PTIME Queries Revisited

Alan Nash!, Jeff Remmel?, and Victor Vianu®

! Mathematics and CSE Departments, UC San Diego, La Jolla, CA 92093, USA
2 Mathematics Department, UC San Diego, La Jolla, CA 92093, USA
3 CSE Department, UC San Diego, La Jolla, CA 92093, USA

Abstract. The existence of a language expressing precisely the PTIME
queries on arbitrary structures remains the central open problem in the
theory of database query languages. As it turns out, two variants of
this question have been formulated. Surprisingly, despite the importance
of the problem, the relationship between these variants has not been
systematically explored. A first contribution of the present paper is to
revisit the basic definitions and clarify the connection between these two
variants. We then investigate two relaxations to the original problem
that appear as tempting alternatives in the absence of a language for the
PTIME queries. The first consists in trying to express the PTIME queries
using a richer language that can also express queries beyond PTIME, but
for which there exists a query processor evaluating all PTIME queries
in PTIME. The second approach, studied by many researchers, is to
focus on PTIME properties on restricted sets of graphs. Our results are
mostly negative, and point out limitations to both approaches. Finally,
we turn to a natural class of languages that we call finitely generated,
whose syntax is obtained by applying a fixed set of constructors to a
given set of building blocks. We identify a broad class of such languages
that cannot express all the PTIME queries.

1 Introduction

The existence of a language expressing precisely the PTIME queries on arbitrary
structures remains the most tantalizing open problem in the theory of database
query languages. This question was first raised by Chandra and Harel [3] and
later reformulated by Gurevich [9] who also stated the conjecture (now widely
accepted) that no such language exists.

To reason about the existence of a language for the PTIME queries, one has
to first come up with a very broad definition of query language (or logic), then
define what it means for a logic to express the PTIME queries. It turns out
that two such definitions have been proposed. To our knowledge, despite the
importance of the problem, the relationship between these variants has not been
systematically explored. We show that these two variants are different and may
conceivably have distinct answers.

It is generally accepted that a query language specifies queries using expres-
sions consisting of strings of symbols over some alphabet. We call these the

programs of the language. A first requirement is that a language should have ef-
fective syntax, meaning that its syntactically correct programs can be effectively
enumerated. The semantics of a language L associates to each program in L a
particular query. For simplicity, and since arbitrary structures can be efficiently
represented as graphs [9], we focus in this paper on queries that are properties of
graphs. Thus, we consider languages whose semantics associates to each program
in the language a property of graphs. We say that L ezpresses the set of PTIME
properties of graphs, denoted by P, if the set of graph properties associated to
programs in L by its semantics is precisely Pg.

It is clear that simply having a language L expressing P is not satisfactory.
At a minimum, we would like to be able to effectively and uniformly evaluate
the programs in L. In other words, we would like to have a Turing machine F
that, given as input a program p in L and a graph G, decides whether G sat-
isfies the property defined by p. We call E an evaluator for L. Intuitively, an
evaluator corresponds to a query processor for L. If such an evaluator exists,
we call the language L computable. Since we are targeting the PTIME proper-
ties, we would further like E to uniformly evaluate every fixed program p in L
in polynomial-time with respect to G. If such E exists, we call L P-bounded.
The first formulation of the problem of the existence of a language for PTIME,
by Chandra and Harel [3], asks whether there exists a P-bounded language ex-
pressing the PTIME queries. Most other definitions (e.g. [9,5]) further require
that an explicit polynomial bound for the number of steps of each program in
L as evaluated by the evaluator be effectively computable. In this case, we call
L effectively P-bounded. The above notions extend naturally to properties of
graphs: we call a set of PTIME properties of graphs computable, P-bounded, or
effectively P-bounded iff there exists such a language expressing it.

Our first set of results shows that these two notions are distinct. In terms of
languages, we show that:

(i) there exists a computable language for P that is not P-bounded and
(ii) if P is P-bounded, then there exists a P-bounded language for P that is
not effectively P-bounded.

We also show that (i) and (ii) above hold for any computable subset of P that
includes all finite properties.

It is legitimate to wonder whether P-bounded languages that are not effec-
tively P-bounded are mere curiosities that can be avoided: given a P-bounded
language, is it always possible to find an effectively P-bounded language for the
same set of properties? We answer this question (and the corresponding one for
computable vs. P-bounded) in the negative by showing the following;:

(iii) there exist sets of PTIME graph properties that are computable, but not
P-bounded and

(iv) there exist sets of PTIME graph properties that are P-bounded, but not
effectively P-bounded.

In the special case of Pg, it remains open whether the existence of a P-bounded
language for P implies the existence of an effectively P-bounded one.

