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1 Introduction

The world wide web has made an unprecedented volume of information
available, and despite the fact that this volume continues to grow, it is
also becoming easier to find what you want. On the other hand, the prob-
lem of finding several collections of relevant data and integrating them'
has hardly been tackled outside the well-behaved realm of conventional
database systems. Ontologies have been suggested as an approach to this
problem, but there are many difficulties, including the creation and main-
tenance of ontologies, existence of multiple ontologies for single domains,
the use of multiple languages to express ontologies, and the multiple logics
on which those languages are based.

The motivation for this paper is to unify and generalize a number
of approaches to information, in order to provide a rigorous foundation
for integrating heterogeneous information, not tied to any specific rep-
resentational or logical formalism, by using category theory to achieve
independence from any particular choice of representation, and using in-
stitutions to achieve independence from any particular choice of logic.
Co-relations are proposed as a very general formalization of information
integration, that includes numerous special cases, from databases, cogni-
tive linguistics, information flow, and other areas (see Section 4).

Barwise and Seligman have developed a theory of information flow and
channels [3], to solve the problem of how information about one thing (or
several different things) can convey information about something else, i.e.,
how information can “flow” through “channels” to activate new informa-
tion. Kent [33, 35, 34] has proposed to use this as a model for distributed
ontologies. This paper generalizes information flow to any logic by using
institutions, and following the lead of Kent [33], also combines it with
the formal conceptual analysis of Ganter and Wille [13] and the lattice of
theories approach of Sowa [44]. In addition, it draws on the categorical
general systems theory of Goguen [14, 15, 18] as a further generalization
of information flow.

! Such as, find all computer science faculty in the European Union who teach a grad-
uate course on logic and have published in a major database conference.



Hereafter, we let “IF” abbreviate “information flow” and also use
it as a prefix designating concepts in the IF approach; similarly, we let
“FCA” abbreviate “formal concept analysis” as in [13] (originating with
Wille circa 1982), we let “IFF” abbreviate “Information Flow Framework”
as in the IEEE Standard Upper Ontology project of Kent [35, 34], we
let “LOT” abbreviate the lattice of theories approach of Sowa, and we
let “CGST” abbreviate “categorical general systems theory” of Goguen.
Applications to ontologies, as in [4, 32, 35], were a major inspiration for
much of this paper, and are discussed in Section 5 and Appendix B.

The greater generality of institutions over classifications, local logics,
concept lattices, etc. not only allows doing information integration over
arbitrary logics, but also allows an elegant treatment of many interesting
examples in which part of a situation is fixed while another part is allowed
to vary, e.g., non-logical symbols can vary, while the logical symbols and
rules of deduction are fixed. Intuitively, institutions parameterize the ba-
sic judgement of satisfaction, and all of the theory that rests upon it, by
this kind of variation. A philosophical motivation for parameterizing sat-
isfaction follows arguments of Peirce against dyadic theories of meaning,
and in favor of meaning being triadic, where the third ingredient between
signs (such as formulae) and meanings is an “interpretant” that supplies a
context in which interpretation is done; in this sense, institutions formal-
ize a key insight of Peirce’s semiotics; see Appendix B and Appendix C
for further discussion. Unfortunately, there is currently no easy introduc-
tion to institutions, but a brief intuitive introduction is given in Section
2, including institution morphisms and comorphisms, with motivation for
their use in ontology integration; some aspects of Sowa’s LOT approach
are also generalized here.

The translation and generalization of IF and FCA begins in Section
3; the Galois connection associated to every institution plays a key role
here. Section 3.1 introduces IF classifications, constraints and theories,
showing that these are special cases of institutional concepts, and then
generalizing them. Section 3.2 generalizes a related basic result of FCA
to arbitrary institutions. Section 4 discusses channels, distributed sys-
tems, and the Interconnection Theorem, a CGST result that is both new
for and relevant to IF. Also, co-relations are suggested here to formalize
information integration, noting that IF channels, database local-as-view
systems, and cognitive linguistic blends are all special cases. Local log-
ics are discussed in Section 4.2; data, schema, and ontology integration
in Section 5; and some conclusions are given in Section 6. Appendix A
explains the Grothendieck “flattening” construction, a powerful category



theoretic tool that we use to handle heterogeneity, including ontologies
and schemas over different signatures and/or logics. Appendix B gives
several ways to view database systems with ontologies as institutions, in-
cluding a new approach to mereology?. An important theme of this paper
is that institutions generalize the dyadic classifications of IF and FCA
to a triadic relation that parameterizes judgements (such as that a type
classifies a token, or a model satisfies a sentence) by a context in which
the judgement is made, in a way that has many advantages, including
not just greater generality, but also an elegant mathematical theory, and
a powerful framework of the modularization and maintenance of com-
plex theories (e.g., ontologies). Appendix C illustrates the power of the
triadic institutional satisfaction relation, using an institution that for-
malizes databases in a novel way inspired by the triadic semiosis of C.S.
Peirce; here the relation says whether an answer satisfies a query in the
context of a given database.

The use of categories and institutions in this paper goes well beyond
the pervasive but implicit use of category theoretic ideas in IF [3]. In
particular, we show not only that many important IF structures are the
objects of categories with the relevant morphisms, but we also show that
they are the models or theories of interesting institutions, and moreover
that some of the most important IF structures actually are very spe-
cial kinds of institutions. In addition, we prove many new results using
known methods and results about categories, institutions, or CGST; al-
though some details are omitted from this note, they can be found in
the references and/or reconstructed by readers as exercises to test their
understanding of the material. Some mathematicians have expressed aver-
sion to category theory, presumably due to their professional orientation
towards difficult proofs for specific results in traditional areas, whereas
category theory is oriented towards easy proofs of very general results;
but the latter is precisely what is needed for the goals of this paper. There
are no difficult new theorems here; instead, this paper integrates previ-
ously disconnected areas by applying old theorems in new ways, with the
intention of helping to solve some important practical problems.

Familiarity is assumed with the basics of category theory, including
category, opposite category, functor, natural transformation, limit, col-
imit, and the categories Set of sets and Cat of categories; there are
many places to learn this material, such as [43, 17, 36]. We use ;” for the
composition of morphisms.

2 Sometimes also called “partology,” this refers to the formal study of the “part-of”
of “constituency” relation.



This paper is dedicated to the memory of Jon Barwise, with whom
I had the pleasure of working for several years at the Center for
the Study of Language and Information at Stanford University.
Jon was an exceptional thinker in both the depth and breadth of
his vision, and he is much missed.

Thanks to Robert Kent and Marco Schorlemmer for valuable com-
ments on earlier drafts, and to the participants in Dagstuhl Seminar
04391, Semantic Interoperability and Integration, for their enthusiasm
and comments; of course, any remaining bugs are my own fault. This
work is partially supported by the National Science Foundation under
Grant No. ITR 0225676, the Science Environment for Ecological Knowl-
edge (SEEK) project, the goal of which is to provide an integrated in-
formation infrastructure to support a distributed community doing long
term ecological research.

