 = DC(∀CQ=

0 ,Σ13).

3. There is k such that for every ξ over σ13 satisfying Σ123

ξ there is a deduction of ξ from Σ123 using at most k σ2-
resolutions.

PROOF. The proof uses Lemmas 1 and 2 below. First we show
the equivalence of (1) and (2) then we show the equivalence of (2)
and (3).

Assume (2) holds. Then 〈A,C〉 ∈ m12 ·m23

iff ∃B (A,B,C) |= Σ123 (by definition of ·)
iff (A,C) |= DC(∀CQ=

0 ,Σ123)|σ13 (by Lemma 1)
iff (A,C) |= DC(∀CQ=

0 ,Σ13) (since (2) holds)
iff (A,C) |= Σ13. (since DC is sound)

This shows that (1) holds.
Conversely, assume (1) holds. Then

(A,C) |= DC(∀CQ=
0 ,Σ123)|σ13

iff ∃B (A,B,C) |= Σ123 (by Lemma 1)
iff 〈A,C〉 ∈ m12 ·m23 (by definition of ·)
iff (A,C) |= Σ13 (since (1) holds)
iff (A,C) |= DC(∀CQ=

0 ,Σ13). (since DC is sound)
This shows that (2) holds.

Now assume (3) holds. Set Σ to the set of all constraints in
DC(∀CQ=

0 ,Σ123)|σ13 which can be deduced using at most k σ2-
resolutions and no other resolutions. Clearly, every constraint in Σ
can be obtained by expand/rename from a finite subset Σ13 ⊆ Σ.
We show that (2) holds.

Assume that there is a deduction γ witnessing Σ123
 ξ. Since
(3) holds, we can assume that γ has m′ ≤ m σ2-resolutions. By
Lemma 2 there is a deduction γ′ witnessing Σ123
 ξ also with
m′ σ2-resolutions and with all of them occurring before any other
resolutions.

Since the last line of γ′ does not contain any symbols from σ2 we
can assume that γ′ does not contain any lines containing symbols
from σ2 after the last σ2-resolution.

Break γ′ into two parts γ′1 the initial segment of γ up to and
including the last σ2-resolution and γ′2 the remainder of γ′. Every
constraint ψ in γ′1 must be in Σ, by definition of Σ and therefore
we must have Σ13
 ψ. Since every constraint ψ in γ′2 does not
contain any symbols from σ2 and since Σ123|σ13 ⊆ Σ13, we also
have Σ13
 ψ. Therefore, Σ13
 ξ as desired.

Conversely, assume (2) holds. Take k to be the total number
of σ2-resolutions needed to deduce every ψ ∈ Σ13 from Σ123.
Assume Σ123
 ξ. Then there is a deduction γ witnessing Σ13
 ξ.
Clearly, γ has no σ2-resolutions. From γ, we obtain γ′ witnessing
Σ123
 ξ by appending to γ a deduction of every constraint in Σ13

and by replacing every line where an axiom from Σ13 is used by
a vacuous expand/rename of the line where the deduction of that
axiom ends. Clearly, γ′ has exactly k σ2-resolutions as desired.
This shows that (3) holds.

LEMMA 1. Under the hypotheses of Theorem 3, the following
are equivalent:

1. (A,C) |= DC(∀CQ=
0 ,Σ123)|σ13 .

2. ∃B (A,B,C) |= Σ123.

PROOF. Assume (A,B,C) |= Σ123 for some B. Then
(A,B,C) |= DC(∀CQ=

0 ,Σ123) (by soundness) and therefore
(A,C) |= DC(∀CQ=

0 ,Σ123)|σ13 since B is not mentioned in
DC(∀CQ=

0 ,Σ123)|σ13 .
Conversely, assume (A,C) |= DC(∀CQ=

0 ,Σ123)|σ13 . We set
(A′, B,C′) := chase((A, ∅, C),Σ123).

If the chase terminates and A = A′ and C = C′, then we have
(A,B,C) |= Σ123 by Proposition 1 which implies (A,B) |= Σ12

and (B,C) |= Σ23, as desired.
It is clear that the chase terminates since no new constants are

introduced. Now assume, to get a contradiction, that A �= A′ or
C �= C′. Set ∆AC to the set of facts given by A and C. Then we
must have

Σ123 ∪ ∆AC
 R(c̄)

where R is a relation in A or C not containing c̄ or

Σ123 ∪ ∆AC
 c0 = c1

where c0, c1 are distinct constants in A or C.
We consider the former case; the latter is similar. If Σ123 ∪

∆AC
 R(c̄) then by Proposition 2 below there exists ξ such
that Σ123
 ξ and ∆AC , ξ
 R(c̄). Since (A,C) |=
∆AC , it follows that (A,C) �|= ξ, contradicting (A,C) |=
DC(∀CQ=

0 ,Σ123)|σ13 .

PROPOSITION 2. If ∆ is a set of facts in L, and Σ ∪ {φ} ⊆ L
for L ∈ {∀CQ=

0 ,Sk∀CQ=}, then the following are equivalent:

1. Σ ∪ ∆
 φ.
2. There is ξ such that Σ
 ξ and ∆, ξ
 φ.
LEMMA 2. Under the hypotheses of Theorem 3, if there is a

deduction γ witnessing Σ123
 ξ with at most k σ2-resolutions,
then there is γ′ witnessing Σ123
 ξ with at most k σ2-resolutions
and where furthermore all σ2-resolutions occur before all other
resolutions.