In the absence of a language for the PTIME properties, various relaxations
to the problem appear to offer tempting alternatives. We examine two natural
approaches. The first consists in trying to capture Pg using a richer language
allowing to express properties that likely lie beyond PTIME. Suppose we have
a language L that expresses all of Pg, and possibly more. For example, such
a language is Existential Second-Order logic (3SO), that is known to express
the NP properties [6]. Assuming that P # NP, some of the formulas in 3SO
express polynomial-time properties, while others do not. Furthermore, under
the same assumption, it is easily shown, using Trakhtenbrot’s theorem, that it
is undecidable whether a given formula expresses a PTIME property. However,
it is conceivable that 3SO has an evaluator E that happens to evaluate every
polynomial-time property in polynomial time. This would mean that a user could
not only express all polynomial-time properties using 3SO, but such properties
could actually be evaluated uniformly in polynomial time. Short of an actual
language for Pg, this would seem like a good alternative. Unfortunately, this
solution is not a real alternative to a language for P. Indeed, we show that, if
3SO (or any language that can express all of P¢;) has an evaluator that computes
all P¢ properties in polynomial time, then there exists a P-bounded language
expressing ezactly Pq. Thus, the alternative formulation is no easier than the
original problem of finding a language for Pg.

The second alternative to finding a language for P is to focus on interesting
subsets of graphs rather than all graphs. For example, a beautiful result by
Grohe shows that the PTIME properties of planar graphs can be expressed by
a P-bounded language, specifically FO+LFP augmented with counting [8]. Such
results raise the hope that the PTIME properties on larger and larger subsets of
graphs can be captured and perhaps that, once a certain threshold is overcome,
this might be extended to any set of PTIME properties. However, we prove a
result that suggests there is no such threshold. It states that, for every PTIME-
recognizable class G of graphs with infinite complement there exists a set of
PTIME properties of graphs that includes all the PTIME properties of graphs
in G and for which there is a computable, yet not P-bounded language. We
also show an analogous result for effectively P-bounded languages. Of course,
this does not invalidate the program of finding increasingly large sets of graphs
whose PTIME properties have an (effectively) P-bounded language.

The notion of language used above is extremely general and may allow for
very artificial constructs, not acceptable in real query languages. Given the dif-
ficulty in settling the question of the existence of a language for the PTIME
queries in this general setting, it is tempting to wonder if additional criteria of
naturalness may render the problem easier. Motivated by this, we consider here
finitely generated languages (FGLs). These capture a wide array of languages
in which queries are defined from finitely many “building blocks” using a fixed
finite set of constructors. The classical example of an FGL is FO (the construc-
tors implement 3,V,V, A, and —). However, our notion of FGL is much more
powerful, since it allows for the individual building blocks and constructors to
perform arbitrary PTIME computations. In fact, building blocks are formalized

as polynomial-time properties, and constructors as polynomial-time Turing ma-
chines with oracle calls to other constructors or building blocks. The restricted
structure of FGLs immediately removes some of the issues discussed above: all
FGLs are effectively P-bounded. One might naturally wonder if the additional
structure of FGLs allows to prove that there is no such language expressing ex-
actly the PTIME properties of arbitrary graphs. This question remains open.
However, we exhibit a broad class of FGLs, called Set FGLs (SFGLs), for which
this can be proven. Informally, SFGLs are FGLs restricted in the way the con-
structors and building blocks in a program exchange information. Calls to or-
acles are made on hereditarily finite sets. The information exchanged does not
break automorphisms of the input and is subject to restrictions on size and
depth of nesting. Hereditarily finite sets can easily represent complex values
used in many concrete database query languages [1]. SFGLs capture a natural
programming paradigm, shared by many languages. One way to view SFGL’s
is as a generalization of FO with finitely many polynomially-computable Lind-
strom quantifiers (see [5]). It is known that fixpoint logics with finitely many
polynomially-computable Lindstrém quantifiers cannot express P (see [4, 5]).

The paper is organized as follows. In Section 2 we formalize the notions of
language, evaluator, and (effectively) P-bounded language and property. Section
3 presents our results comparing these notions. In Section 4 we discuss the two
alternatives to obtaining a language for the PTIME properties: considering richer
languages, and focusing on restricted sets of graphs. Finally, Section 5 presents
the results on SFGLs.

2 Preliminaries

In this section we review some of the basic concepts related to query languages
and their complexity, and introduce notation used throughout the paper.

We assume familiarity with Turing machines. We also assume a fixed effective
enumeration of all Turing machines and denote by M, the e-th Turing machine.
We also assume knowledge of usual query languages such as first-order logic
(FO), and FO extended with a least fixpoint operator, denoted FO+LFP (e.g.,
see [1,5]). For a positive integer k, FO* denotes the FO sentences using at most
k variables, and similarly for (FO+LFP)*.

Properties and their complexity. For simplicity, we focus here on PTIME prop-
erties rather than output-producing queries. A relational signature is a finite
set of relation symbols together with associated arities. A finite structure over
a given signature consists of a finite domain D and interpretations of the rela-
tion symbols in the signature as finite relations of appropriate arities over D.
A property of structures over some signature is a set of finite structures over
that signature, closed under isomorphism. We denote properties by @, R, S...
and sets of properties by Q, R, S.... Since structures over an arbitrary signature
can be efficiently encoded as graphs (e.g., see [9, 5]), we will only consider in the
sequel the relational signature consisting of a single binary relation representing

the edges of a directed graph whose nodes are the elements of the domain. We
denote this signature by 7, and the set of all finite graphs (finite structures over
7) by G.