2 Institutions and their Morphisms

The basic reference for institutions is [24], and the latest version is in
[28], which focuses on variants of the institution morphism notion. Many
logical systems have been shown to be institutions, including first order
logic (with first order structures as models, denoted FOL), many sorted
equational logic (with abstract algebras as models, denoted EQL), Horn
clause logic (denoted HCL), many variants of higher order and of modal
logic, and much more; it seems that essentially any logical system has a
corresponding institution.

Institutions abstract and generalize Tarski’s “semantic definition of
truth” [46], the most significant ingredient of which is a relation of sat-
isfaction between models and sentences, denoted |=. For example, Tarski
defined the semantics of conjunction with a formula like

ME(Pand Q) iff (M| P)& (M & Q)
where (just for the moment) “and” is syntactic conjunction, “&” is se-
mantic conjunction, M is a model, and P, Q) are formulae.

Many applications of logic, for example in computer science, require
the vocabulary from which sentences are constructed (such as predicate
and function symbols) to vary from one situation to another in such a way
that truth is invariant under translations among such vocabularies. This
requires formalizing the notions of vocabulary and of translations among
vocabularies, as well as the effects of such translations on sentences and on
models, each of which must be taken as parameterized by the vocabularies
that they use.



Institutions accomplish this formalization by generalizing from “vo-

cabularies” (the word “lexicon” has also been used) to signatures, which
are abstract objects, and from “translations among vocabularies” to ab-
stract mappings between objects, called signature morphisms; then the
parameterization of sentences by signatures is given by as assignment of
a set Sen(X) of sentences to each signature X, and a translation Sen(f)
from Sen (X)) to Sen(X') for each signature morphism f: ¥ — X' while
the parameterization of models by signatures is given by an assignment
of a class Mod(X) of models for each signature X, and a translation
Mod(X'") — Mod(X) for each f: X — X'

Definition 1: An institution consists of an abstract category Sign,
the objects of which are signatures, a functor Sen: Sign — Set, and a
functor Mod: Sign® — Set (technically, we might uses classes instead
of sets here). Satisfaction is then a parameterized relation =5y between
Mod(X) and Sen(X), such that the following Satisfaction Condition
holds, for any signature morphism f: X — X' any X'-model M’, and
any X-sentence e

M' =5 fe) iff f(M) Exe

where f(e) abbreviates Sen(f)(e) and f(M') abbreviates Mod(f) <
M' >. This condition expresses the invariance of truth under change
of notation. O

Some of the earliest (circa 1980), and most useful, results in the theory
of institutions concern a duality between theories and model classes. A
Y-theory is a set of Y-sentences, and a Y-model class is a class of
X-models. Every X-theory T determines a Y-model class T, consisting
of all Y-models that satisfy all its sentences, and every Y'-model class V
determines an X-theory V*, consisting of all Y'-sentences satisfied by all
the models in V. These two operations define the kind of duality between
model classes and theories known as a Galois connection [5] (for those
who know the concept, it is also an adjoint functor situation). Many
simple results are known to hold in such situations, some of which we
now discuss.

A theory is closed iff it equals its closure; intuitively, a closed theory
already contains all the consequences of its sentences; the closure of
a theory T is the theory 7**, while the closure of a model class V is
V**. The closure of a closed theory (or model class) equals itself (in fact,
T =T* iff T is closed), and (71 UT5)* = Ty NTy'; many more such results
for arbitrary institutions are given in Propositions 3 and 4, and Lemmas
6 and 7, of [24]. The following result is less trivial, but still well known for



Galois connections; Section 3.1 shows how it helps to greatly generalize
some results in [13].

Proposition 1: For any institution I and signature X', the closed .-
theories, and the closed Y-model classes, are complete lattices under in-
clusion. Moreover, there is a dual isomorphism between these complete
lattices.

Proof Sketch: Given a family 7T; for i € I of closed theories, (U; T;)** is
clearly the least closed that contains each T;. Existence of arbitrary least
upper bounds implies a complete lattice, this case ordered by inclusion. A
similar argument works for the closed model classes. The two isomorphism
maps are the two * maps, and they are dual because T' < T" iff T* < T"*.
Functorial adjointness gives continuity of the isomorphisms. O

The collections of all theories and of all model classes over a given
signature are also lattices, with T' < T" iff T* C T"*. This is exactly
the “lattice of theories” of Sowa [44], when the institution is first order
logic (FOL, but using an elegant Peircean syntax), though LOT and also
IFF, use the opposite ordering relation, which seems more intuitive for
many purposes; in addition, [44] also proposes a number of set theoretic
operations for navigating the lattice of theories. However, I believe it is
actually more useful to consider all the theories over all the signatures of
an institution as a single category, as in the following from [24]:

Definition 2: Let Th(I) have as its objects pairs (X,T) where X is a
signature of I and T is an X-theory of I, and as its morphisms semantic
consequence preserving signature morphisms, i.e., f: (X,7) — (X', T")
is f: X — X' such that if ¢ is in T then T" |= f(¢), in the sense that
M' = T' implies M' |= f(t) for all M', or equivalently, ¢ € T implies
f(t) e T*. O

Such “heteromorphisms” between ontologies with different signatures are
needed if ontologies are to be used for integrating data from domains with
different ontologies (see [31] for a use survey of work on ontology map-
pings). Category theory also supports a wide variety of useful operations
on theories (see the discussion following Theorem 1 below).

Definition 2 is a special case of the Grothendieck construction de-
scribed in Appendix A, which the reader may consult for a definition of
the composition of heteromorphisms. Some results similar to the above are
proved for the special case of many sorted first order logic in [34], using
the fibration variant of the Grothendieck construction, though without
benefit of the unifying and generalizing notions and results of theory in-
stitution theory; [24] also proves the following (or actually, the stronger



result, that the forgetful functor from theories to signatures creates col-
imits):

Theorem 1: If the signature category of an institution I has colimits,
then so does T'h(I). O

These colimits can be used integrate theories over different signatures,
and of course such theories could in particular be ontologies. As dis-
cussed in [24, 16], and other publications, colimits enable powerful meth-
ods for structuring and combining theories, including inheritance, sums
over shared subtheories, renaming parts of theories, and (best of all) pa-
rameterizing and instantiating theories. This goes far beyond the (gener-
alized) Boolean operations of FCA and LOT; moreover, it provided the
basis for the powerful module system of the ML programming language,
with its so called signatures, structures and functors [38], though ML does
not provide all the functionality defined in [16] and implemented in the
OBJ language family, which include CafeOBJ [9], Maude [6], BOBJ [26],
OBJ3 [30], and to some extent CASL [41], under the name “parameterized
programming”; these ideas also influenced the module systems of C++,
Ada, and LOTOS.