COROLLARY 1. Under the hypotheses of Theorem 3,
∀CQ=

0 COMPOSE(Σ12,Σ23), whenever it terminates, yields Σ13

such that m12 ◦m23 is given by (σ1, σ3,Σ13).

Notice that after the k-th iteration of the main loop, Σ will
contain a variant of every constraint that can be deduced us-
ing at most k σ2-resolution steps. The constraints in the proof
of Theorem 1 fail to satisfy (3) of Theorem 3 and therefore
∀CQ=

0 COMPOSE(Σ12,Σ23) will not terminate when Σ12 and
Σ23 are as in the proof of Theorem 1 for input. In contrast,
∀CQ=

0 COMPOSE(Σ12,Σ23) will terminate on Σ12,Σ23 from the
example below, which does satisfy (3) of Theorem 3, so recursion
is not always bad.

EXAMPLE 2. Consider the ∀CQ0-mappings m12 and m23

given by (σ1, σ2,Σ12) and (σ2, σ3,Σ23) where

Σ12 is R(xy) → S(xy)
S(xy), S(yz) → R(xz)

Σ23 is S(xy) → T (xy)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T}. Together, these
constraints say that R ⊆ S ⊆ T , and that R and S are transitively
closed (because the constraints

S(xy), S(yz) → S(xz)
R(xy),R(yz) → R(xz)

can be deduced from Σ12). The constraints

R(xy),R(yz) → R(xz)
R(xy) → T (xy)

express exactly the composition m12 ◦m23, and are exactly those
found by ∀CQ=

0 COMPOSE(Σ12,Σ23).

The coRE-hardness from Theorem 2 implies that algorithm
∀CQ=

0 COMPOSE may not terminate even when the composition
is a ∀CQ=

0 -mapping. This happens, for example, in the following
case.

EXAMPLE 3. Consider the ∀CQ0-mappings m12 and m23

given by (σ1, σ2,Σ12) and (σ2, σ3,Σ23) where

Σ12 is R(xy) → S(xy)
R(xy),R(yz) → R(xz)
S(xy), S(yz) → S(xz)

Σ23 is S(xy) → T (xy)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T}.
The constraints

R(xy),R(yz) → R(xz)
R(xy) → T (xy)

express exactly the composition m12 ◦ m23, but algorithm
∀CQ=

0 COMPOSE will never terminate since it will deduce at least
the infinitely many constraints it would deduce in the proof of
Theorem 1. This is because Σ12 here includes all the constraints in
Σ12 there.

Even if the algorithm terminates, it may produce a result which is
exponential in the size of the input mappings. This is unavoidable,
as the following example shows.3

3This is essentially a result on query unfolding [14]. Lucian Popa
first brought this to our attention through an example that required
a varying schema.

EXAMPLE 4. There is a ∀CQ0-mapping m12 and a sequence
of ∀CQ0-mappings mk

23 given by Σ12 and Σk
23 over fixed signa-

tures σ1 = {R}, σ2 = {S}, and σ3 = {T} where R, S, and T
are binary relations such that the composition m12 ◦ mk

23 grows
exponentially in the size of Σk

23.
The mapping m12 given by:

R(xy),R(yx) → S(xy)
R(xy),R(xx) → S(xy)

and the family of mappings mk
23 given by Σk

23 which contains the
single constraint

S(xu1), S(u1u2), ..., S(uk−1y) → T (xy)

saying that if there is a path of length k in S then there is an edge
in T .

The following conditions are sufficient for algorithm
∀CQ=

0 COMPOSE to terminate. On the other hand, Example 5
below illustrates a case where this condition is violated.

THEOREM 4. Under the hypotheses of Theorem 3, if no con-
straint of the form φ(z̄), S(ȳ) → S(x̄) can be deduced from Σ123

using only σ2-rename-resolutions, such that

1. φ(z̄) is a conjunction of atoms over σ123,
2. there is no atom S(w̄) in φ(z̄) with x̄ ⊆ w̄,
3. {x̄} �⊆ {ȳ}, and
4. S is a relation symbol in σ2

then ∀CQ=
0 COMPOSE(Σ12,Σ23) terminates and therefore m12 ◦

m23 is a ∀CQ=
0 -mapping. Furthermore, these conditions can be

verified in exponential time in the size of Σ12 ∪ Σ23.

PROOF. We omit the proof of the main part due to space
constraints. The conditions can be checked in exponential
time as follows. Run kσ2 − 1 iterations of the main loop of
∀CQ=

0 COMPOSE(Σ12,Σ23) where kσ2 is the number of relation
symbols in σ2 and check whether a constraint of the form given
below appears in Σ.

DEFINITION 3. A ∀CQ=
0 -mapping is a good-∀CQ=

0 -mapping
if it is given by (σ1, σ2,Σ12) and no constraint of the form
φ(z̄), S(ȳ) → S′(x̄) where

1. φ(z̄) is a conjunction of atoms over σ1 ∪ σ2,
2. there is no atom S(w̄) in φ(z̄) with x̄ ⊆ w̄,
3. {x̄} �⊆ {ȳ}, and
4. S and S′ are both relation symbols in σ1 or both in σ2

can be deduced from Σ12 using only σ1-rename-resolutions or only
σ2-rename-resolutions We define good-∀CQ0 similarly.

THEOREM 5. good-∀CQ=
0 and good-∀CQ0 are closed under

composition and inverse.