The complexity of a property is defined using classical complexity classes. To
do this, we need to talk about the resources used by a Turing Machine “imple-
menting” an algorithm for checking that a structure has the desired property.
Since Turing Machines do not take structures as inputs, we need to use instead
encodings of structures as strings. We use the following simple encoding for struc-
tures over signature . Suppose the structure represents a graph G whose set of
nodes is D of size n. Let A be a one-to-one mapping from D onto {1,...,n}, and
let xg : {1,...,n}* = {0,1} be the characteristic function of the set of edges
in G via A (so xg(A(u), A(v)) = 1 iff (u,v) is an edge). The encoding of G is a
string over alphabet {0, 1} consisting of all (i, j) listed in lexicographic order
of the pairs (i,7). This encoding clearly depends on the labeling A and is de-
noted by ency(G). The length of ency(G) is denoted by |ency(G)|, and note that
lency(G)| = n?, where n is the number of nodes in the graph. As a shorthand,
we also denote |ency(G)| by |G|.

Let Q be a property of graphs. We say that a Turing machine M decides Q
iff for every graph G and labeling A of its nodes, M halts on input ency(G) and
accepts iff G has property Q. Note that there is no requirement on inputs that
are not correct encodings of graphs. Also observe that, since Q is closed under
isomorphism, acceptance by M must be independent of the particular labeling
A. That is, for all labellings A1, A2, M accepts ency, (G) iff M accepts ency, (G).

We can now relate properties and complexity. We say that a property Q of
graphs is a PTIME property iff there exists a Turing machine M deciding the
property, and k € N, such that M halts on input ency(G) in at most |ency(G)[*
steps. We denote the set of PTIME properties of graphs by Pg.

Languages and evaluators. To reason about the existence of a language for the
PTIME properties, we need a very broad definition of query language (or logic).
It is generally accepted that a query language specifies queries using expressions
consisting of strings of symbols over some alphabet, which we call its programs.
Moreover, the language should have effective syntax, meaning that its syntac-
tically correct programs can be effectively enumerated. As a useful side effect,
this allows us to ignore the specific syntax of a language, and simply refer to its
programs by their index in the enumeration (1st program, 2nd program, etc).
Since we will only be interested in data complexity and not query complexity,
the cost of the translation between an index and the corresponding program is
irrelevant. Thus, we can simply assume that the programs of the language are
the indexes themselves, consisting of all strings in {0, 1}*. Whenever needed, we
interpret such strings as positive natural numbers as follows: the string w corre-
sponds to the natural number whose binary representation is 1w (this eliminates
the problem of leading zeros and renders the mapping bijective). We denote the
set of all such strings in {0,1}* by &.

Given that the syntax of languages consists of the expressions in £ and can
be assumed fixed, we can define a language by the semantics associated to the

expressions in £. Thus, a language L for graph properties is a mapping associ-
ating to each expression e € £ a property L(e) of graphs. We write [L] for the
set of properties defined by L. Of course, two different languages may express
the same set of properties.

Observe that the semantics of a language is an abstract mapping, independent
of any notion of computability or complexity. To capture the latter, we consider
the notion of evaluator of a language. Intuitively, an evaluator corresponds to
a query processor: it takes as input a program in the language together with a
graph, and evaluates the program on the graph. More formally, an evaluator for
a language L is a Turing machine E that takes as input a program e and the
encoding of a graph G and evaluates e on G. To make this more precise, let us
first fix a PTIME-computable pairing function (—, —) for N, that is, a bijection
(—,—) : N> - N such that both (—,—) and m,my satisfying 71 ((z,y)) = =
and mo({z,y)) = y are PTIME computable (e.g., such a pairing function is
provided in [10]). The tape alphabet of E is {0,1} and e and G are encoded as
the binary representation of the integer (e, ency(G)) for some labeling A of the
nodes of G. On any input of the form (e, ency(G)), E halts and outputs 1 if G
has property L(e) and 0 otherwise. Note that a given language can have many
different evaluators.

Languages and complezity. What does it mean to have a language for the PTIME
properties? We consider several notions that relate languages to properties of a
given complexity, most of which have been proposed before. One of the contri-
butions of the paper is to clarify the relationship between the different notions
in a systematic way.

Consider a language L, defining a set of properties [L]. A first attempt at
relating L to the polynomial-time properties is to look at the connection between
[L] and Pg. We say that L expresses P iff [L] =P¢. However, it is clear that this
alone is not satisfactory. At a minimum, we would like to be able to effectively
evaluate the queries in L. In other words, we would like to have, at the very
least, an evaluator for L. If such is the case, we call the language L computable.
We would also like to actually evaluate the queries of L in polynomial time.
This is formalized as follows. We say that L has a P-bounded evaluator if it has
some evaluator E that, for every fized program e, runs in polynomial time on
input (e, ency(G)). The fact that we fix e means that our definition captures
data rather than query complexity. Of course, a language that has a P-bounded
evaluator only expresses polynomial-time properties.