If we restrict to a fixed signature X' and also restrict to theory mor-
phisms where f is the identity on X', then there is at most one morphism
from any X-theory to any other, and the resulting category becomes a
quasi-ordered set of X-theories, in which theories T',T' are equivalent iff
T <T'"and T' < T. If we identify equivalent theories, we again get the
complete lattice of closed X-theories. The set of (not necessarily closed)
X-theories is also a complete lattice under inclusion, but this is not very
interesting. Entirely similar constructions apply to model classes. How-
ever, as shown by ML and the other languages mentioned above, it is
more useful to work with Th(I).

While the material above provides a good foundation® for integrating
theories (such as ontologies) over a fixed logic, it is not adequate for in-
tegrating theories over different logics, which is often needed in practice.
For this, we need to be able to translate between logics, i.e., institutions.
As discussed in [28], there are actually many different kinds of logic trans-
lation. The following (from [24]) is perhaps the most basic of these:

Definition 3: An institution morphism from an institution I to an-

other institution I’ consists of a functor F': Sign — Sign’ and two nat-

3 Although ignoring many practical issues, some of which are discussed, for example,
in [1, 42].



ural transformations a: F;Sen’ — Sen and b: Mod — F;Mod', such
that, for any ¥-model M and F(X)-sentence €’

M =5 ax(€) iff by(M) IZIF(E) e .

Let INS denote the category with institutions as objects, and with these
morphisms. O

Intuitively, institution morphisms are truth preserving translations from
one logical system to another. More technically, for any signature X, let-
ting X' = F(X), then ax maps X’-sentences to Y-sentences, and by, maps
X-models to X’'-models, in a way that is consistent with respect to the sat-
isfaction relation. One class of examples consists of institution inclusion
morphisms, for which F', a5 and by are each an inclusion. For example,
there is an inclusion morphism from HCL to FOL. A more general notion
of subinstitution allows these functions to be injective. An example is
the translation from (many sorted) EQL into (unsorted) FOL, in which
equality is treated as a special relation. Of course, there are many other
examples of subinstitutions, some of which are given below; and there are
also many institution morphisms that are not subinstitution morphisms,
some of which we will also see below. Among the variants of the institution
morphism notion, perhaps the most natural is the following;:

Definition 4: An institution comorphism from an institution I to an-
other I consists of a functor F: Sign — Sign’, a natural transformation
a: Sen — F;Sen/, and a natural transformation b: F; Mod — Mod,
such that, for any F(X)-model M’ and X-sentence e

bE(MI) IZE € iff M’ IZIF(E) a;(e) .
Let coINS denote the category with institutions as objects, and with in-
stitution comorphisms as morphisms. O

It can be helpful to think of an institution comorphism as an institution
morphism between the source and target co-institutions, where the co-
institution of an institution replaces its signature category by its oppo-
site, and then swaps its sentence and model functors. This transformation
gives two functors that define an isomorphism between the categories of
institutions with morphisms and with comorphisms, thus formalizing this
important duality.

There are now hundreds of papers that study and/or apply institu-
tions. The original application was to provide an expressive module sys-
tem for knowledge representation in the Clear language. The approach
was later extended to provide module systems for formal specification
languages, and later still for programming languages, as mentioned above;



see [29] for a general discussion. A recent related contribution is Mossa-
kowski’s Heterogeneous Tool Set [39] extension of CASL, which supports
verification over a number of different logics, based on ideas described in
Appendix A.

Institution morphisms formalize logic translations, and provide a very
general notion of what integration can mean in many different contexts;
they also provide many useful results about logic translations, such as
that they preserve the modular structure of an ontology under certain
mild assumptions (see [24]). Many results from logic have been generalized
to institutions, including the Craig interpolation, Robinson consistency,
ultrafilter, and Herbrand universe theorems; the institutional versions ap-
ply to all logics where the results were already known, and they yield new
results for many other logics, e.g., [10].

3 Information Flow in Institutions

“Information” is central to contemporary computer science, cognitive sci-
ence, and philosophy, but there is no widely accepted definition for this
concept, and no definition that is adequate to all its intended applica-
tions. Both IF and FCA capture certain key aspects of information in
their formal mathematical theories, though neither provides an explicit
definition of information as such*. This section shows that many basic IF
and FCA concepts are very special cases of institution concepts, based on
those institutions that have the simplest possible signatures:

Definition 5: A 1-institution is an institution where Sign = 1, the
category having just one object o, and just one morphism. O

Then the morphism e — e in Sign is necessarily the identity on e, so that
the transformations Sen(1,) and Mod(1,) are both necessarily identities,
and so can be ignored.

3.1 IF Classifications, Infomorphisms, Constraints and
Theories

Barwise and Seligman [3] give an account of what it means for one sign
(they use the word “token”) to “carry information” about another, or in a
different metaphor, of how “information flows.” The rigorous mathemat-
ical theory in [3] is based on the intuition that information flow is only

4 My definition of information is given in [19]; it is broadly consistent with the Peircean
pragmatism espoused by [44], though considerably more social.



possible in a stable distributed system, consisting of “channels” through
which “information flows.” This subsection gives a brief self-contained
exposition of some basics of this theory.

A classification in the sense of [3] consists of a set K of tokens, a set
P of types, and a relation |= between K and P, that tells whether a given
token has a given type; we may call this an IF-classification for clarity.
Classifications have often appeared in various literatures, e.g., [5] calls
them “polarities,” and [13] calls them “contexts;” they can be considered
a primitive kind of ontology. According to [3], tokens carry information,
and types represent the information that is carried. Given classifications
(K,P,=) and (K', P',='), an infomorphism (K, P,|=) — (K', P, )
consists of functions f¥: K’ — K and f": P — P’ such that fV(k) =t
iff & &' f(t), for all k € K’ and t € P. Infomorphisms are the con-
stituents of channels, which express the regular structure of distributed
systems in IF theory. It is now easy to check the following, noting that the
condition on f¥ and f” is just the institutional Satisfaction Condition:

Proposition 2: A classification is a 1-institution where Mod(e) is the
set of tokens and Sen(e) is the set of types. Moreover, infomorphisms are
comorphisms of these institutions. Let IFC denote the resulting category
of IF-classifications, which is the subcategory of coINS having the 1-
institutions as its objects. O

Alternatively, if we consider tokens as sentences and types as models (i.e.,
take the co-institution), then we can also view IFC as a subcategory of
INS, though this may seem rather counter-intuitive. We now give another
formulation of IF-classifications along with some additional important IF
concepts:

Definition 6: Given a set P of type symbols, a P-classification C' is
a set K of tokens plus a unary relation C(p) on K for each p € P, i.e.,
a function P — 2K to subsets of K. By convention we write p for C(p),
and k = p instead of p(k). A P-sequent is a pair of subsets of P, writ-
ten in the form I' F A. A P-theory is a set E of P-sequents, called
P-constraints in this context; an IF-constraint is a P-constraint for
some P, an IF-theory is a P-theory for some P, and a P-classification
C satisfies a P-constraint I' - A iff for all tokens k of C, k |= g for every
g € I'" implies k |= p for some p € A. O

Thus, P-classifications are IF-classifications with type set P. From here
on, we feel free to omit prefixes IF- and P- if they are clear from the
context. A pretty little institution lurks in the above definitions: its sig-
nature category is Set, the objects of which are considered sets P of

10



predicate symbols; its P-models are P-classifications; its P-sentences are
P-sequents; and its satisfaction is as above. We let the reader define the
translations of models and sentences under signature translations, and
check the satisfaction condition. Let us denote this institution by IFS; it
is easy to see that this “institution of 1-institutions” is a subinstitution
of FOL. Moreover, by adding infomorphisms, the model classes become
categories (of classifications), yielding an institution in the original sense
of [24], which extends Definition 1 by allowing Mod: Sign®® — Cat.