We examined many other subsets of ∀CQ=
0 for closure under

composition and inverse, but were unable to find more natural
conditions of similarly wide applicability. Since source-to-target
∀CQ=

0 -constraints are total and surjective, it is natural to wonder
whether the set of all total and surjective ∀CQ=

0 -mappings is closed
under composition. The following example shows it is not.

EXAMPLE 5. Consider the ∀CQ0-mappings m12 and m23

given by (σ1, σ2,Σ12) and (σ2, σ3,Σ23) where

Σ12 is R(xy) → S(xy)
R(xy), S(yz) → S(xz)

Σ23 is S(xy) → T (xy)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T}. Here m12

and m23 are total and surjective and their composition says that
tc(R) ⊆ T , which we have seen in the proof of Theorem 1 is not
expressible even in FO.

5. SECOND-ORDER DEPENDENCIES
In order to handle existential quantifiers in a ∀CQ=-mapping, we
will first convert the ∀CQ= constraints which specify the map-
ping into Sk∀CQ= constraints (by Skolemizing) and this will
give us Sk∀CQ=-mappings. Therefore, in this section we focus
on the composition of Sk∀CQ=-mappings; in the next section
we consider how to convert Sk∀CQ=-mappings back to ∀CQ=-
mappings. There are two cases of composition to consider. Un-
restricted composition, in which we are allowed to introduce addi-
tional existentially-quantified functions in order to express the com-
position and restricted composition in which we are only allowed
to use function symbols from the input mappings. In this section
we concentrate on restricted composition. In Section 7 we examine
unrestricted composition. Sk∀CQ= constraints require special se-
mantics, which we also examine in Section 7. All results in this sec-
tion apply to both Sk∀CQ= and Sk∀CQ-mappings (which corre-
spond to SO tgds which are not restricted to being source-to-target).

Theorems 1 and 2 from the previous section show that Sk∀CQ
is not closed under restricted composition and that determining
whether the restricted composition of two Sk∀CQ-mappings is
a Sk∀CQ-mapping is undecidable. As in the case of ∀CQ=

0 -
mappings, we give necessary and sufficient, non-computable con-
ditions for two Sk∀CQ=-mappings to have restricted composition
(Theorem 6), and we give sufficient conditions for restricted com-
position that can be checked efficiently.

Theorem 6 suggests essentially the same algorithm for com-
position of Sk∀CQ=-mappings as ∀CQ=

0 COMPOSE; we call
it Sk∀CQ=COMPOSE. The only difference between them is
that Sk∀CQ=COMPOSE operates on Sk∀CQ= constraints while
∀CQ=

0 COMPOSE operates on ∀CQ=
0 constraints. Correctness of

Sk∀CQ=COMPOSE, sufficient conditions for its termination, and
good-Sk∀CQ=-mappings are defined for Sk∀CQ= just like for
∀CQ=

0 .

THEOREM 6. If the Sk∀CQ=-mappings m12,m23 are given
by (σ1, σ2,Σ12) and (σ2, σ3,Σ23) with Σ123 := Σ12 ∪ Σ23 and
σ13 = σ1 ∪ σ3, then the following are equivalent

1. There is a finite set of constraints Σ13 ⊆ Sk∀CQ= over
the signature σ13 such that m := m12 ◦ m23 is given by
(σ1, σ3,Σ13) where Σ13 has no function symbols or con-
stants other than those appearing in Σ123.

2. There is a finite set of constraints Σ13 ⊆ Sk∀CQ= over the
signature σ13 such that

DC(Sk∀CQ=,Σ123)|σ13 = DC(Sk∀CQ=,Σ13)

where Σ13 has no function symbols or constants other than
those appearing in Σ123.

3. There is k such that for every ξ over σ13 satisfying Σ123

ξ there is a deduction of ξ from Σ123 using at most k σ2-
resolutions.

PROOF. Essentially the same as that of Theorem 3, using
Lemma 3 below instead of Lemma 1.

LEMMA 3. Under the hypotheses of Theorem 6, the following
are equivalent:

1. (A,C) |= DC(Sk∀CQ=,Σ123)|σ13 .
2. ∃B (A,B,C) |= Σ123.

6. EMBEDDED DEPENDENCIES
Now we consider composition of ∀CQ=-mappings; that is, map-
pings given by embedded dependencies. To compute the composi-
tion of two ∀CQ=-mappingsm12,m23 given by (σ1, σ2,Σ12) and
(σ2, σ3,Σ23) we will proceed in three steps, as follows.

Procedure ∀CQ=COMPOSE(Σ12,Σ23)

1. Σ′
12 := SKOLEMIZE(Σ12)

Σ′
23 := SKOLEMIZE(Σ23)

2. Σ′
13 := Sk∀CQ=COMPOSE(Σ′

12,Σ
′
23)

3. Return DESKOLEMIZE(Σ′
13)

The first step, SKOLEMIZE, is straightforward and the second step,
Sk∀CQ=COMPOSE, has been discussed in the previous section, so
here we concentrate on the third step, de-Skolemization. We pro-
vide a sound (but not complete) algorithm for de-Skolemization:
DESKOLEMIZE (Theorem 7). Even if the second step succeeds, it
may be impossible to find Σ13 ⊆ ∀CQ= such that Σ′

13 ≡ Σ13

(Example 6) so we identify necessary and sufficient, polynomial-
time checkable conditions for the third step to succeed (Proposition
3). DESKOLEMIZE may produce a result of size exponential in the
size of its input; we show that in the general case this is unavoid-
able (Theorem 8), but we also provide polynomial-time checkable
conditions for DESKOLEMIZE to run in polynomial time in the size
of its input (Proposition 3).

