
PTIME Queries RevisitedAlan Nash1, Je� Remmel2, and Vi
tor Vianu31 Mathemati
s and CSE Departments, UC San Diego, La Jolla, CA 92093, USA2 Mathemati
s Department, UC San Diego, La Jolla, CA 92093, USA3 CSE Department, UC San Diego, La Jolla, CA 92093, USAAbstra
t. The existen
e of a language expressing pre
isely the PTIMEqueries on arbitrary stru
tures remains the
entral open problem in thetheory of database query languages. As it turns out, two variants ofthis question have been formulated. Surprisingly, despite the importan
eof the problem, the relationship between these variants has not beensystemati
ally explored. A �rst
ontribution of the present paper is torevisit the basi
 de�nitions and
larify the
onne
tion between these twovariants. We then investigate two relaxations to the original problemthat appear as tempting alternatives in the absen
e of a language for thePTIME queries. The �rst
onsists in trying to express the PTIME queriesusing a ri
her language that
an also express queries beyond PTIME, butfor whi
h there exists a query pro
essor evaluating all PTIME queriesin PTIME. The se
ond approa
h, studied by many resear
hers, is tofo
us on PTIME properties on restri
ted sets of graphs. Our results aremostly negative, and point out limitations to both approa
hes. Finally,we turn to a natural
lass of languages that we
all �nitely generated,whose syntax is obtained by applying a �xed set of
onstru
tors to agiven set of building blo
ks. We identify a broad
lass of su
h languagesthat
annot express all the PTIME queries.1 Introdu
tionThe existen
e of a language expressing pre
isely the PTIME queries on arbitrarystru
tures remains the most tantalizing open problem in the theory of databasequery languages. This question was �rst raised by Chandra and Harel [3℄ andlater reformulated by Gurevi
h [9℄ who also stated the
onje
ture (now widelya

epted) that no su
h language exists.To reason about the existen
e of a language for the PTIME queries, one hasto �rst
ome up with a very broad de�nition of query language (or logi
), thende�ne what it means for a logi
 to express the PTIME queries. It turns outthat two su
h de�nitions have been proposed. To our knowledge, despite theimportan
e of the problem, the relationship between these variants has not beensystemati
ally explored. We show that these two variants are di�erent and may
on
eivably have distin
t answers.It is generally a

epted that a query language spe
i�es queries using expres-sions
onsisting of strings of symbols over some alphabet. We
all these the

programs of the language. A �rst requirement is that a language should have ef-fe
tive syntax, meaning that its synta
ti
ally
orre
t programs
an be e�e
tivelyenumerated. The semanti
s of a language L asso
iates to ea
h program in L aparti
ular query. For simpli
ity, and sin
e arbitrary stru
tures
an be eÆ
ientlyrepresented as graphs [9℄, we fo
us in this paper on queries that are properties ofgraphs. Thus, we
onsider languages whose semanti
s asso
iates to ea
h programin the language a property of graphs. We say that L expresses the set of PTIMEproperties of graphs, denoted by PG, if the set of graph properties asso
iated toprograms in L by its semanti
s is pre
isely PG.It is
lear that simply having a language L expressing PG is not satisfa
tory.At a minimum, we would like to be able to e�e
tively and uniformly evaluatethe programs in L. In other words, we would like to have a Turing ma
hine Ethat, given as input a program p in L and a graph G, de
ides whether G sat-is�es the property de�ned by p. We
all E an evaluator for L. Intuitively, anevaluator
orresponds to a query pro
essor for L. If su
h an evaluator exists,we
all the language L
omputable. Sin
e we are targeting the PTIME proper-ties, we would further like E to uniformly evaluate every �xed program p in Lin polynomial-time with respe
t to G. If su
h E exists, we
all L P-bounded.The �rst formulation of the problem of the existen
e of a language for PTIME,by Chandra and Harel [3℄, asks whether there exists a P-bounded language ex-pressing the PTIME queries. Most other de�nitions (e.g. [9, 5℄) further requirethat an expli
it polynomial bound for the number of steps of ea
h program inL as evaluated by the evaluator be e�e
tively
omputable. In this
ase, we
allL e�e
tively P-bounded. The above notions extend naturally to properties ofgraphs: we
all a set of PTIME properties of graphs
omputable, P-bounded, ore�e
tively P-bounded i� there exists su
h a language expressing it.Our �rst set of results shows that these two notions are distin
t. In terms oflanguages, we show that:(i) there exists a
omputable language for PG that is not P-bounded and(ii) if PG is P-bounded, then there exists a P-bounded language for PG that isnot e�e
tively P-bounded.We also show that (i) and (ii) above hold for any
omputable subset of PG thatin
ludes all �nite properties.It is legitimate to wonder whether P-bounded languages that are not e�e
-tively P-bounded are mere
uriosities that
an be avoided: given a P-boundedlanguage, is it always possible to �nd an e�e
tively P-bounded language for thesame set of properties? We answer this question (and the
orresponding one for
omputable vs. P-bounded) in the negative by showing the following:(iii) there exist sets of PTIME graph properties that are
omputable, but notP-bounded and(iv) there exist sets of PTIME graph properties that are P-bounded, but note�e
tively P-bounded.In the spe
ial
ase of PG, it remains open whether the existen
e of a P-boundedlanguage for PG implies the existen
e of an e�e
tively P-bounded one.