Next, suppose we are given a P-bounded evaluator E for a language. The
evaluator runs in polynomial time, but we do not necessarily know ahead of
time the bounding polynomial. However, for many specific languages, such as
FO+LFP, we are able to infer an explicit polynomial bound from the syntax.
This is a nice property to have. We call an evaluator E effectively P-bounded
if there exists a computable total mapping B : £ — N that produces, for every
program e, a number k such that E runs in time |G|* on input (e, ency(G)).

We say that a language is (effectively) P-bounded if it has an (effectively)
P-bounded evaluator. Similarly, a set of properties P is (effectively) P-bounded
if there exists some (effectively) P-bounded language defining P.

In considering the existence of a language L for the polynomial-time proper-
ties, two alternative requirements for such a language have been proposed. (1)
requires L to express precisely P, and have a P-bounded evaluator [3]. (2) addi-
tionally requires L to have an effectively P-bounded evaluator [9, 5]. That is, (1)
requires P to be P-bounded and (2) requires P¢ to be effectively P-bounded.

3 Computable, P-bounded, and Effectively P-bounded
Languages

What is the connection between the notions of computable, P-bounded, and
effectively P-bounded language? We consider this question next. As we shall
see, these notions are generally distinct. This says that there are different flavors
of the question of the existence of a language for PTIME and that the answers
may be distinct for different flavors.

Obviously, every effectively P-bounded language is P-bounded and every
P-bounded language is computable. Consider now the converse inclusions. Of
course, a computable language L may express properties that are not in Pg, in
which case it cannot be P-bounded. However, suppose L expresses only proper-
ties in Pg. Is it the case that L must also be P-bounded? We next show this is
not the case. In fact, we exhibit a computable language expressing precisely the
properties in Pg, that has no P-bounded evaluator.

Before we state the result, note that it is easy to find a computable language
for Pg. We recall such a language, defined in slightly different form by Andreas
Blass and Yuri Gurevich [9], that we denote Ly. The syntax of Ly consists of all
FO+LFP sentences ¢ over signature v U {<}. Recall that an FO+LFP sentence
 over this signature is order-invariant on a graph H iff its value on H and an
ordering < of the nodes of H is independent of the choice of <. Furthermore, ¢
is order invariant iff it is order invariant on all graphs. The semantics of Ly is
defined next. Although we are considering sentences ¢ using < in addition to 7,
we define Ly (p) as a property of graphs alone, as follows. Let ¢ be a sentence
and G a graph. If ¢ (viewed as a usual FO+LFP sentence) is order-invariant for
all graphs H of size at most that of G, then G has property Ly () iff ¢ evaluated
as an FO+LFP sentence on G with some arbitrarily chosen ordering < is true.
Otherwise, G does not have property Ly (). Note that, if ¢ is order invariant
on all graphs, then Ly (¢) defines the same property as ¢, so is a property in
P¢. If ¢ is not order invariant, then Ly () contains only finitely many graphs,
so it is again in Pg. Finally, since order-invariant FO+LFP sentences express all
P¢ properties [11,12], it follows that Ly expresses precisely the P properties.
Clearly, Ly has an evaluator, so it is a computable language for Ps. That is,

Remark 1. Pg is computable.

Remark 2. Note that the language Ly is coNP-bounded. One might naturally
wonder if it can be proven that Ly has no P-bounded evaluator. Clearly, such
a result must be conditional upon assumptions such as P # NP. However, we
are not aware of any proof that Ly has no P-bounded evaluator even under
such complexity-theoretic assumptions. Thus, Ly remains, for the time being, a
candidate language for P¢.

As an intriguing aside, we mention a connection to another problem that
appears to be similarly open:

(1) Input: A non-deterministic Turing machine M and a string 1.
Question: Does M accept € (the empty string) in at most n steps?

It can be shown that Ly is P-bounded iff there exists some algorithm solving
(1) in TIME(n/ (™)) for some arbitrary function f. In other words, the problem
can be solved by a (uniform) algorithm that is polynomial in n for fixed M (note
that the non-uniform version of the problem is trivial: for each fixed M there
exists an algorithm that is polynomial in n and solves (})). Interestingly, the
(non)-existence of such an algorithm for () appears to be open, and does not
immediately follow from usual complexity-theoretic assumptions.

Theorem 1. Every computable set of properties P that includes all finite prop-
erties has a computable language L which is not P-bounded.