Definition 7: The institution IFS has Set as its category of signatures,
with Mod(P) consisting of functions P — 2% from P to subsets of some
set K, with Sen(P) = P* x P* (the set of all pairs of subsets from P),
written as sequents, and with =p the usual satisfaction relation. O

The above suggests generalizing IF to allow tokens that are terms
built using arbitrary constructors®, and to allow first order sentences with
non-unary predicates, instead of just sequents with unary predicates. The
result is actually the familiar institution of first order logic with terms.
But we can go further, and consider information flow theory over an
arbitrary institution; also we can obtain a deeper understanding of the
relation between classifications and theories by viewing it as a special case
of the Galois connection between model classes and theories that holds
in any institution. For this, we first review more material from [3]:

Definition 8: The theory of an IF-classification C, denoted Th(C), has
as its constraints all sequents that satisfy C. An IF-theory is regular
iff it satisfies the identity, weakening, and global cut axioms given in [3],
page 119. The classification of a theory T' = (P, E), denoted Cla(T), is
(P, K, =), where K is the set of all partitions (I, A) of P that are not in
E, and where (I A) Epiff pe I'. O

The following is proved in [3]:
Theorem 2: Th(Cla(T)) =T for any regular IF-theory 7'. O

The above result is extended to a categorical equivalence in [33]. Com-
paring Theorem 2 with definitions in Section 2 gives a nice little result,
which appears to be new:

Proposition 3: Th(C) = C* and Cla(T) = T*; moreover, an IF-theory

is closed iff it is regular. O

5 Although [3] says “.. any suggestion that tokens must have something like ‘syntax’
is quite unwelcome,” we claim that such structuring is precisely what is needed for
some applications, including mereology for ontologies, as discussed in Appendix B.

11



Although this formulation is particular to IFS, the Galois connection
and its many consequences hold for every institution. In particular, we
can now see that Theorem 2 is a special case of the general institutional
result that 7** = T iff T is closed; what then becomes interesting is the
particular form of the constructions, T'h and Cla, for the Galois duality
in this special case.

3.2 Formal Concept Analysis

A formal context in FCA [13] is the same as an IF classification, ex-
cept that instances are called “objects” and types are called “attributes”;
thus formal contexts are 1-institutions. The main notion of FCA is that
of a formal concept for a formal context, which is a pair (7, V') where
T = V* is a theory and V = T* is a model class (for which FCA uses the
terms “intent” and “extent,” respectively). In many concrete cases, these
may be considered the natural “concepts” for that situation; for example,
sentences might be formed over an ontology, and models might “pop-
ulate” that ontology with certain instances. Then the formal concepts
should be exactly those that are useful in understanding the meanings
of the attributes of objects; this can be useful in practice, e.g., in con-
structing ontologies. Unfortunately, real data is often too dirty for such an
idealization to work well in practice, which suggests that some new ideas
are needed to deal effectively with the uncertainties of the real world.

It follows that both T" and V are closed in formal concepts, which
are thus the pairs of closed elements that correspond under the dual iso-
morphism of Proposition 1. Note that it is not necessary to keep both T
and V, since they determine each other; note also that these are concrete
lattices of sets of elements from P and K, respectively. The lattice of for-
mal concepts associated with a classification is called its formal concept
lattice. Conversely, given a lattice of closed theories over given sets K
and P, we can define k = p iff k € {p}*. Intuitively, the concept lattice of
a classification identifies tokens and types that cannot be distinguished
by how the classification uses them. It is now easy to verify the following
version of the Basic Theorem of Formal Concept Lattices of [13]:

Proposition 4: There is a bijective correspondence between classifica-
tions and their formal concept lattices. O

It is natural to define formal concept morphisms to be complete lattice
homomorphisms, and then show that the above bijection is an equiva-
lence of categories, as in [33]; many other categorical extensions of FCA
can also be found in [33]. One appeal of FCA is that nice pictures can be

12



drawn for the concept lattices of (sufficiently small) classifications; these
pictures are called Hasse diagrams in lattice theory.

Proposition 4 extends easily to arbitrary institutions, where = is pa-
rameterized by signatures, calling the lattice of closed theories associated
with a given signature of a given institution its formal concept lattice.
However, the Hasse diagram is not finite for the logical systems usually
considered in the literature on institutions. Intuitively, the closed theo-
ries (or model classes) of an institution at a given signature identify those
theories (and model classes) that are indistinguishable with respect to
satisfaction, and thus (as in the special case of classifications) extract the
meaningful “concepts” for that institution.

4 Channel Theory and Information Integration

A very general and often useful notion is that of a relation in a category
C, which consists of three objects, say A, B, R, and two morphisms, say
p1: R — A and po: R — B. If C is Set, then a relation R consists
of pairs (a,b) with a € A and b € B, and py,ps are projection maps.
Most of the usual theory of relations between sets can be done in this
very general setting, with some modest assumptions on C, such as that
C has pullbacks. There is also a dual notion of co-relation, consisting
of three objects A, B,C and two injection morphisms, f1: A — C and
fa: B — C. Relations (and co-relations) generalize to families p;: R —
A; (or fi;: A; — C). We now give the categorical form of another basic
concept in [3]:

Definition 9: A channel is a co-relation f;: A; — C for ¢ € I, in the
category IFC; C is called the core of the channel. O

Looking at only the tokens, a channel yields a relation that “connects”
each token c in its core to the tokens f,Y(c) in its components A;. A cover
of a diagram is defined in [3] to be a channel over that diagram such that
every triangle formed by an infomorphism in the diagram and the two
injections, from the source and target of that infomorphism, commutes.
This is just the categorical notion of a co-cone, for the special case of
a diagram in IFC; similarly, the “minimal covers” of [3] are colimits in
IFC, although [3] use the term “limit” for this concept, perhaps because
the tokens are more concrete than types (more technically, we might at-
tribute it to the duality between morphisms and comorphisms). Category
theorists often use the term apex instead of “core” for both relations and
co-relations.