In the absen
e of a language for the PTIME properties, various relaxationsto the problem appear to o�er tempting alternatives. We examine two naturalapproa
hes. The �rst
onsists in trying to
apture PG using a ri
her languageallowing to express properties that likely lie beyond PTIME. Suppose we havea language L that expresses all of PG, and possibly more. For example, su
ha language is Existential Se
ond-Order logi
 (9SO), that is known to expressthe NP properties [6℄. Assuming that P 6= NP, some of the formulas in 9SOexpress polynomial-time properties, while others do not. Furthermore, underthe same assumption, it is easily shown, using Trakhtenbrot's theorem, that itis unde
idable whether a given formula expresses a PTIME property. However,it is
on
eivable that 9SO has an evaluator E that happens to evaluate everypolynomial-time property in polynomial time. This would mean that a user
ouldnot only express all polynomial-time properties using 9SO, but su
h properties
ould a
tually be evaluated uniformly in polynomial time. Short of an a
tuallanguage for PG, this would seem like a good alternative. Unfortunately, thissolution is not a real alternative to a language for PG. Indeed, we show that, if9SO (or any language that
an express all of PG) has an evaluator that
omputesall PG properties in polynomial time, then there exists a P-bounded languageexpressing exa
tly PG. Thus, the alternative formulation is no easier than theoriginal problem of �nding a language for PG.The se
ond alternative to �nding a language for PG is to fo
us on interestingsubsets of graphs rather than all graphs. For example, a beautiful result byGrohe shows that the PTIME properties of planar graphs
an be expressed bya P-bounded language, spe
i�
ally FO+LFP augmented with
ounting [8℄. Su
hresults raise the hope that the PTIME properties on larger and larger subsets ofgraphs
an be
aptured and perhaps that, on
e a
ertain threshold is over
ome,this might be extended to any set of PTIME properties. However, we prove aresult that suggests there is no su
h threshold. It states that, for every PTIME-re
ognizable
lass G of graphs with in�nite
omplement there exists a set ofPTIME properties of graphs that in
ludes all the PTIME properties of graphsin G and for whi
h there is a
omputable, yet not P-bounded language. Wealso show an analogous result for e�e
tively P-bounded languages. Of
ourse,this does not invalidate the program of �nding in
reasingly large sets of graphswhose PTIME properties have an (e�e
tively) P-bounded language.The notion of language used above is extremely general and may allow forvery arti�
ial
onstru
ts, not a

eptable in real query languages. Given the dif-�
ulty in settling the question of the existen
e of a language for the PTIMEqueries in this general setting, it is tempting to wonder if additional
riteria ofnaturalness may render the problem easier. Motivated by this, we
onsider here�nitely generated languages (FGLs). These
apture a wide array of languagesin whi
h queries are de�ned from �nitely many \building blo
ks" using a �xed�nite set of
onstru
tors. The
lassi
al example of an FGL is FO (the
onstru
-tors implement 9;8;_;^; and :). However, our notion of FGL is mu
h morepowerful, sin
e it allows for the individual building blo
ks and
onstru
tors toperform arbitrary PTIME
omputations. In fa
t, building blo
ks are formalized

as polynomial-time properties, and
onstru
tors as polynomial-time Turing ma-
hines with ora
le
alls to other
onstru
tors or building blo
ks. The restri
tedstru
ture of FGLs immediately removes some of the issues dis
ussed above: allFGLs are e�e
tively P-bounded. One might naturally wonder if the additionalstru
ture of FGLs allows to prove that there is no su
h language expressing ex-a
tly the PTIME properties of arbitrary graphs. This question remains open.However, we exhibit a broad
lass of FGLs,
alled Set FGLs (SFGLs), for whi
hthis
an be proven. Informally, SFGLs are FGLs restri
ted in the way the
on-stru
tors and building blo
ks in a program ex
hange information. Calls to or-a
les are made on hereditarily �nite sets. The information ex
hanged does notbreak automorphisms of the input and is subje
t to restri
tions on size anddepth of nesting. Hereditarily �nite sets
an easily represent
omplex valuesused in many
on
rete database query languages [1℄. SFGLs
apture a naturalprogramming paradigm, shared by many languages. One way to view SFGL'sis as a generalization of FO with �nitely many polynomially-
omputable Lind-str�om quanti�ers (see [5℄). It is known that �xpoint logi
s with �nitely manypolynomially-
omputable Lindstr�om quanti�ers
annot express PG (see [4, 5℄).The paper is organized as follows. In Se
tion 2 we formalize the notions oflanguage, evaluator, and (e�e
tively) P-bounded language and property. Se
tion3 presents our results
omparing these notions. In Se
tion 4 we dis
uss the twoalternatives to obtaining a language for the PTIME properties:
onsidering ri
herlanguages, and fo
using on restri
ted sets of graphs. Finally, Se
tion 5 presentsthe results on SFGLs.2 PreliminariesIn this se
tion we review some of the basi