The following example from [8] shows that de-Skolemization is
not always possible.

EXAMPLE 6. Consider the ∀CQ=-mappings m12 and m23

given by (σ1, σ2,Σ12) and (σ2, σ3,Σ23) where

Σ12 is E(x, y) → F (x, y)
E(x, y) → ∃uC(x, u)
E(x, y) → ∃v C(y, v)

Σ23 is F (x, y), C(x, u), C(y, v) → D(u, v)

and where σ1 = {E}, σ2 = {F,C}, and σ3 = {D}. Here, Steps 1
and 2 of ∀CQ=COMPOSE succeed, but Step 3 fails no matter what
algorithm is used for it, since m12 ◦m23 is not a ∀CQ=-mapping
as shown in [8].

The algorithm DESKOLEMIZE which we present below, depends
on
∗, which is some sound polynomial-time approximation of |=.
That is, if Σ
∗ φ, then Σ |= φ. Of course, the converse may not
hold. There are known cases in which there exists such
∗ which
is also complete (i.e., the converse does hold). For example, this is
the case when Σ has stratified witnesses (see [5] and [7]). Lack of
space prevents us from discussing options for the implementation
of
∗. DESKOLEMIZE works for any
∗ satisfying the condition
above; the more complete
∗ is, the larger the set of inputs on
which DESKOLEMIZE succeeds.

Procedure DESKOLEMIZE(Σ)

1. Unnest:
Set Λ1 := {φ′ : φ ∈ Σ} where φ′ is equivalent to and
obtained from φ by “unnesting” terms and eliminating terms
from relational atoms and from the conclusion so that in φ′:

(a) Function symbols occur only in equations in the
premise.

(b) Every term f(ū) occurs in only one atom.
(c) Every equation is of the form v = f(ū) for some

variable v (a term variable for f), function f , and se-
quence of variables ū (a defining equation) or of the
form v = u for two term variables u and v (a restrict-
ing equation).

(d) The conclusion contains at most one atom, which is not
a defining equation.

We call relational atoms in which a term variable occurs re-
stricting atoms. If A is a restricting relational atom or a re-
stricting equation in which v occurs, where v is a term vari-
able for f , we call A an f -restricting atom. We call a con-
straint restricted if it has restricting atoms in the premise.

2. Check for cycles:
For every φ ∈ Λ1, construct the graph Gφ where the edges
are variables in φ and where there is an edge (v, u) iff there
is an equation of the form v = f(. . . u . . .). If Gφ has a
cycle, abort. Otherwise, set Λ2 := Λ1.

3. Check for argument compatibility:
For every φ ∈ Λ2 check that φ does not contain two atoms
with the same function symbol. If it does, abort. Otherwise,
set Λ3 := Λ2.

4. Align variables:
Rename the variables in Λ3 to obtain Λ4 satisfying:

(a) For every function symbol f and any two equations of
the form v = f(ū) and y = f(x̄) in Λ4, v is the same
variable as y and ū is the same sequence of variables as
x̄.

(b) For every two different function symbols f and g and
any two equations of the form v = f(ū) and y = g(x̄)
in Λ4, v and y are different variables.

If this is not possible, abort.

5. Eliminate restricting atoms:
Pick some ordering of the function symbols in Λ4:
f1, . . . , fk. Set ∆0 = Λ4. For n = 1, . . . , k − 1, set
∆n+1 := {φ′ : φ ∈ ∆n} where φ′ is obtained from φ
as follows. Set ψ to be φ with the fn+1-restricting atoms
removed from the premise. If ∆n
∗ ψ, set φ′ := ψ;
otherwise set φ′ := φ. In any case, we have ∆n+1 ≡ ∆n.
Set Λ5 := ∆k.

6. Eliminate constraints with restricting atoms:
Set Λ6 to be the set of constraints φ ∈ Λ5 which can not be
eliminated according to the following test: φ can be elimi-
nated if

(a) φ contains an f -restricting atom in the premise, and
(b) there is no constraint ψ ∈ Λ5 which has an f -

restricting atom in the conclusion and no f -restricting
atoms in the premise.

7. Check for restricted constraints:
Set Λ to the set of unrestricted constraints in Λ6. If there
is any φ ∈ Λ6 such that Λ �
∗ φ, abort. Otherwise, set
Λ7 := Λ.

8. Check for dependencies:
For every φ ∈ Λ7 and every variable v in φ, define Dφ,v as
follows. If v is not a term variable, set Dφ,v = {v}. If v is a
term variable and v = f(ū) its defining equation in φ, then

set Dφ,v :=
⋃

u∈{ū}Dφ,u.4 Intuitively, Dφ,v is the set of
variables on which v depends. Set Vφ := the set of variables
which appear in the conclusion of φ. For every term variable
v in Vφ, check that Dφ,v =

⋃
u∈Vφ

Dφ,u. If this fails, abort.
Otherwise, set Λ8 := Λ7.

9. Combine dependencies:
Set Λ9 := {ψΦ : ∅ �= Φ ⊆ Λ8} where ψΦ is defined
as follows. If there is a function f which appears in every
φ ∈ Φ, then the premise of ψΦ consists of the atoms in all
the premises in Φ and the conclusion of ψΦ consists of the
atoms in all the conclusions of Φ (remove duplicate atoms).
Otherwise, ψΦ is some constraint in Φ. Notice that Λ9 ⊇ Λ8

since ψ{φ} = φ.