Proof. Since P is computable, it has a computable language L¢; we use Lo to
build L. The semantics of L is defined as follows. We view the expressions in £ as
natural numbers. Let L(2n+ 1) = Lc(n). Next, let L(2n) be defined as follows.
Let G be a graph and G the complete graph with the same nodes as G. Run
the n-th Turing machine M,, on input (2n, ency(G)) for some arbitrary A (note
that the encoding of G is independent of). If M,, does not stop in 2|61 steps,
then G ¢ L(2n). If |G| is the smallest size for which M,, stops in 2/¢! steps, then
G € L(2n) iff M,, rejects G. If |G| is not the smallest such size, then G & L(2n).
Note that L(2n) contains only finitely many graphs, so is in Pg.

Next, suppose L has a P-bounded evaluator E, and suppose E is M,. Since
E is P-bounded, M, runs in polynomial time with respect to |G| on every input
of the form (f,ency(G)) for fixed f. In particular, M, runs in polynomial time
with respect to |G| on input (2e,ency(G)). It follows that there exists some G
such that M, stops in at most 2/“! steps. By definition of L(2¢), the smallest
such G has property L(2e) iff M, rejects. This contradicts the assumption that
FE is an evaluator for L.

Since Pg is computable,
Corollary 1. Pg has a computable language that is not P-bounded.

We next consider the connection between the notions of P-bounded language
and effectively P-bounded language.

Theorem 2. Every P-bounded set of properties P that includes all finite prop-
erties has a P-bounded language L which is not effectively P-bounded.

Proof. Let K be some P-bounded language defining P. We define a language L
as follows. First, L(2n+ 1) = K(n). This ensures that L expresses all properties
expressed by K. Next, we define L(2n) as follows. Suppose n = (e, b). Intuitively,
we define L(2n) so that M, cannot be an evaluator for L with bounding function
M. To this end, let G be a graph. To determine if G € L(2n), proceed as follows.
First, run M}, on input 2n for |G| steps. If M), does not halt in < |G| steps, then
G ¢ L(2n). Otherwise, suppose that |G| = t2. Then if M,(2n) halts in < (¢ —1)?
steps, then G ¢ L(2n). Finally, if M;(2n) halts in s steps where (t—1)? < s < #2,
then let k be the output of M;(2n). Next, run M, on input (2n,ency(G)) for
|G|* steps. If M, halts, then G € L(2n) iff M, rejects. Otherwise, G ¢ L(2n).
Note that L(2n) is a finite property, so it is already expressed by K. Clearly, L
expresses precisely P and is P-bounded.

Now suppose L is effectively P-bounded. Then L has an evaluator F with
bounding function B. Let £ = M, and B = M. Let n = (e, b) and consider
L(2n). Since M, halts on input 2n, there exists a graph G such that M, halts
on 2n in at most |G| steps. Consider the smallest such G. Let k = M;(2n).
Since M, computes the bounding function for M., it follows that M, stops on
input (2n, ency(G)) in at most |G|* steps. However, by the definition of L(2n),
G € L(2n) iff M, rejects on input (2n, ency(G)). This contradicts the assumption
that M, is an evaluator for L.

Ezample 1. Consider the fixpoint queries defined by the FO+LFP sentences.
The language FO+LFP is effectively P-bounded, and the properties it defines
includes all finite properties. By Theorem 2, there exists some other language
defining the fixpoint queries, that is P-bounded but not effectively P-bounded.

Corollary 2. If Pg is P-bounded,* then it has a P-bounded language that is not
effectively P-bounded.

Remark 3. Theorem 2 states the existence of P-bounded languages that are not
effectively P-bounded, for all P-bounded sets of properties that include the fi-
nite ones. A natural question is whether there are P-bounded sets of properties
that do not have any effectively P-bounded language. The answer is affirma-
tive: Theorem 5 in the next section shows the existence of many such classes of
properties.

Clearly, it would be of interest to know if the existence of a P-bounded lan-
guage expressing P implies the existence of an effectively P-bounded one. This
remains open.

4 PTIME from Above and from Below

In the absence of a language expressing precisely the polynomial-time queries,
various relaxations to the problem of capturing Pg can be useful. We describe
here two natural approaches. The first consists in trying to capture the PTIME

4 Recall that it is not known whether P¢ is P-bounded.

queries using a richer language allowing to express queries possibly not in PTIME,
but that has an evaluator that evaluates every PTIME query in PTIME. The
second approach, studied by many researchers, is to focus on PTIME proper-
ties on restricted sets of graphs. Our results are mostly negative and point out
limitations to both approaches.

4.1 P-Faithful Evaluators

Suppose we have a language L that expresses all of Pg and possibly more. For
example, such a language is Existential Second-Order logic (3SO), that is known
to express the NP properties [6]. Assuming that P # NP, some of the formulas
in 9SO express polynomial-time properties, while others do not. Furthermore,
under the same assumption, it is easily shown using Trakhtenbrot’s theorem that
it is undecidable whether a given formula expresses a PTIME property. However,
it is conceivable that 3SO has an evaluator E that happens to evaluate every
polynomial-time property in polynomial time. This means that a user can not
only express all polynomial-time properties using 3SO, but such properties can
actually be evaluated in polynomial time. Short of an actual language for P,
this would seem like a tempting alternative.