13



It is highly encouraging that co-relations are the essence of a number
of interesting special cases, including not only channel theory, but also
local-as-view data integration in database theory, blending in cognitive
linguistics [11], module interconnection [29] and concurrent process in-
terconnection [18, 12] in software engineering, and (following algebraic
semiotics [21, 20]), the composition of subsigns to form interfaces in user
interface design. It is therefore reasonable to suggest that co-relations,
co-cones, and co-limits are the obvious way to integrate the constituent
objects, as already suggested in [14, 17]. Although the dual global-as-view
approach corresponds to relations in a category, it can also be formulated
using co-relations; it is less general, but more efficient for query answering.
In many cases, it is natural to consider a subtheory of shared material, as
is already standard for blending in cognitive linguistics. For co-relations
with a shared subtheory (denoted G in the figure below), pushouts give an
optimal blend (and dually, pullbacks are optimal in the relational case).

B

RN

h\g/b

Fig. 1. Information Integration over a Shared Subobject

But it is too optimistic to expect this kind of optimality in many
practical situations, where there are many possible solutions; instead, one
should consider pragmatic optimality criteria like those used in cognitive
linguistics. However, it does not seem, as suggested in [11], that any single
set of optimality criteria is appropriate for all situations, but rather that
different criteria are needed for different situations. For example, [25]
examined metaphors in the poetry of Pablo Neruda, and found that some
especially creative blends there used criteria opposite to the common
sense criteria given in chapter 16 of [11]; one such is the phrase “water of
beginnings and ashes” in the first stanza of the poem “Walking Around.”
In [20], it is suggested that categories with an ordering relation on the
morphisms between any two objects, called %-categories, and be used
as a basis for %-colimits, which seem to have the flexibility necessary for
user interface design and cognitive linguistics.

It is well known that categorical relations with pullbacks yield the
usual calculus of set theoretic relations, e.g., composition of relations and
its associativity, as well as converse, union, intersection, etc., with their
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usual properties. The join of relations in database theory is a special
case of this. The dual calculus of co-relations is less well known but sim-
ilarly rich, and moreover, everything generalizes to m-ary relations and
co-relations, with and without shared material. It is also interesting to
notice that in concrete cases, a co-cone gives rise to a partial map between
the input spaces, connecting those elements mapping to the same element
under the injections; this “emergent” partial map is what most schema
and ontology mapping tools seek to construct, and it is also an impor-
tant aspect of the theory of metaphor developed in cognitive linguistics
[11]. Computer scientists have also used the terms “alignment” and “ar-
ticulation” for this process, but its relation to more general notions of
integration (under names like “fusion”, “merging” and “reconciliation”)
have until now remained somewhat mysterious; although I do not wish
to suggest that the connections described here suffice to resolve all the
practical problems that arise, I do believe that they provide the basis of
a general theory of information integration.

The important result below follows from general methods for proving
properties of categories of close variant institutions given in [28] (to
be more precise, IFC is (1get | / 1get T), @ comma category of so called
“twisted relations,” which Proposition E.4 of [28] implies is complete and
cocomplete; note also that classifications are twisted relations). IFC is a
1-institution because the category of functors from 1 to it is isomorphic to
it; see [28, 24] for details of the twisted relation formulation of institutions.

Theorem 3: Every (small) diagram in IFC has a colimit. O

This means that every IF-distributed system has a channel that best
describes its flow of information. For the special case of IFC, the “core”
of the colimit has as its types the colimit of the corresponding diagram
of type sets, and as its tokens the limit of the corresponding diagram
of token sets, just as one might expect (e.g., from principles in [17]).
The sum of a set of classifications is the special case where the system
diagram is discrete, i.e., contains no infomorphisms; here the token set
is the product of the token sets of the components. Theorem 3 can be
considered a very general version of the Dretske Xerox Principle discussed

in [3], which asserts the “transitivity of information flow”S.

5 This can be seen from the construction of limits (for tokens) in concrete categories
such as Set, or more abstractly, from their construction using equalizers of products
(e.g., see [15, 36]).
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In addition, Theorem 3 makes available the powerful structuring and
integration mechanisms of parameterized programming [16]. Proof meth-
ods in [28] also give the following result, which is not in [3]:

Theorem 4: Every (small) diagram in IFC has a limit. O

The construction is dual to that for colimits: the type set of the limit
object is the limit of the corresponding diagram of type sets, and its token
set is the colimit of the corresponding diagram of token sets. The special
case where the diagram is discrete is the product of the components; its
token set is the disjoint union of the token sets of its components.

Barwise and Seligman [3] cite Chu spaces (for which see the appendix
of [2]) for their proof of Theorem 3; this is consistent with our approach,
because Chu spaces with Z = {0, 1} are institutions with Sign = 1; more-
over, general Chu spaces are subsumed (still using the trivial signature
category) by the generalized institutions of [23], in which satisfaction
takes values in an arbitrary category V (the end of Section 2 of [45] gives a
better exposition of this than that in [23]); so called Chu transformations
are of course comorphisms of such institutions.

4.1 Categorical General Systems Theory

In 1971, the categorical general system theory (CGST) of [14] proposed
many of the same ideas as [3], including representing distributed systems
as diagrams in a category, using relations to describe connections among
components, and using limits to compute behavior; this can be considered
a very general form of the Dretske Xerox Principle (but note the dualiza-
tion). CGST amounts to doing information flow and logical architecture
in an arbitrary category. An important idea from [14] not in [3] is that the
colimit of a diagram of systems computes the system that results from the
interconnection. A main result, called the Interconnection Theorem
[15], says that the behavior of an interconnection of systems is the limit
of the diagram of behaviors of the component systems (but Theorem 3.11
of [18] provides a better exposition than that in [15]):

Theorem 5: For D a diagram of diagrams over a complete category C,

and for Lim the limit computing functor on the category of diagrams,
Lim(colimD) = lim(D; Lim) .

O

Specialized to IFC and suitably dualized, this result is a useful addition

to IF theory: it tells how to compute the core of an interconnection of dis-
tributed systems from the cores of its component systems. The CGST for-
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malism of [14] is applied to various distributed systems in [18], which also
includes treatments of object oriented concepts like inheritance, concur-
rency concepts like deadlock, and security concepts like non-interference.
The use of sheaves in this work to capture the time varying behavior of
components might also be useful for IF, FCA, and LOT, since their ap-
proaches to dynamics seem rather weak, and in particular seem unable to
handle continuous time; it is also worth remarking that an appropriate
logic for sheaves is given by the so called internal logic of a topos, as noted
in [18].

4.2 Local Logics

We begin with an extension of classifications from [3]:

Definition 10: A local classification is a classification (P, K, ) to-
gether with a subset NV of K, called its normal tokens. O

Local classifications are not quite 1-institutions, but they are close variant
1-institutions, (1getd /p11) where p;: SubSet — Set is the subset ex-
tracting functor, where SubSet is the category of subset inclusions with
commutative squares as morphisms. Let us denote the category of local
classifications by IFCL. The new result below again follows from Propo-
sition E.4 of [28]; as before, it enables the structuring and integration
mechanisms of parameterized programming [16].