10. Remove redundant constraints:
Pick some set Λ10 ⊆ Λ9 such that Λ10
 φ for every φ ∈
Λ9, and such that this does not hold for any proper subset of
Λ10.

11. Replace functions with ∃ variables:
Set Λ11 := {φ′ : φ ∈ Λ10} where the premise of φ′ is
the premise of φ with all equations removed and where the
conclusion of φ′ is the conclusion of φ, with all variables ap-
pearing on the left of equations in φ existentially quantified.

12. Eliminate unnecessary ∃ variables:
Set Λ12 := {φ′ : φ ∈ Λ11} and return Λ12 where φ′ is like
φ, but where existentially quantified variables which do not
appear in the conclusion atom have been removed (with their
corresponding existential quantifier).

EXAMPLE 7. Consider three runs of the algorithm
DESKOLEMIZE(Σi

13), for i ∈ {1, 2, 3}. Let Σi
13 = {γ1, . . . , γi}

be a set of the following (unnested) Sk∀CQ constraints:

γ1 R1(y), R2(x), y = f(x) → T1(x)
γ2 R2(x), y = f(x) → T2(y)
γ3 R2(x), y = f(x) → R1(y)

For completeness, we note that each Σi
13 is obtained by first de-

Skolemizing ∀CQ=-mappings given by Σi
12 and Σi

23, which are
shown below, and then invoking Sk∀CQ=COMPOSE:

i Σi
12 Σi

23 Σi
13

1. {α1, α2} {β2} {γ1}
2. {α1, α2} {β1, β2} {γ1, γ2}
3. {α1, α2, α3} {β1, β2} {γ1, γ2, γ3}

Dependencies α1, α2, α3, β1, β2 are specified as:

α1 R1(x) → S1(x)
α2 R2(y) → ∃z(S2(zy))
α3 S2(zy) → R1(z)
β1 S2(zy) → T2(z)
β2 S1(x), S2(xy) → T1(y)

In all three runs of DESKOLEMIZE(Σi
13), Steps 2 and 3 pass

since each of γ1, γ2, γ3 is cycle-free and has no multiple atoms
with the same function symbol. Step 4 has no effect, since the vari-
able names of the dependencies are already aligned. The remaining
steps are explained below.

4This is an inductive definition; it requires the check in Step 2.

In the run DESKOLEMIZE({γ1}), Step 5 has no effect, because
{γ1} is a singleton set. Its only member γ1 gets eliminated in
Step 6, since there are no rules in {γ1} with f -restricting atoms
in conclusions. Intuitively, γ1 is a tautology because we can al-
ways construct f whose range is disjoint with R1. Hence, {γ1}
is equivalent to the empty set of constraints, which is trivially in
∀CQ.

In the run DESKOLEMIZE({γ1, γ2}), γ2 contains an f -
restricting atom T2 in its conclusion. Hence, we cannot eliminate
the restricted constraint γ1 in Step 6, and so de-Skolemization
aborts in Step 7.

In the run DESKOLEMIZE({γ1, γ2, γ3}), we are able to de-
Skolemize despite γ2. In Step 5, ∆0 = {γ1, γ2, γ3}. By consider-
ing the only function symbol f , we get ∆1 = {ψ, γ2, γ3} ≡ ∆0

where ψ is obtained by eliminating the restricting atomR1(y) from
the premise of γ1 as

ψ := R2(x), y = f(x) → T1(x)

Clearly, ∆0
∗ ψ, since ∆0 ⊃ {γ1, γ3}
∗ ψ. ∆1 has no re-
stricting constraints, so Step 6 has no effect and Step 7 passes.
Step 8 succeeds with Λ8 = Λ7 = {ψ, γ2, γ3}, since every de-
pendency in ∆1 has at most one term variable y in its conclusion.
Taking γ3 as an example, we get Vγ3 = {x, y}, Dγ3,x = Dγ3,y =⋃

u∈Vγ3
Dγ3 ,u = {x}.

In Step 9, combining the dependencies for Φ = Λ8 yields

γ4 := R1(y),R2(x), y = f(x) → T1(x), T2(y), R1(y)

(Combinations resulting from proper subsets of Λ8 are not shown
for brevity). In Step 10, we remove the redundant constraints which
include ψ, γ2, γ3, because they share the premise with γ4 and their
conclusion is subsumed by that of γ4; we obtain Λ10 = {γ4}.
Finally, replacing function f by an existential variable in γ4 yields

Λ12 = {R2(x) → ∃y(T1(x) ∧ T2(y) ∧R1(y))}
Thus, DESKOLEMIZE({γ1, γ2, γ3}) ⊆ ∀CQ.

THEOREM 7. If DESKOLEMIZE(Σ) succeeds on input Σ ⊆
Sk∀CQ=, then Σ′ := DESKOLEMIZE(Σ) satisfies

Σ′ ⊆ ∀CQ= and Σ′ ≡ Σ.

The following is clear from the description of the algorithm.

PROPOSITION 3.

1. DESKOLEMIZE(Σ) succeeds on input Σ ⊆ Sk∀CQ= iff it
reaches Step 9, which can be checked in polynomial time in
the size of Σ.

2. Furthermore, if for some constant 	 independent of Σ, for
every function symbol in Λ8 there are no more than 	 rules
in Λ8 in which f occurs, then DESKOLEMIZE(Σ) runs in
polynomial time in the size of Σ. This can be checked in
polynomial time in the size of Σ.