Unfortunately, this solution is not a real alternative to a language for Pg.
Indeed, we show that, if 3SO (or any language that can express all of P) has an
evaluator that computes all P properties in polynomial time, then there exists
a P-bounded language expressing ezactly Pg. Thus, the alternative formulation
is no easier than the original problem of finding a language for Pg.

We first formalize the above notions.

Definition 1. Let L be a language expressing all properties in Pg. An evaluator
E for L is P-faithful iff E((e,ency(G))) runs in polynomial time with respect to
G for every fized e such that L(e) € Pg. Furthermore, E is effectively P-faithful
iff there exists a computable mapping B : £ — N that produces, for every e for
which L(e) € Pg, a number k such that E((e,ency(Q))) runs in time |G|¥.

We can now show the following.

Theorem 3. If there is an (effectively) P-faithful language L for Pg, then there
is an (effectively) P-bounded language K for Pg.

Proof. The syntax of K consists of pairs (e, ¢) where e € £ is interpreted with
the semantics of L and ¢ is in Ly (recall Ly, the computable language expressing
P¢, from Section 3). Suppose L has a P-faithful evaluator Er,, and let Ey be an
evaluator for Ly. Let us define an evaluator Ex for K as follows. Ex on input
(e,) and G does the following. First, start computing Er (e, H) and Ey (p, H)
on all graphs H smaller than G for |G| steps. If in this number of steps Epr (e, H)
and Ey (¢, H) both halt for some H and one accepts while the other rejects, then
reject G (so G does not have property K(e,¢)). Otherwise, run E;, on input
(e, G) and accept iff E;, accepts. Note that, if L(e) and Ly (¢) define different
properties, then K(e,) is finite (and is evaluated in polynomial time by the

evaluator Fk). Otherwise, K is evaluated on input (e,) and G in polynomial
time with respect to G, using the evaluator Ey, applied to e and G, which takes
polynomial time with respect to G because L(e) is in Pg and Ej, is P-faithful.
An analogous argument shows that if Ej, is effectively P-faithful then K is an
effectively P-bounded language for Pg.

4.2 PTIME properties with no (effectively) P-bounded language

A productive alternative approach to the problem of finding a language for
the PTIME queries has been to focus on interesting subsets of graphs rather
than all graphs. We briefly mention two results that provide some insight into
this approach. The results, proven by diagonalization, show that every “well-
behaved” class of graphs can be extended to a class of graphs whose PTIME
properties do not have an (effectively) P-bounded language (we omit the details).

Theorem 4. For every PTIME-recognizable set of graphs Gy with infinite com-
plement there exists a computable set of graph properties H CPg that is not
P-bounded and includes all PTIME properties of Gg.

Theorem 5. For every PTIME-recognizable set of graphs Gy with infinite com-
plement such that its set of PTIME properties is P-bounded, there exists a P-
bounded set of graph properties H CPg that is not effectively P-bounded and
includes all PTIME properties of Gy.

5 Finitely generated languages

In this section we turn to finitely generated languages (FGLs). These capture a
wide array of languages in which queries are defined from finitely many “building
blocks” using a finite set of constructors. The classical example of an FGL is FO.
However, our notion of FGLs is much more powerful.

Since we will be focusing on languages expressing PTIME queries, we require
each of the building blocks and each constructor to be computable in polynomial
time. We formalize this as follows. The syntax of an FGL L is given by all terms
that can be built by using a finite set C' of constant symbols and a finite set F' of
functions symbols with associated finite arities. The semantics of L is as follows:

— to each ¢ € C we associate a property K. (a “building block”) defined by a
polynomial-time Turing machine M, and

— to each f € F of arity k, we associate a polynomial-time Turing machine
My (a “constructor”) with access to k oracles.

The evaluator E for L is defined recursively as follows:

— If t € C, then E on input (¢, ency(G)) runs M, on input ency(G).
— If t = f(t1,...,tx) then E on input (t,ency(G)) runs My on input ency(G)
with oracles E(t1,—),..., E(ty, —).

Clearly, FGLs can be viewed as languages according to our general definition,
since there exists an effectively computable bijection between the terms providing
the syntax of FGLs and the set of strings £ used for arbitrary languages. The
following is immediate from the definition of FGLs.

Remark 4. Every FGL is effectively P-bounded.

One might naturally wonder if the additional structure of FGLs allows to prove
that there is no such language expressing exactly the PTIME properties of
graphs. This question remains open, even for ordered structures. To gain some
intuition into the difficulties involved in settling this question, let us consider
FGLs on ordered structures. Let FO+LFP" consist of FO+LFP sentences us-
ing second-order variables (inductively defined relations) of arity at most r. We
can show the following using an extension of the standard simulation of PTIME
Turing machines on ordered structures by FO+LFP:

Lemma 1. On ordered structures:

(i) Each FGL is included ® in FO+LFP" for some r.
(ii) For every r, FO+LFP" is included in some FGL.