Theorem 6: IFCL has both limits and colimits. O

We now construct a category the objects of which are the local log-
ics of [3], consisting of pairs (T, M) of a regular P-theory T and a local
classification M that satisfies T' when restricted to N; the construction
will also yield the so called logic infomorphisms of [3]. Given an in-
stitution I, we first define the functor Modth: Th(I)®’ — Cat to map
each theory to the category of all models that satisfy that theory, where
Th(I) is the category of all theories of I, as in Definition 2. Next, we apply
the Grothendieck construction Appendix A to that functor, the result of
which is a category Gr(Modth) the objects of which are pairs (7', M)
where T' is a theory of I and M is a model of I that satisfies T', with
morphisms (T, M) — (T', M') pairs (h, f) where h: T — T" is a theory
morphism and f: M — h(M') is a T-model morphism. Finally, if we let
I = IFS, then we get exactly the category of local logics in the sense
of [3], which we denote by IFL. The Galois connection, concept lattice
bijection, Interconnection Theorem, and many other results now follow
easily, including the following, which also seems new:
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Theorem 7: IFL has both limits and colimits. O

The proof applies general completeness results for the Grothendieck con-
struction, e.g., in [28]. And again, it makes available the structuring and
integration mechanisms of parameterized programming [16].

Restricting to the closed theories and model classes of IFL for a fixed
signature, we can construct concept lattices for local classifications exactly
as previously for ordinary classifications; we conjecture that the resulting
category of local concept lattices is equivalent to the category of local
classifications.

5 Data, Schema, and Ontology Integration

Information integration over distributed databases, such as the world wide
web, is a significant potential application for ideas discussed in this paper,
but it is also very challenging, and accomplishing it will require integrating
both schemas and ontologies that are associated with data. Categorical
principles (e.g., as in [17]) say that since schemas and (so called “unpop-
ulated”) ontologies are theories, they should be combined with colimits.
However, the fact that, in general, different signatures are involved means
that the category of 3X-theories for a fixed signature X is inadequate, and
so we extend it using the Grothendieck construction of in Appendix A.
(Of course, there are also many practical problems to be addressed.)

We first note that the construction of Th(I) in Definition 2 extends
to a functor Th: INS — Cat, sending each institution to its category
of theories. Next, applying the Grothendieck construction to this functor
yields a category GTh with objects (I, X, E) where I is an institution,
and (X, E) is a theory of I, and with morphisms (I, X, E) — (I, X', E')
consisting of an institution morphism (F,a,b): I — I’ plus a signature
morphism f: X' — F(X) such that E C ag(f(E'))**. However, GTh is
an enormous beast, nearly all of which is useless for any particular appli-
cation. This motivates considering a (small) category O of institutions,
on which as before we define a functor Th: O — Cat, and then flatten
it, just as for GTh, but restricting to institutions and morphisms in O;
let the result be denoted GTh(O). (GTh and GTh(O) also result from
applying the remarkable Grothendieck institution construction of [7] to
the theory functor.) It is not difficult to show that limits and colimits
exist in these categories under reasonable conditions. See [22] for details.
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6 Conclusions

Rising above details, some beautiful patterns emerge that are not visible
in more specialized theories such as IF, FCA, and LOT. First, each of
the logics for classification, IFC, IFS, IFCL, and IFL, gives rise to an
institution. Secondly, institutions occur at two different levels: classifica-
tions are institutions, which in turn form the model categories of other
institutions with non-trivial sentences. Although one can view the satis-
faction of these sentences as another classification, the resulting structure
(via Tarski’s semantic definition of truth) is not particularly helpful. By
contrast, our third pattern is that the institutional formulations give rise
to many interesting results in a uniform way, using established meth-
ods; moreover, many of these results are new for IF, FCA and LOT,
including the Galois connection between models and theories, several
(co-)completeness results, and the Interconnection Theorem. It is there-
fore natural to make further generalizations having the same mathemat-
ical structure. For example, consider institutions with non-trivial term
constructors and constants (so that terms serve as descriptors for com-
plex tokens), and with non-unary predicates, including a binary equality
predicate that is interpreted as identity in models; these form an institu-
tion, say IFE, for which the same results follow in the same uniform way;
we can even add subsets of normal tokens. Horn clause logic provides an
alternative notion of sentence for which inference is easier; moreover, this
logic features prominently in many currently popular ontology languages.

In addition to all this, channels are co-relations (or co-cones), dis-
tributed systems are diagrams, and behaviors are colimits, over any of
these institutions, and the same applies for quite a number of other for-
malisms for information integration, including database theory, blending
theory, and areas of user interface design and software engineering. It
seems evident that ideas from IF, FCA and LOT could therefore be ap-
plied in these other areas, once the proper conceptual infrastructure is
established.

There are many other directions that also seem well worth exploring,
including parts of [3], [13] and [44] that we have not yet tried to insti-
tutionalize. The categorical formulations of [33] are very relevant to this
effort, and inspired the attention paid to [13] in the present paper. It would
seem worthwhile to extend the Galois connection between theories and
model classes to an indexed family of adjunctions between theories with
deduction and categories of models, noting that standard methods of cat-
egorical logic allow viewing deductions as morphisms between sentences,
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so that both theories and models with their morphisms form categories
(see [40] for some details). It would also be interesting to further explore
the use of sheafs as space- and time- varying tokens and types in classifi-
cation systems, as in [18]. Finally, it seems important to develop theory
and tools that can cope with the multiple forms of uncertainty that are
inherent in the real world (e.g., see [19] for a discussion of some sources of
such uncertainty). Further development of %—categories seems promising
in this respect, and perhaps some ideas from fuzzy logic could also be
useful.

Even if one accepts that much of the mathematical content of IF,
FCA and LOT can be done more generally and more elegantly using
institutions, this does not detract from the practical and philosophical
achievements of these works, nor does it detract from their expository
ease, part of which is due to avoiding category theory. In particular, it
is indeed fascinating to consider physical systems from the viewpoint
of information flow, what events in one component tell about events in
another. Similarly, even if one accepts that many ideas about systems are
done more generally in the CGST of [14, 15], this does not detract from
the particular application of [3] to information flow; in particular, [14, 15]
do not treat inference.