Since DESKOLEMIZE(Σ) may produce a result of size exponen-
tial in the size of Σ due to Step 9, ∀CQ=COMPOSE(Σ12,Σ23) may
produce a result of size exponential in the size of Σ12 ∪Σ23 due to
step 3, even when step to gives a polynomial-size result. The fol-
lowing example shows that in the general case this is unavoidable.

THEOREM 8. There are two sequences of ∀CQ-mappings mk
12

and mk
23 given by Σk

12 and Σk
23 such that the ∀CQ-composition

mk
12 ◦mk

23 grows exponentially in the size of Σk
12 ∪ Σk

23, but the
Sk∀CQ-composition mk

12 ◦mk
23 grows linearly in the size of Σk

12∪
Σk

23,

PROOF. (Outline) Set [k] := {1, . . . , k}. Consider the ∀CQ-
mappings mk

12 and mk
23 given by (σk

1 , σ
k
2 ,Σ

k
12) and (σk

2 , σ
k
3 ,Σ

k
23)

where

Σk
12 is R0(x) → ∃y S0(xy)

Ri(x) → Si(x)
Σk

23 is S0(xy), Si(x) → Ti(y)

for i ∈ [k] and where σk
1 = {Ri : i ∈ {0, . . . , k}}, σk

2 = {Si :
i ∈ {0, . . . , k}}, and σk

3 = {Ti : i ∈ [k]}. The ∀CQ-composition
mk

13 := mk
12 ◦mk

13 is given by the set Σk
13 of constraints

R0(x),RZ(x) → ∃y TZ(y)

such that Z ⊆ [k] where RZ(x) :=
∧

i∈Z Ri(x) and similarly for
TZ . On the other hand, mk

13 is not given by any (σ1, σ3,Σ) where
Σ has fewer than 2k − 1 constraints (we omit the inexpressibility
proof due to space constraints.) The Sk∀CQ-composition mk

13 :=
mk

12 ◦mk
13 is given by the set Σ′k

13 of constraints

R0(x), y = f(x), Ri(x) → Ti(y)

for i ∈ [k], which grows linearly in the size of Σk
12 ∪ Σk

23

7. UNRESTRICTED COMPOSITION
In this section we examine the semantics of Sk∀CQ= constraints
and study unrestricted composition (where we allow the introduc-
tion of new existentially-quantified symbols to express the com-
position). The semantics of Sk∀CQ= are somewhat special, but
seem to be needed to obtain domain independence (Example 8).
Under these semantics, the safety condition in Sk∀CQ= is no
longer necessary to provide domain independence (intuitively, the
domain is large enough to allow all existential witnesses to be dis-
tinct). Furthermore, unsafe source-to-target Sk∀CQ= have NP
data complexity, just as their safe counterparts. We show that un-
safe Sk∀CQ=-mappings are closed under unrestricted composi-
tion and that, furthermore, composition can be computed in lin-
ear time (Theorem 9). Intuitively, this is because we can assert
the existence of the relations in the intermediate signature σ2 us-
ing existentially-quantified function symbols. In contrast to results
in previous sections, here we use essentially the fact that we have
equations in the conclusions.

We introduce another fragment of SO, ∃SO∀CQ= which has
the standard second-order semantics. We show that source-to-
target Sk∀CQ=-mappings are also source-to-target ∃SO∀CQ=-
mappings (Theorem 10).5 However, this translation may incur and
exponential increase in size.

We first discuss the semantics of Sk∀CQ= constraints. The main
question is, what is the universe from which the functions can take
values? That is, what is their allowed range? Intuitively, the prob-
lem is with the universe of the existentially quantified intermediate
database.

EXAMPLE 8. Consider the ∀CQ0-mappings mk
12 and mk

23

given by (σ1, σ
k
2 ,Σ

k
12) and (σk

2 , σ3,Σ
k
23) where

Σk
12 is R(x) → ∃ySi(y)

Σk
23 is Si(x), Sj(x) → T (x)

for 1 ≤ i, j ≤ k, σ1 = {R}, σk
2 = {S1, . . . , Sk}, and σ3 = {T}.

Consider the case where R = {1, . . . , k − 1} in A and T is
empty in C. Firstly, notice that (A,C) ∈ mk

12 ◦mk
23 as witnessed

by the database B where Si = {i}.
5when restricted to structures with at least two elements in the ac-
tive domain

Skolemizing and composing the constraints above we obtain Σk
13

given by the set of constraints

{R(x), fi(x) = y, fj(x) = y → T (y) : 1 ≤ i, j ≤ k}
where fi is the Skolem function corresponding to ∃ySi(y). If we
restrict the range of every fi to fall within the domain of R and
T , then one of the constraints above must fail if the domain of R
and T is limited to {1, . . . , k− 1} (the active domain) since in this
case, for every x, we have only k − 1 values to choose from for
fi(x) and therefore we have (A,C) �|= Σk

13. On the other hand, if
we keep the same relations R and T , but allow the domain to have
at least k values, then we have (A,C) |= Σk

13 witnessed by setting
fi(x) = i for all i, x.

This shows that if we restrict the range of the Skolem functions
to be domain of the input structures, then we may have domain-
dependent formulas, even though they satisfy the safety condi-
tions. Certainly, no such domain-dependent formulas can express
the composition, since whether (R,T) belong to the composition
or not does not depend on their domains.

Therefore we require all databases to be finite (i.e., all relations
are finite), but to have an implicit countably infinite universe. No-
tice that no finite domain would work for all constraints since the
example above gives a family of sets of constraints for which the
meaning changes depending on whether the domain has size less
than k.