on
epts related to query languagesand their
omplexity, and introdu
e notation used throughout the paper.We assume familiarity with Turing ma
hines. We also assume a �xed e�e
tiveenumeration of all Turing ma
hines and denote by Me the e-th Turing ma
hine.We also assume knowledge of usual query languages su
h as �rst-order logi
(FO), and FO extended with a least �xpoint operator, denoted FO+LFP (e.g.,see [1, 5℄). For a positive integer k, FOk denotes the FO senten
es using at mostk variables, and similarly for (FO+LFP)k.Properties and their
omplexity. For simpli
ity, we fo
us here on PTIME prop-erties rather than output-produ
ing queries. A relational signature is a �niteset of relation symbols together with asso
iated arities. A �nite stru
ture overa given signature
onsists of a �nite domain D and interpretations of the rela-tion symbols in the signature as �nite relations of appropriate arities over D.A property of stru
tures over some signature is a set of �nite stru
tures overthat signature,
losed under isomorphism. We denote properties by Q;R; S:::and sets of properties by Q;R;S:::. Sin
e stru
tures over an arbitrary signature
an be eÆ
iently en
oded as graphs (e.g., see [9, 5℄), we will only
onsider in thesequel the relational signature
onsisting of a single binary relation representing

the edges of a dire
ted graph whose nodes are the elements of the domain. Wedenote this signature by
, and the set of all �nite graphs (�nite stru
tures over
) by G.The
omplexity of a property is de�ned using
lassi
al
omplexity
lasses. Todo this, we need to talk about the resour
es used by a Turing Ma
hine \imple-menting" an algorithm for
he
king that a stru
ture has the desired property.Sin
e Turing Ma
hines do not take stru
tures as inputs, we need to use insteaden
odings of stru
tures as strings. We use the following simple en
oding for stru
-tures over signature
. Suppose the stru
ture represents a graph G whose set ofnodes is D of size n. Let � be a one-to-one mapping from D onto f1; : : : ; ng, andlet �G : f1; : : : ; ng2 ! f0; 1g be the
hara
teristi
 fun
tion of the set of edgesin G via � (so �G(�(u); �(v)) = 1 i� (u,v) is an edge). The en
oding of G is astring over alphabet f0; 1g
onsisting of all �G(i; j) listed in lexi
ographi
 orderof the pairs (i; j). This en
oding
learly depends on the labeling � and is de-noted by en
�(G). The length of en
�(G) is denoted by jen
�(G)j, and note thatjen
�(G)j = n2, where n is the number of nodes in the graph. As a shorthand,we also denote jen
�(G)j by jGj.Let Q be a property of graphs. We say that a Turing ma
hine M de
ides Qi� for every graph G and labeling � of its nodes, M halts on input en
�(G) anda

epts i� G has property Q. Note that there is no requirement on inputs thatare not
orre
t en
odings of graphs. Also observe that, sin
e Q is
losed underisomorphism, a

eptan
e by M must be independent of the parti
ular labeling�. That is, for all labellings �1; �2, M a

epts en
�1(G) i� M a

epts en
�2(G).We
an now relate properties and
omplexity. We say that a property Q ofgraphs is a PTIME property i� there exists a Turing ma
hine M de
iding theproperty, and k 2 N, su
h that M halts on input en
�(G) in at most jen
�(G)jksteps. We denote the set of PTIME properties of graphs by PG.Languages and evaluators. To reason about the existen
e of a language for thePTIME properties, we need a very broad de�nition of query language (or logi
).It is generally a

epted that a query language spe
i�es queries using expressions
onsisting of strings of symbols over some alphabet, whi
h we
all its programs.Moreover, the language should have e�e
tive syntax, meaning that its synta
-ti
ally
orre
t programs
an be e�e
tively enumerated. As a useful side e�e
t,this allows us to ignore the spe
i�
 syntax of a language, and simply refer to itsprograms by their index in the enumeration (1st program, 2nd program, et
).Sin
e we will only be interested in data
omplexity and not query
omplexity,the
ost of the translation between an index and the
orresponding program isirrelevant. Thus, we
an simply assume that the programs of the language arethe indexes themselves,
onsisting of all strings in f0; 1g�. Whenever needed, weinterpret su
h strings as positive natural numbers as follows: the string w
orre-sponds to the natural number whose binary representation is 1w (this eliminatesthe problem of leading zeros and renders the mapping bije
tive). We denote theset of all su
h strings in f0; 1g� by E .Given that the syntax of languages
onsists of the expressions in E and
anbe assumed �xed, we
an de�ne a language by the semanti
s asso
iated to the