It is known that on ordered structures, (a) if FO+LFP" = PTIME for some r
then PTIME # PSPACE, and (b) if FO+LFP” # PTIME for some r > 1 then
LOGSPACE # PTIME [5, 7]. This together with Lemma 1 implies the following:

Theorem 6. (i) If there exists an FGL expressing PTIME on ordered struc-
tures then PTIME # PSPACE.

(ii) If no FGL expresses PTIME on ordered structures then LOGSPACE #
PTIME.

Theorem 6 shows that settling the question of whether an FGL can express
PTIME on ordered structures would resolve long-standing open problems in
complexity theory. The question remains open for arbitrary structures. This leads
us to consider a restriction of FGLs for which this question can be settled. We
introduce set FGLs (SFGLs), which are FGLs that operate on hereditarily finite
sets under some restrictions. Before we do this, we introduce some terminology
related to sets.

Sets. Given z and y, the pairing of z and y is {z,y} and the union of z and y
is x Uy. For any finite set A, the set of hereditarily finite sets over A, HF(A), is
the smallest set containing all elements in A (atoms), the empty set, and closed
under the operations of pairing and binary union. Consider z € HF(A). The
transitive closure of z, tc(x), is the smallest set y satisfying z C y and Yu,v(u €
vEyYy —u€y). We write |z| for [tc(z)|. We set atoms(z) := tc(z) N A and say
that z is atomless if atoms(z) = (). We can think of = as a directed acyclic graph
with |tc(z)| + 1 nodes. Given an order of the atoms A, we can z as a string of

5 Inclusion refers to the sets of properties expressed by each language.

length ||z]|?. The rank of an atom is 0, the rank of the empty set is 0, and the
rank of any other set z, rank(z), is max(1 + rank(y) : y € x). We encode the
ordered pair (x,y) in the standard way as {{z}, {z,y}} and we encode tuples
inductively by (z,y,z) = ({(z,y),2). As an aside, note that hereditarily finite
sets can represent the complex values common in databases, obtained by nested
application of set and tuple constructors (e.g., see [1]).

Every permutation o of A induces an automorphism of HF (A) (which we also
call) in the obvious way. We say that S C A A-supports x if every permutation
o of A which fixes S pointwise fixes . We set supp 4(z) := S where S C A is
the smallest set S which A-supports z if there is such S satisfying |S| < |A|/2.
Otherwise, we set supp 4(x) := A. It is not obvious, but supp 4 (z) is well-defined.
We set supp () := SUPD,goms () (¥)- Notice that supp(z) = supp 4 (z) Natoms(z).

We say that =,y € HF(A) are isomorphic, z = y, if there is a bijection
o : atoms(z) — atoms(y) such that o(z) = y.

A set FGLs (SFGL) is an FGL for which all inputs are (encodings of) sets
x € HF(atoms(z)) and for which there is a number m and a function g such
that for each term ¢ = f(ty,...,t), every input ¢ to an oracle call made by the
constructor My in the evaluation of ¢ on input z satisfies:

1. atoms(q) C atoms(z)
2. |q| € O(atoms(z)™), and
3. rank(q) < g(t,rank(z)).

In addition, for each oracle ¢;, the set Qi(z) consisting of all inputs ¢ to calls to
t; made by My in the evaluation of £ on input z is independent of the encoding
of x (so is well defined). This requirement implies that Qi(z) is fixed by all
automorphisms of x, a fact that is critical to the proof of Lemma 2 below.
Finally, we require closure under isomorphism. That is, if = y, then for all
terms ¢, z =t iff y = 1.5

SFGLs are powerful enough to simulate FO with finitely many Lindstrom
quantifiers Q [4,5]. We briefly outline the simulation on a structure 4. We need

— one constant cg for every relation symbol of A,

— function symbols f- of arity 2 and fy, fa of arity 3,

— one function symbol fq of arity 2 for every Lindstrém quantifier @,

— a constant ¢g corresponding to), and

— function symbols f, and f, of arity 2 corresponding to pairing and union.

The term ty providing the simulation mimics the structure of ¢ €eFO(Q): each
logical operator corresponds to a constructor, which makes calls to its oracles on
inputs Aa consisting of 4 extended with a tuple a providing a valuation for a
subset z of the variables. There is one subtlety: the constructors calling oracles
corresponding to sub-formulas must decide what components of a to pass to
each sub-formula, which is determined by its free variables. This information
is specified by an additional oracle defined by a term using ¢y, f,, and f, and

& We write « |= t if ¢ accepts .

accepting precisely one atomless set that encodes the needed information. We
write t5 for the term that accepts precisely the set representing v. We define:

— If ¢ is an atomic formula Rz, then ¢4 := cpg.
— If ¢(2) is a(z) A B(Y), then ty := f(ta,ts, t(z,5)) (similarly for V and —).
— If ¢(2) is Qza(zZ2), then ty :=ty, (ta, t(z))-

To illustrate, consider the simulation of a conjunction «a(Z) A 8(7). On input Aa,
My, first queries its last oracle on atomless sets in their canonical order until
some set s is accepted. If s does not encode appropriate tuples of variables, the
constructor rejects. Otherwise, My, uses and z to obtain from a the tuples on
which to issue queries to ¢, and tg: Notice that in the simulation of FO(Q),
requirements (2) and (3) in the definition of SFGL are satisfied: constructors
call oracles on inputs of the form Aa where a is a tuple of variables whose rank
increases by at most a constant at each call. Thus, (2) and (3) can be viewed as
generalizing this mode of computation.