We allow the functions to take any values from this implicit uni-
verse, as long as their range is finite. This last restriction is not
necessary when we restrict our mappings to be source-to-target,
but is needed in the general case we consider here since we need to
ensure the intermediate instance encoded by the functions is finite.

These assumptions ensure that the deductive system that we in-
troduced in Section 2 is sound for Sk∀CQ=, which is needed for
Theorem 6 below.

An interesting side-effect of these semantics is that the safety
condition on Sk∀CQ= is no longer necessary to ensure domain-
independence. Furthermore, we have the following.

THEOREM 9. Unsafe Sk∀CQ=-mappings are closed under
composition. Furthermore, their composition can be computed in
linear time.

PROOF. If Sk∀CQ=-mappings m12 and m23 are given by
(σ1, σ2,Σ12) and (σ2, σ3,Σ23), we obtain Σ13 such that the com-
position m12 ◦ m23 is given by (σ1, σ2,Σ23) as follows. We set
Σ13 := Σ′

12 ∪ Σ′
23 where Σ′

12 and Σ′
23 are obtained from Σ12

and Σ23 by adding a new function symbol fD and by replacing ev-
ery occurrence of an atom R(x̄) where R ∈ σ2 is of arity r with
fD(x1) = x1, . . . , fD(xr) = xr, gR(x̄) = hR(x̄), where gR, hR

are new function symbols.
Then if 〈A,C〉 ∈ m12 ◦m23, we have B such that (A,B) |=

Σ12 and (B,C) |= Σ23. For every relation R in σ2, we set
gR(c̄) = hR(c̄) iff R(c̄) holds in B by using any two different
values from the domain. Furthermore, we set fD(c) := c if c is in
the active domain of B and fD(c) := c′ otherwise for some c′ not
in the domain of any relation in (A,C) Then (A,C) |= Σ13.

Conversely, if (A,C) |= Σ13, then we set R := {c̄ : fD(c1) =
c1, . . . , fD(cr) = cr, gR(c̄) = hR(c̄)} for every relation R in σ2

to obtain B such that (A,B) |= m12 and (B,C) |= m23. Since
the range of fD is finite, R is finite.

The linear-time algorithm for composition is implicit in the proof
above.

In certain sense, this algorithm “cheats” by encoding the inter-
mediate instance in the composition in an uninformative way. It ex-

ploits the special semantics of Sk∀CQ, including the requirement
that all functions have finite range.

Since the semantics of Sk∀CQ= are special, it is natural to ask
whether the constraints in Sk∀CQ= can be expressed in some frag-
ment of ∃SO under the usual second-order semantics. We show
that this is possible for source-to-target Sk∀CQ=.

THEOREM 10. Every finite set of source-to-target Sk∀CQ=

constraints (under the semantics described above) is equivalent to
a finite set of source-to-target ∃SO∀CQ= constraints (under the
usual second-order semantics) when restricted to instances with at
least two elements.

PROOF. (Outline) In the case of source-to-target constraints, we
know that we do not have “recursive” Skolem terms. That is, there
are no Skolem terms of the form f(. . . f . . .) (directly, or indirectly
through equations). Therefore, there is a finite number of values we
can refer to by building Skolem terms on top of the elements of the
domain. Intuitively, these are all the elements that the intermedi-
ate database needs to have and the worst case is when they are all
different. If the domain has n elements and we have p Skolem
functions of arity q, then an easy upper bound on the number of
elements we can refer to is ≤ n(p+q)p

whenever n ≥ 2. (This is
shown by induction depth of the Skolem terms; at each step we go
from m ≥ n possible values to

m+ pmq ≤ (p+ 1)mq ≤ 2pmq ≤ npmq ≤ m(p+q)

possible values.) Therefore, we can encode all these values with
tuples of arity r = (p + q)p. We encode every value c from the
original domain as the tuple (c, . . . , c); that is, c repeated r times.

Given a finite set Σ of source-to-target Sk∀CQ= (which we as-
sume w.l.o.g. to be in unnested form), we first compute r, then
transform each constraint φ ∈ Σ by replacing every occurrence of
an equation of the form f(x̄) = y with F (x̄, ȳ) where ȳ is a tuple
of arity r. We also replace y with ȳ everywhere except in relational
atoms. To every relational atom, we add a set of equations of the
form y = y1, . . . , y = yk which we abbreviate y = ȳ. Finally, we
add constraints of the form

. . .→ ∃ȳF (x̄, ȳ)

F (x̄, ȳ), F (x̄, ȳ′) → ȳ = ȳ′

where . . . are obtained from any premises which mention f . Notice
that we need both equations and FO existential quantifiers in the
conclusions and that we may incur an exponential increase in size
since we need r to be exponential in p.

Notice that the proof only requires that we do not have “recur-
sive” Skolem terms. Source-to-target is a strong condition that en-
sures this, but weaker conditions on the set of constraints Σ12∪Σ23

suffice. For example, it is enough to require that Σ12 ∪ Σ23 have
stratified witnesses (see [5] and [7]). When such conditions hold,
we can compose ∃SO∀CQ=-mappings using a technique similar
to that of the proof of Theorem 10. In this case, we don’t Skolem-
ize, but replace every relation S of arity s from σ2 with an exis-
tentially quantifed relation R of arity rs (where r is as in the proof
of Theorem 10) Then we replace every occurence of a universally
quantified variable v in S with v̄ and add the equation v = v̄ and re-
place every occurence of an existentially quantified variable u with
bar u. This gives an algorithm for composition of source-to-target
∃SO∀CQ=-mappings.