expressions in E . Thus, a language L for graph properties is a mapping asso
i-ating to ea
h expression e 2 E a property L(e) of graphs. We write [L℄ for theset of properties de�ned by L. Of
ourse, two di�erent languages may expressthe same set of properties.Observe that the semanti
s of a language is an abstra
t mapping, independentof any notion of
omputability or
omplexity. To
apture the latter, we
onsiderthe notion of evaluator of a language. Intuitively, an evaluator
orresponds toa query pro
essor: it takes as input a program in the language together with agraph, and evaluates the program on the graph. More formally, an evaluator fora language L is a Turing ma
hine E that takes as input a program e and theen
oding of a graph G and evaluates e on G. To make this more pre
ise, let us�rst �x a PTIME-
omputable pairing fun
tion h�;�i for N, that is, a bije
tionh�;�i : N2 ! N su
h that both h�;�i and �1; �2 satisfying �1(hx; yi) = xand �2(hx; yi) = y are PTIME
omputable (e.g., su
h a pairing fun
tion isprovided in [10℄). The tape alphabet of E is f0; 1g and e and G are en
oded asthe binary representation of the integer he; en
�(G)i for some labeling � of thenodes of G. On any input of the form he; en
�(G)i, E halts and outputs 1 if Ghas property L(e) and 0 otherwise. Note that a given language
an have manydi�erent evaluators.Languages and
omplexity. What does it mean to have a language for the PTIMEproperties? We
onsider several notions that relate languages to properties of agiven
omplexity, most of whi
h have been proposed before. One of the
ontri-butions of the paper is to
larify the relationship between the di�erent notionsin a systemati
 way.Consider a language L, de�ning a set of properties [L℄. A �rst attempt atrelating L to the polynomial-time properties is to look at the
onne
tion between[L℄ and PG. We say that L expresses PG i� [L℄ =PG. However, it is
lear that thisalone is not satisfa
tory. At a minimum, we would like to be able to e�e
tivelyevaluate the queries in L. In other words, we would like to have, at the veryleast, an evaluator for L. If su
h is the
ase, we
all the language L
omputable.We would also like to a
tually evaluate the queries of L in polynomial time.This is formalized as follows. We say that L has a P-bounded evaluator if it hassome evaluator E that, for every �xed program e, runs in polynomial time oninput he; en
�(G)i. The fa
t that we �x e means that our de�nition
apturesdata rather than query
omplexity. Of
ourse, a language that has a P-boundedevaluator only expresses polynomial-time properties.Next, suppose we are given a P-bounded evaluator E for a language. Theevaluator runs in polynomial time, but we do not ne
essarily know ahead oftime the bounding polynomial. However, for many spe
i�
 languages, su
h asFO+LFP, we are able to infer an expli
it polynomial bound from the syntax.This is a ni
e property to have. We
all an evaluator E e�e
tively P-boundedif there exists a
omputable total mapping B : E ! N that produ
es, for everyprogram e, a number k su
h that E runs in time jGjk on input he; en
�(G)i.

We say that a language is (e�e
tively) P-bounded if it has an (e�e
tively)P-bounded evaluator. Similarly, a set of properties P is (e�e
tively) P-boundedif there exists some (e�e
tively) P-bounded language de�ning P .In
onsidering the existen
e of a language L for the polynomial-time proper-ties, two alternative requirements for su
h a language have been proposed. (1)requires L to express pre
isely PG, and have a P-bounded evaluator [3℄. (2) addi-tionally requires L to have an e�e
tively P-bounded evaluator [9, 5℄. That is, (1)requires PG to be P-bounded and (2) requires PG to be e�e
tively P-bounded.3 Computable, P-bounded, and E�e
tively P-boundedLanguagesWhat is the
onne
tion between the notions of
omputable, P-bounded, ande�e
tively P-bounded language? We
onsider this question next. As we shallsee, these notions are generally distin
t. This says that there are di�erent
avorsof the question of the existen
e of a language for PTIME and that the answersmay be distin
t for di�erent
avors.Obviously, every e�e
tively P-bounded language is P-bounded and everyP-bounded language is
omputable. Consider now the
onverse in
lusions. Of
ourse, a
omputable language L may express properties that are not in PG, inwhi
h
ase it
annot be P-bounded. However, suppose L expresses only proper-ties in PG. Is it the
ase that L must also be P-bounded? We next show this isnot the
ase. In fa
t, we exhibit a
omputable language expressing pre
isely theproperties in PG, that has no P-bounded evaluator.Before we state the result, note that it is easy to �nd a
omputable languagefor PG. We re
all su
h a language, de�ned in slightly di�erent form by AndreasBlass and Yuri Gurevi
h [9℄, that we denote LY . The syntax of LY
onsists of allFO+LFP senten
es ' over signature
 [f�g. Re
all that an FO+LFP senten
e' over this signature is order-invariant on a graph H i� its value on H and anordering � of the nodes of H is independent of the
hoi
e of �. Furthermore, 'is order invariant i� it is order invariant on all graphs. The semanti
s of LY isde�ned next. Although we are
onsidering senten
es ' using � in addition to
,we de�ne LY (') as a property of graphs alone, as follows. Let ' be a senten
eand G a graph. If ' (viewed as a usual FO+LFP senten
e) is order-invariant forall graphsH of size at most that of G, then G has property LY (') i� ' evaluatedas an FO+LFP senten
e on G with some arbitrarily
hosen ordering � is true.Otherwise, G does not have property LY ('). Note that, if ' is order invarianton all graphs, then LY (') de�nes the same property as ', so is a property inPG. If ' is not order invariant, then LY (')
ontains only �nitely many graphs,so it is again in PG. Finally, sin
e order-invariant FO+LFP senten
es express allPG properties [11, 12℄, it follows that LY expresses pre
isely the PG properties.Clearly, LY has an evaluator, so it is a
omputable language for PG. That is,Remark 1. PG is
omputable.