But my admiration for these works does not mean that I always agree
with their philosophical views. In particular, I do not accept the implicit
philosophical realism of [3] and [13], which seems to me to take too little
account of the social and cognitive aspects of information, and of the
many practical difficulties that can arise from this. My own views on the
nature of information [19] are consistent with the Peircian pragmatism
advocated by Sowa [44], but I think are more explicitly social, but not
essentially more social, than Pierce. However, philosophical debates often
have little effect on applicability, and I have no doubt that ideas IF, FCA,
LOT and IFF can have significant applications in information technology,
e.g., see [32] and [35] for some interesting applications to ontologies, e.g.,
for the web. However, I expect, for reasons that include the enormous
variety of data formats in use on the web, and the range of different
logics used for ontologies, that institutional formulations may have some
significant advantages over less general approaches. I also hope that some
day, computer scientists (and philosophers) will be sufficiently familiar
with concepts like category, colimit, and even institution, that these can
be freely used without alienating large parts of the potential audience,
and that authors will no longer feel it necessary to camouflage their use
of such concepts with idiosyncratic “user friendly” terminology.
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A Grothendieck Constructions

Situations in which one kind of structure is indexed by another are rather
common in mathematics, computer science, and their applications, and
are the essence of many information integration problems. Alexander
Grothendieck developed a very general way of dealing with this kind
of structural heterogeneity, as part of his brilliant reformulation of alge-
braic geometry into the language of category theory, in order to solve a
number of then outstanding problems. The word “structure” in the first
sentence of this paragraph is formalized as the mathematical concept of
category, in which the structure-preserving morphisms play a central role,
and the indexing is then given by a functor F': I°? — Cat (the origi-
nal formulation of Grothendieck assumes a weaker coherence than that
given by functoriality, but this complex extra generality is not needed for
our applications). The Grothendieck construction “flattens” this indexed
family of categories into a single category. This is important because it
supports combining objects from different categories in the single flat-
tened category using colimits, in which morphisms describe sharing and
translations among objects. Typical objects of practical interest are on-
tologies and schemas (see [22] for some detail), both of which are special
cases of the Grothendieck construction on theories given in Definition 2.
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Now some details: The Grothendieck category Gr(F) of an indexed
family F': I°? — Cat has as its objects pairs (i, A) where i is an object in I
and A is an object in F(i), and has as its morphisms (i, A) — (', A") pairs
(f,h) where f: i i inTand h: A — F(f)(A’) in F(i); such morphisms
have also been called “cryptomorphisms” and “heteromorphisms” in the
computer science literature. Given also (f',h'): (¢, A") — (i", A"), define
the composition (f, h); (f',h'): (3, A) — (i, A”) to be (f; f', h; F(f)(h')).
It is easy to check that this gives a category.

Several useful results about colimits and limits in Grothendieck cat-
egories are given in [45], but a better exposition appears in Section 2.1
of [28]. It is worth mentioning an alternative approach to the same phe-
nomena based on fibered categories, though in our opinion, its greater
technical complexity does not yield corresponding benefit.

The Grothendieck institution construction of [7] applies the same idea
to indexed families of institutions. The result is not just a single category,
but a single institution, the signature category of which is the Grothen-
dieck flattening of the indexed family of signature categories, and similarly
for the sentences and the models. Moreover, logical properties of the in-
dividual institutions tend to lift to the whole under suitable assumptions,
e.g., Craig interpolation [8].

B Ontologies and Database Institutions

An ontology is a different kind of theory for a database than its schema,
because its purpose is to give vocabulary and sentences for describing the
elements that can appear in the database. In practice, the vocabulary
is often restricted to constants that denote individuals, unary predicates
that classify individuals, and binary predicates that relate individuals,
while sentences are often restricted to Horn clauses. However, such re-
strictions are by no means necessary, and are imposed mainly to ensure
efficient decidability. Here, we work with an arbitrary theory O and an ar-
bitrary model (2 of O, over an arbitrary institution I such that its model
category is concrete; O is the ontology, and (2 is the population of
individuals and values that can be used in fill slots in the database. We
give examples later, but note in passing that two good choices for I are
Horn clause logic and order sorted algebra, and that {2 is often a free
extension of O.

A schema is a theory T over I that contains O. Let T'(£2) denote T
with {2 adjoined as additional constants, and let X' be the signature of
(2. Then a database state over the schema T is a model B of T' such
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that B|s = {2, and a query over T is an existential sentence over the
signature of T' (noting that if I does not have existential quantifiers, there
is a standard trick for defining new sentences that are I-sentences bound
by existential quantifiers). Defining databases morphisms is optional.

Now we have everything needed for our database institution. Its sig-
natures are schemas over I as defined above, with theory morphisms as
signature morphisms; the models of a schema T are the database states
over T'; the sentences for a schema, T' are queries over 1'; and satisfaction
of a query g by a model B over T holds iff there is an valid instantiation
of ¢ in B, i.e., an assignment & of values in B to the existential variables
in ¢ such that 8(f) = B in I. It is not difficult to check that this setup
forms an institution, denoted DB(I, O, £2). It is natural to have logic for
queries, e.g., a conjunction of queries should satisfy f = B and f' = B
iff f&f' = B, in which case conjunction is associative, commutative, and
idempotent; similar things can be done for the other connectives, includ-
ing existential quantification in case it is missing from I, although this
requires further assumptions on I. Thus, database systems in a sense are
logics; see [40] for discussion of the close connection between institutions
and logics. Some other ways to institutionalize databases are discussed
below.

Although the most common sentences for ontologies and schemas are
Horn clauses, it is also interesting to consider the alternative of order
sorted algebra for I, since it handles the hierarchical classification of el-
ements in a quite different way from Horn clause logic, where class sub-
sumption may be encoded as implications between unary predicates that
represent classes, and may also be encoded using a binary is-a relation.
In order sorted algebra, signatures have a set of types, called sorts, on
which a partial subsort order is defined, and models are required to re-
spect that ordering, in that if s < s’ then 2, C 2y thus classification
and class subsumption are in signatures rather than theories, an approach
which has been found more convenient for many purposes. In addition,
order sorted algebra allows overloaded operation symbols, and handles
their subtle interactions with subsorting.

It is even more interesting to consider the has-a or part-of relation,
because it is so often problematic in real ontologies. Formal mereology
is a branch of philosophy that tries to axiomatize this relation; it is a
controversial area, with little agreement on what the axioms should be,
or even what intuitions should be axiomatized, which is symptomatic of
the difficulties with this relation. In order sorted algebra, as in algebra
generally, elements are represented as terms, which are built from con-
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stants and other terms, using certain operations called constructors.
For example, if ¢ is a binary constructor and if a = ¢(b1,52), then we
could say that bl and b2 are “parts of” a, but the formula is actually a
more precise and informative statement that avoids the problems of the
part-of relation, by explicitly saying how the parts are put together to
form the whole. (Of course, not all real world constituent hierarchies can
be formalized using constructors, but it seems those that typically arise in
ontologies can be.) Moreover, order sorted algebra also nicely axiomatizes
the somewhat subtle relations between subsumption and constituency. To
me, this approach is more useful than those based on mereology; see [27]
for the formal details of order sorted algebra.

For a simple example, let O be an order sorted theory having 6
sorts, for naturals, reals, booleans, and strings of characters, abbrevi-
ated respectively N, R, B, C. Let cs-course, math-course, req-course,
opt-course be unary predicates in O, and let

req-course(X) implies cs-course(X)
math-course(X) implies opt-course(X)

be constraints in O. Finally, let O classify items with the axioms

math-course(329)
req-course(130)
opt-course(171)

Next, define a relational schema T having three relations, R1, R2, R3 as
Boolean-valued functions, with respectively 3, 2, 3 fields, with arities (i.e.,
argument sorts) (N, C, R), (N, C), (N, N, R), respectively. Intuitively, the
fields of R1 might be for student Id, student name, and GPA; the fields
of R2 for course Id and course name; and the fields of R3 for course Id,
student Id, and grade. Then a database state over this schema can be
represented as three sets of tuples, where each tuple is a ground instance
of the corresponding relation; e.g., R2 might be true of the 2-tuples (329,
Category Theory), (171, User Interface Design), (130, Programming Lan-
guage Concepts), and no others.