8. OTHER BASIC OPERATORS

In addition to composition, we are interested in several other ba-
sic operators including domain, range, intersection, cross-product,
and inverse. These operators take for input mappings and models
and give as output mappings or models (a model is a set of in-
stances). As in the case of mappings, we say that a model A is
given by (σ1,Σ1) if it consists exactly of those databases over the
signature σ1 which satisfy the constraints Σ1. If, furthermore, Σ1

is finite subset of L we say that A is an L-model. As in the case of
composition, we say that L is closed under one of these operators
if it produces an L-model or L-mapping whenever the inputs are
compatible L-models or L-mappings.

PROPOSITION 4. Every L ⊇ ∀CQ0 is closed under identity,
cross product and intersection.

PROPOSITION 5. Each one of the operators composition,
range, and domain can be reduced to any one of the others.

PROOF. If

• m12 is given by (σ1, σ2,Σ12),
• m23 is given by (σ2, σ3,Σ23),
• m1 is given by (σ1 ∪ σ3, σ2,Σ12 ∪ Σ23),
• m2 is given by (σ2, σ1 ∪ σ3,Σ12 ∪ Σ23),
• dom(m1) is given (σ1 ∪ σ3,Σ1), and
• rng(m2) is given (σ1 ∪ σ3,Σ2),

then m12 ◦m23 is given by (σ1, σ3,Σ1) and (σ1, σ3,Σ2).
Conversely, if

• m12 is given by (σ1, σ2,Σ12),
• m21 is given by (σ2, σ1, ∅),
• m12 ◦m21 is given by (σ1, σ1,Σ1), and
• m21 ◦m12 is given by (σ2, σ2,Σ2),

then dom(m12) and rng(m12) are given respectively by
(σ1,Σ1) and (σ2,Σ2).

Proposition 5 and Theorem 2 give the following.

COROLLARY 2. Checking whether the domain or range of a
∀CQ0-mapping is a ∀CQ0-model is undecidable.

All the languages we consider satisfy the premises of Proposition
4. Therefore, Proposition 5 indicates that we can concentrate our
attention on closure under composition and inverse. Notice that if
an L-mapping m is given by (σ1, σ2,Σ12), then its inverse is given
by (σ2, σ1,Σ12), which is, of course, easy to compute. However,
the restrictions on L may be such that the second expression no
longer gives an L-mapping. For example, this happens with source-
to-target constraints. This is why we seek restrictions on L which
are symmetric with respect to the input and output signatures and
which guarantee closure under composition.

9. CONCLUSIONS
Mapping composition is one of the key operators that are used

for manipulating schemas and mappings between schemas. We
studied composition of mappings given by embedded dependen-
cies, which are expressive enough for many data management
applications. We addressed challenges that were not considered
in prior work, in particular the ones due to recursion and de-
Skolemization.
Acknowledgements. We are grateful to Ron Fagin, Phokion Ko-
laitis, Lucian Popa, and Wang-Chiew Tan for fruitful discussions
on mapping composition and for their feedback on a preliminary
version of this paper. We thank Andreas Blass who provided the
formula ψ in the proof of Theorem 1 and contributed to Proposi-
tion 5.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley, 1995.
[2] P. A. Bernstein. Applying Model Management to Classical

Meta-Data Problems. In Conference on Innovative Data
Systems Research (CIDR), pages 209–220, 2003.

[3] P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A Vision of
Management of Complex Models. SIGMOD Record,
29(4):55–63, 2000.

[4] M. A. Casanova and V. M. P. Vidal. Towards a Sound View
Integration Methodology. In ACM Symposium on Principles
of Database Systems (PODS), pages 36–47, 1983.

[5] A. Deutsch and V. Tannen. Reformulation of XML Queries
and Constraints. In Intl. Conf. on Database Theory (ICDT),
2003.

[6] H.-D. Ebbinhaus and J. Flum. Finite Model Theory. Springer,
1999.

[7] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. In
International Conference on Database Theory (ICDT), pages
207–224, 2003.

[8] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing
Schema Mappings: Second-Order Dependencies to the
Rescue. In ACM Symposium on Principles of Database
Systems (PODS), pages 83–94, 2004.

[9] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema
Mediation in Peer Data Management Systems. In Intl. Conf.
on Data Engineering (ICDE), 2003.

[10] C. Koch. Query rewriting with symmetric constraints. In
Foundations of Information and Knowledge Systems
(FoIKS), 2002.

[11] M. Lenzerini. Data Integration: A Theoretical Perspective. In
ACM Symposium on Principles of Database Systems
(PODS), pages 233–246, 2002.

[12] J. Madhavan and A. Y. Halevy. Composing Mappings
Among Data Sources. In International Conference on Very
Large Data Bases (VLDB), pages 572–583, 2003.

[13] S. Melnik. Generic Model Management: Concepts and
Algorithms. Ph.D. Thesis, University of Leipzig, Springer
LNCS 2967, 2004.

[14] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union and difference operators. Journal
of the ACM, 27(4):633–655, 1980.

[15] M. Sipser. Introduction to the Theory of Computation. PWS
Publishing Company, 2nd edition, 1997.

[16] C. Yu and L. Popa. Constraint-Based XML Query Rewriting
For Data Integration. In ACM SIGMOD International
Conference on Management of Data, pages 371–382, 2004.