Remark 2. Note that the language LY is
oNP-bounded. One might naturallywonder if it
an be proven that LY has no P-bounded evaluator. Clearly, su
ha result must be
onditional upon assumptions su
h as P 6= NP. However, weare not aware of any proof that LY has no P-bounded evaluator even undersu
h
omplexity-theoreti
 assumptions. Thus, LY remains, for the time being, a
andidate language for PG.As an intriguing aside, we mention a
onne
tion to another problem thatappears to be similarly open:(y) Input: A non-deterministi
 Turing ma
hine M and a string 1n.Question: Does M a

ept � (the empty string) in at most n steps?It
an be shown that LY is P-bounded i� there exists some algorithm solving(y) in TIME(nf(M)) for some arbitrary fun
tion f . In other words, the problem
an be solved by a (uniform) algorithm that is polynomial in n for �xedM (notethat the non-uniform version of the problem is trivial: for ea
h �xed M thereexists an algorithm that is polynomial in n and solves (y)). Interestingly, the(non)-existen
e of su
h an algorithm for (y) appears to be open, and does notimmediately follow from usual
omplexity-theoreti
 assumptions.Theorem 1. Every
omputable set of properties P that in
ludes all �nite prop-erties has a
omputable language L whi
h is not P-bounded.Proof. Sin
e P is
omputable, it has a
omputable language LC ; we use LC tobuild L. The semanti
s of L is de�ned as follows. We view the expressions in E asnatural numbers. Let L(2n+1) = LC(n). Next, let L(2n) be de�ned as follows.Let G be a graph and �G the
omplete graph with the same nodes as G. Runthe n-th Turing ma
hine Mn on input h2n; en
�(�G)i for some arbitrary � (notethat the en
oding of �G is independent of �). If Mn does not stop in 2j �Gj steps,then G 62 L(2n). If j �Gj is the smallest size for whi
h Mn stops in 2j �Gj steps, thenG 2 L(2n) i� Mn reje
ts �G. If j �Gj is not the smallest su
h size, then G 62 L(2n).Note that L(2n)
ontains only �nitely many graphs, so is in PG.Next, suppose L has a P-bounded evaluator E, and suppose E is Me. Sin
eE is P-bounded, Me runs in polynomial time with respe
t to j �Gj on every inputof the form hf; en
�(G)i for �xed f . In parti
ular, Me runs in polynomial timewith respe
t to j �Gj on input h2e; en
�(�G)i. It follows that there exists some �Gsu
h that Me stops in at most 2j �Gj steps. By de�nition of L(2e), the smallestsu
h �G has property L(2e) i� Me reje
ts. This
ontradi
ts the assumption thatE is an evaluator for L.Sin
e PG is
omputable,Corollary 1. PG has a
omputable language that is not P-bounded.We next
onsider the
onne
tion between the notions of P-bounded languageand e�e
tively P-bounded language.Theorem 2. Every P-bounded set of properties P that in
ludes all �nite prop-erties has a P-bounded language L whi
h is not e�e
tively P-bounded.