It is common for databases to include constraints in their schemas.
These may be key constraints, which assert that distinct tuples in a rela-
tion must have distinct values in certain of their fields, and data integrity
constraints, which assert that the values in certain fields must have cer-
tain properties. A convenient way to present such assertions is to use
names assigned to the fields of relations as “selectors,” or projection op-
erations from tuples to data values; more formally, these are inverses to
the corresponding constructor operations. For example, R2 might have
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selectors course-no: R2 — (25 and course-title: R2 — (2¢. Then
the following is a key constraint

course-no(r;) = course-no(r}) implies 1 = r}

where 71,7 range over the rows (i.e., tuples) of R1; however, this should
be considered an abbreviation for the conditional equational form

Y =Y'if RI(X,Y) = true & RI(X",)Y') = true & X = X'
where X, X' range over course Ids, and Y,Y’ range over course names.
The following is a data integrity constraint

0 < course-no(R1(X,Y)) < 400
which is again an abbreviation, for
0 < X =true & X <400 = true if R1(X,Y) = true.

Key constraints support a weak form of unique identity for entities, a
topic that has been much discussed in philosophical logic under various
names.

A query (i.e., sentence) for this institution is an expression of the
form (3X1, ..., X;,)p, where ¢ is a Boolean combination of Boolean-valued
terms over T and (2, and such a query is satisfied by a database B iff
there are values 1, ...,z, for Xi,..., X, such that p(X; + z1,...,X,,
Zn) = true. For example,

(3X1, Xo, X3, X4) R1(X1, Xo, X3) & R3(329, X1, X4) & X3 > 3.6

asks whether there is a student taking course 329 who has a GPA greater
than 3.6 (strictly speaking, we should give sorts for X7, ..., X,,).

Schema heteromorphisms can be defined similarly to the Grothen-
dieck construction, as pairs (@, f): (S,T) — (S',T7") where &: Sign —
Sign’ is a functor and f: &;(f) — S’ is a schema morphism. These
compose in the natural way, and we get a category of schemas with het-
eromorphisms over an arbitrary institution I. With a little more work, this
can be made the category of signatures of an institution of heterogeneous
databases as models with queries as sentences, over I.

The above treatment of queries is less than satisfactory because we
only know whether or not a query has an answer, but not what the answer
is. A more sophisticated approach indexes queries by the type of their
answer, i.e., by the string of sorts of their existential quantifiers, and then
allows the “truth values” of satisfaction to be the answers to the queries;
such an application of institutions to databases was first suggested by
Brian Mayoh [37], and requires the generalized V-institutions of [23].
However generalized institutions can be avoided by defining an institution
DB'(I, 0, 2) like DB(I, O, 2) except that sentences have the form g
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0, and are satisfied by B iff 6(q) satisfies B in DB(I, O, 2) with the
substitution #; here 6 serves as the answer. It is natural to define 0&6' -
B iff # - B and ¢ F B, to extend this to finite sets of substitutions,
perhaps even using set notation; similar things can be done for other
logical connectives. A more sophisticated institutionalization of database
systems is given in Appendix C.

On the other hand, a more naive approach is to ignore queries, as in
[1], which applies institutions to databases by translating “institution”
to “schema translation framework”, “model” to “database”, “sentence”
to “constraint”, and “theory” to “schema’”; queries are not considered,
nor are heteromorphisms, although integration is nicely conceptualized
as a co-relation over a shared part arising from an initial signature, with
colimit as the ideal result if it is defined.

C A Novel Database Institution

This section illustrates the power of the triadicity of satisfaction in in-
stitutions, by giving a novel database formalization; however, for many
practical purposes, the institutionalizations in Appendix B may be better.
We modify the example of Appendix B by letting I be many sorted Horn
clause logic, so that relation symbols really denote relations, represented
in models by appropriate sets of tuples, rather than being functions. Then
we let morphisms of database states be 3-tuples of inclusions of the three
sets of tuples. However, the twist is that we take these to be the objects
and morphisms of our category of signatures; it is confusing to call these
objects “signatures,” but this is precisely why this example can be con-
sidered “novel”. Because we will let sentences be queries, and models be
answers, the term “context” might be a better than “signature,” although
it is less suggestive of the original examples from logic.

Now fix a set X1, Xo, ..., X, of variable symbols, each having a fixed
sort from among those of {2, and let the queries in Sen(X) be formulae
of the form P, &...&P,, where each P; is of the form R(t1,...,%,,) for some
relation R in the schema, where each ?; is either some X; or else some
constant from (2, and where (1, ..., t,,) has the arity required by R. Since
Sen(X') does not actually depend on ¥, we may as well write just Sen
for this set of formulae, and given i : X — X', we can let Sen(i) be
the identity on Sen. These queries should be thought of as implicitly
existentially quantified by the variables X1, ..., X,,. We could certainly
consider more complex queries, but these are sufficient for our illustrative
purpose.
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The models in Mod(X) are possible answers to queries over X, by
which we mean sets of tuples (dy, ..., d,) where each d; is an element of {2
having the same sort as X;, where each tuple has an associated “witness”
(r1,...,7p), where each r; is a tuple in the set of instances belonging to
X, Given an inclusion i: X — X' let Mod(i): Mod(X') — Mod(X) be
the map that sends M’ to the set of pairs ((d1,...,dy), (1,...,7p)) in M’
such that each r; is among the instances belonging to Y. It is not hard
to check that this is a functor, which restricts M’ to X. Finally, given a
query (@ and an answer A over a state X, let A =5 @ hold iff for each
((di, ...y dp), (11, ...,7p)) € A, substituting d; for X; in P; yields the tuple
7, for each j. We can now check the satisfaction condition.

Of course, it is also desirable to allow different sets of variables, but
this can be accomplished with a Grothendieck construction; and another
Grothendieck construction gives a database institution that allows queries
over arbitrary relational schemas as well as over arbitrary finite variable
sets. These flattenings are like those done previously for signatures, but
they provide suggestive illustrations of the potential of institutions for
situating judgements (such as satisfaction) within the contexts where they
are made, in a way that is quite different from that of the usual examples
of logics as institutions.

A somewhat more sophisticated version packages the schema with the
database to form signatures, so that the Sen functor will vary with the
schema component. Another extension is to enrich the query language
with predicates and functions form O. Ideally this would give users a
familiar and convenient vocabulary that abstracts away from details of
database structure, with which users may not be familiar. The query
language could even be GUI-based, e.g., as an extension of our SCIA tool
[22], which provides a GUI to help users construct schema mappings, and
which is currently being extended to ontology mappings.
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