Theorem 7. There is no SFGL that expresses all PTIME properties of graphs.

Proof. (outline) By Proposition 1 below, there is some b so that we can decide
x =t in time O(|z|?) for z satisfying z = atoms(z) (i.e. a “naked” set). In this
case we can set r = 1 and s = 0 and we have |z| = |atoms(z)|. The result follows
by a straightforward adaptation of the Time Hierarchy theorem [10].

Proposition 1. If every building block of an SFGL runs in time O(nlc) and
every constructor runs in time in time O(n'/) and has arity at most k, then for
every term t, for every fived v, s, m and for every x satisfying

supp(@)| < s, |l € O(Jatoms(z)|™), and rank(z) < r,

we can decide x =t in time O(|atoms(z)|®), where b := m - max(t., ts,4).

Proof. (outline) Assume we have t., tf, k, r, s and m satisfying the hypotheses.
We show by induction on term depth d that the statement holds for each z
satisfying the hypotheses. This is clear for d = 0; for the inductive step we use
the following simulation to evaluate term ¢ = f(¢1,...,%;). We compute as My
does on input z, except for each query ¢ to oracle i we first look for ¢’ isomorphic
to ¢ within an internal table T; (initially empty). If such ¢’ is found, we do not
issue the query and instead use the answer we obtained for ¢'. Otherwise, we
issue the query and add ¢ and the result of the query to the table T;. We can
divide the running time of this simulation into three parts: time spent in (1) the
body of My, (2) table lookup, (3) queries. We set n, = |z|, a, = |atoms(z)],
ry = rank(z), s, = |supp(x)|, sq :=s+b, and ry := g(t,r).
1. The time spent in the body of My is O(n4) C O(ai"’) C O(al).
2. To do the table lookup for a query ¢, we first compute its support, which we
can do in time O(aZn?). To check for isomorphism against ¢’ in the table, we
try all possible bijections o : supp(¢g) — supp(q'). By Lemma 2 we know that

|supp(q)| < s, for large enough z, so this adds a factor of s,!. Finally, also
by Lemma 2 we know that the number of isomorphism classes of ¢ depends
only on r, and s,. Since |z| € O(|atoms(z)|™), we can do the table lookup
in time O(a2t2™) C O(al).

We know from above that the total number of queries we need to make de-
pends on k, ry, and s4, but not on n,. We can show that |atoms(q)| < s,
or |atoms(q)| > a; — s4. If the former holds, |g| is bounded by a con-
stant depending only on 7, and s, If the latter holds we have O(al") =
O(|atoms(q)™). Either way, |¢| € O(]atoms(gq)|™) so we can apply the in-
duction hypothesis using r,; and s, in place of r and s. Therefore, we can
answer all queries in time O(]atoms(q)|®) C O(a®).

Lemma 2. If every constructor runs in time O(nz/m), then for fized s and large
enough z satisfying 1, 2, and 3 of Proposition 1 every query q € QY must satisfy
|supp 4 (q)| < s+ b where A = atoms(z) and therefore also |supp(q)| < s+b. The
number of isomorphism classes in Q. depends only on g(t,r) and s+ b.

Lemma 2 is an extension of Theorem 24 in [2]. The (difficult!) proof is omitted.

References

1.

2.

10.

11.

12.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison Wesley,
1995.

A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of Pure
and Applied Logic, 100:141-187, 1999.

A. Chandra and D. Harel. Structure and complexity of relational queries. J. Com-
put. Syst. Sci., 25(1):99 128, 1982.

A. Dawar and L. Hella. The expressive power of finitely many generalized quanti-
fiers. Inf. Comput., 123(2):172 184, 1995.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.
R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
In R. Karp, editor, Complezity of Computation, pages 43 73. STAM-AMS Proceed-
ings, 1974.

. M. Grohe. The structure of fized-point logics. PhD thesis, Albert-Ludwigs Univer-

sitat Freiburg, 1994.

M. Grohe. Fixed-point logics on planar graphs. In Proc. Symp. on Logic in Com-
puter Science, 1998.

Y. Gurevich. Logic and the challenge of computer science. In E. Borger, editor,
Trends in Theoretical Computer Science, pages 1 57. Computer Science Press,
1988.

J. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Reading, MA: Addison Wesley, 1979.

N. Immerman. Relational queries computable in polynomial time. Information
and Control, 68:86 104, 1986.

M. Y. Vardi. The complexity of relational query languages. In Proc. ACM SIGACT
Symp. on the Theory of Computing, pages 137-146, 1982.