Proof. Let K be some P-bounded language de�ning P . We de�ne a language Las follows. First, L(2n+1) = K(n). This ensures that L expresses all propertiesexpressed byK. Next, we de�ne L(2n) as follows. Suppose n = he; bi. Intuitively,we de�ne L(2n) so thatMe
annot be an evaluator for L with bounding fun
tionMb. To this end, let G be a graph. To determine if G 2 L(2n), pro
eed as follows.First, run Mb on input 2n for jGj steps. If Mb does not halt in � jGj steps, thenG 62 L(2n). Otherwise, suppose that jGj = t2. Then if Mb(2n) halts in � (t�1)2steps, then G 62 L(2n). Finally, ifMb(2n) halts in s steps where (t�1)2 < s � t2,then let k be the output of Mb(2n). Next, run Me on input h2n; en
�(�G)i forjGjk steps. If Me halts, then G 2 L(2n) i� Me reje
ts. Otherwise, G 62 L(2n).Note that L(2n) is a �nite property, so it is already expressed by K. Clearly, Lexpresses pre
isely P and is P-bounded.Now suppose L is e�e
tively P-bounded. Then L has an evaluator E withbounding fun
tion B. Let E = Me and B = Mb. Let n = he; bi and
onsiderL(2n). Sin
e Mb halts on input 2n, there exists a graph G su
h that Mb haltson 2n in at most jGj steps. Consider the smallest su
h G. Let k = Mb(2n).Sin
e Mb
omputes the bounding fun
tion for Me, it follows that Me stops oninput h2n; en
�(�G)i in at most jGjk steps. However, by the de�nition of L(2n),G 2 L(2n) i�Me reje
ts on input h2n; en
�(�G)i. This
ontradi
ts the assumptionthat Me is an evaluator for L.Example 1. Consider the �xpoint queries de�ned by the FO+LFP senten
es.The language FO+LFP is e�e
tively P-bounded, and the properties it de�nesin
ludes all �nite properties. By Theorem 2, there exists some other languagede�ning the �xpoint queries, that is P-bounded but not e�e
tively P-bounded.Corollary 2. If PG is P-bounded,4 then it has a P-bounded language that is note�e
tively P-bounded.Remark 3. Theorem 2 states the existen
e of P-bounded languages that are note�e
tively P-bounded, for all P-bounded sets of properties that in
lude the �-nite ones. A natural question is whether there are P-bounded sets of propertiesthat do not have any e�e
tively P-bounded language. The answer is aÆrma-tive: Theorem 5 in the next se
tion shows the existen
e of many su
h
lasses ofproperties.Clearly, it would be of interest to know if the existen
e of a P-bounded lan-guage expressing PG implies the existen
e of an e�e
tively P-bounded one. Thisremains open.4 PTIME from Above and from BelowIn the absen
e of a language expressing pre
isely the polynomial-time queries,various relaxations to the problem of
apturing PG
an be useful. We des
ribehere two natural approa
hes. The �rst
onsists in trying to
apture the PTIME4 Re
all that it is not known whether PG is P-bounded.

queries using a ri
her language allowing to express queries possibly not in PTIME,but that has an evaluator that evaluates every PTIME query in PTIME. These
ond approa
h, studied by many resear
hers, is to fo
us on PTIME proper-ties on restri
ted sets of graphs. Our results are mostly negative and point outlimitations to both approa
hes.4.1 P-Faithful EvaluatorsSuppose we have a language L that expresses all of PG and possibly more. Forexample, su
h a language is Existential Se
ond-Order logi
 (9SO), that is knownto express the NP properties [6℄. Assuming that P 6= NP, some of the formulasin 9SO express polynomial-time properties, while others do not. Furthermore,under the same assumption, it is easily shown using Trakhtenbrot's theorem thatit is unde
idable whether a given formula expresses a PTIME property. However,it is
on
eivable that 9SO has an evaluator E that happens to evaluate everypolynomial-time property in polynomial time. This means that a user
an notonly express all polynomial-time properties using 9SO, but su
h properties
ana
tually be evaluated in polynomial time. Short of an a
tual language for PG,this would seem like a tempting alternative.Unfortunately, this solution is not a real alternative to a language for PG.Indeed, we show that, if 9SO (or any language that
an express all of PG) has anevaluator that
omputes all PG properties in polynomial time, then there existsa P-bounded language expressing exa
tly PG. Thus, the alternative formulationis no easier than the original problem of �nding a language for PG.We �rst formalize the above notions.De�nition 1. Let L be a language expressing all properties in PG. An evaluatorE for L is P-faithful i� E(he; en
�(G)i) runs in polynomial time with respe
t toG for every �xed e su
h that L(e) 2 PG. Furthermore, E is e�e
tively P-faithfuli� there exists a
omputable mapping B : E ! N that produ
es, for every e forwhi
h L(e) 2 PG, a number k su
h that E(he; en
�(G)i) runs in time jGjk.We
an now show the following.Theorem 3. If there is an (e�e
tively) P-faithful language L for PG, then thereis an (e�e
tively) P-bounded language K for PG.Proof. The syntax of K
onsists of pairs (e; ') where e 2 E is interpreted withthe semanti
s of L and ' is in LY (re
all LY , the
omputable language expressingPG, from Se
tion 3). Suppose L has a P-faithful evaluator EL, and let EY be anevaluator for LY . Let us de�ne an evaluator EK for K as follows. EK on input(e; ') and G does the following. First, start
omputing EL(e;H) and EY (';H)on all graphs H smaller than G for jGj steps. If in this number of steps EL(e;H)and EY (';H) both halt for some H and one a

epts while the other reje
ts, thenreje
t G (so G does not have property K(e; ')). Otherwise, run EL on input(e;G) and a

ept i� EL a

epts. Note that, if L(e) and LY (') de�ne di�erentproperties, then K(e; ') is �nite (and is evaluated in polynomial time by the

evaluator EK). Otherwise, K is evaluated on input (e; ') and G in polynomialtime with respe
t to G, using the evaluator EL applied to e and G, whi
h takespolynomial time with respe
t to G be
ause L(e) is in PG and EL is P-faithful.An analogous argument shows that if EL is e�e
tively P-faithful then K is ane�e
tively P-bounded language for PG.4.2 PTIME properties with no (e�e
tively) P-bounded languageA produ
tive alternative approa
h to the problem of �nding a language forthe PTIME queries has been to fo
us on interesting subsets of graphs ratherthan all graphs. We brie
y mention two results that provide some insight intothis approa
h. The results, proven by diagonalization, show that every \well-behaved"
lass of graphs
an be extended to a
lass of graphs whose PTIMEproperties do not have an (e�e
tively) P-bounded language (we omit the details).Theorem 4. For every PTIME-re
ognizable set of graphs G0 with in�nite
om-plement there exists a
omputable set of graph properties H �PG that is notP-bounded and in
ludes all PTIME properties of G0.Theorem 5. For every PTIME-re
ognizable set of graphs G0 with in�nite
om-plement su
h that its set of PTIME properties is P-bounded, there exists a P-bounded set of graph properties H �PG that is not e�e
tively P-bounded andin
ludes all PTIME properties of G0.5 Finitely generated languagesIn this se
tion we turn to �nitely generated languages (FGLs). These
apture awide array of languages in whi
h queries are de�ned from �nitely many \buildingblo
ks" using a �nite set of
onstru
tors. The
lassi
al example of an FGL is FO.However, our notion of FGLs is mu
h more powerful.Sin
e we will be fo
using on languages expressing PTIME queries, we requireea
h of the building blo
ks and ea
h
onstru
tor to be
omputable in polynomialtime. We formalize this as follows. The syntax of an FGL L is given by all termsthat
an be built by using a �nite set C of
onstant symbols and a �nite set F offun
tions symbols with asso
iated �nite arities. The semanti
s of L is as follows:{ to ea
h
 2 C we asso
iate a property K
 (a \building blo
k") de�ned by apolynomial-time Turing ma
hine M
 and{ to ea
h f 2 F of arity k, we asso
iate a polynomial-time Turing ma
hineMf (a \
onstru
tor") with a

ess to k ora
les.The evaluator E for L is de�ned re
ursively as follows:{ If t 2 C, then E on input ht; en
�(G)i runs M
 on input en
�(G).{ If t = f(t1; : : : ; tk) then E on input ht; en
�(G)i runs Mf on input en
�(G)with ora
les E(t1;�); : : : ; E(tk;�).

Clearly, FGLs
an be viewed as languages a

ording to our general de�nition,sin
e there exists an e�e
tively
omputable bije
tion between the terms providingthe syntax of FGLs and the set of strings E used for arbitrary languages. Thefollowing is immediate from the de�nition of FGLs.Remark 4. Every FGL is e�e
tively P-bounded.One might naturally wonder if the additional stru
ture of FGLs allows to provethat there is no su
h language expressing exa
tly the PTIME properties ofgraphs. This question remains open, even for ordered stru
tures. To gain someintuition into the diÆ
ulties involved in settling this question, let us
onsiderFGLs on ordered stru
tures. Let FO+LFPr
onsist of FO+LFP senten
es us-ing se
ond-order variables (indu
tively de�ned relations) of arity at most r. We
an show the following using an extension of the standard simulation of PTIMETuring ma
hines on ordered stru
tures by FO+LFP:Lemma 1. On ordered stru
tures:(i) Ea
h FGL is in
luded 5 in FO+LFPr for some r.(ii) For every r, FO+LFPr is in
luded in some FGL.It is known that on ordered stru
tures, (a) if FO+LFPr = PTIME for some rthen PTIME 6= PSPACE, and (b) if FO+LFPr 6= PTIME for some r > 1 thenLOGSPACE 6= PTIME [5, 7℄. This together with Lemma 1 implies the following:Theorem 6. (i) If there exists an FGL expressing PTIME on ordered stru
-tures then PTIME 6= PSPACE.(ii) If no FGL expresses PTIME on ordered stru
tures then LOGSPACE 6=PTIME.Theorem 6 shows that settling the question of whether an FGL
an expressPTIME on ordered stru
tures would resolve long-standing open problems in
omplexity theory. The question remains open for arbitrary stru
tures. This leadsus to
onsider a restri
tion of FGLs for whi
h this question
an be settled. Weintrodu
e set FGLs (SFGLs), whi
h are FGLs that operate on hereditarily �nitesets under some restri
tions. Before we do this, we introdu
e some terminologyrelated to sets.Sets. Given x and y, the pairing of x and y is fx; yg and the union of x and yis x [y. For any �nite set A, the set of hereditarily �nite sets over A, HF(A), isthe smallest set
ontaining all elements in A (atoms), the empty set, and
losedunder the operations of pairing and binary union. Consider x 2 HF(A). Thetransitive
losure of x, t
(x), is the smallest set y satisfying x � y and 8u; v(u 2v 2 y ! u 2 y): We write jjxjj for jt
(x)j. We set atoms(x) := t
(x) \ A and saythat x is atomless if atoms(x) = ;. We
an think of x as a dire
ted a
y
li
 graphwith jt
(x)j + 1 nodes. Given an order of the atoms A, we
an x as a string of5 In
lusion refers to the sets of properties expressed by ea
h language.

length jjxjj2. The rank of an atom is 0, the rank of the empty set is 0, and therank of any other set x, rank(x), is max(1 + rank(y) : y 2 x). We en
ode theordered pair hx; yi in the standard way as ffxg; fx; ygg and we en
ode tuplesindu
tively by hx; y; zi = hhx; yi; zi. As an aside, note that hereditarily �nitesets
an represent the
omplex values
ommon in databases, obtained by nestedappli
ation of set and tuple
onstru
tors (e.g., see [1℄).Every permutation � of A indu
es an automorphism of HF(A) (whi
h we also
all �) in the obvious way. We say that S � A A-supports x if every permutation� of A whi
h �xes S pointwise �xes x. We set suppA(x) := S where S � A isthe smallest set S whi
h A-supports x if there is su
h S satisfying jSj < jAj=2.Otherwise, we set suppA(x) := A. It is not obvious, but suppA(x) is well-de�ned.We set supp(x) := suppatoms(x)(x). Noti
e that supp(x) = suppA(x)\ atoms(x).We say that x; y 2 HF(A) are isomorphi
, x �= y, if there is a bije
tion� : atoms(x)! atoms(y) su
h that �(x) = y.A set FGLs (SFGL) is an FGL for whi
h all inputs are (en
odings of) setsx 2 HF(atoms(x)) and for whi
h there is a number m and a fun
tion g su
hthat for ea
h term t = f(t1; : : : ; tk), every input q to an ora
le
all made by the
onstru
tor Mf in the evaluation of t on input x satis�es:1. atoms(q) � atoms(x)2. jjqjj 2 O(atoms(x)m), and3. rank(q) � g(t; rank(x)).In addition, for ea
h ora
le ti, the set Qit(x)
onsisting of all inputs q to
alls toti made by Mf in the evaluation of t on input x is independent of the en
odingof x (so is well de�ned). This requirement implies that Qit(x) is �xed by allautomorphisms of x, a fa
t that is
riti
al to the proof of Lemma 2 below.Finally, we require
losure under isomorphism. That is, if x �= y, then for allterms t, x j= t i� y j= t.6SFGLs are powerful enough to simulate FO with �nitely many Lindstr�omquanti�ers Q [4, 5℄. We brie
y outline the simulation on a stru
ture A. We need{ one
onstant
R for every relation symbol of A,{ fun
tion symbols f: of arity 2 and f_, f^ of arity 3,{ one fun
tion symbol fQ of arity 2 for every Lindstr�om quanti�er Q,{ a
onstant
;
orresponding to ;, and{ fun
tion symbols fp and fu of arity 2
orresponding to pairing and union.The term t� providing the simulation mimi
s the stru
ture of � 2FO(Q): ea
hlogi
al operator
orresponds to a
onstru
tor, whi
h makes
alls to its ora
les oninputs A�a
onsisting of A extended with a tuple �a providing a valuation for asubset �z of the variables. There is one subtlety: the
onstru
tors
alling ora
les
orresponding to sub-formulas must de
ide what
omponents of �a to pass toea
h sub-formula, whi
h is determined by its free variables. This informationis spe
i�ed by an additional ora
le de�ned by a term using
;, fp, and fu and6 We write x j= t if t a

epts x.

a

epting pre
isely one atomless set that en
odes the needed information. Wewrite t�v for the term that a

epts pre
isely the set representing �v. We de�ne:{ If � is an atomi
 formula R�x, then t� :=
R.{ If �(�z) is �(�x) ^ �(�y), then t� := f^(t�; t�; th�x;�yi) (similarly for _ and :).{ If �(�z) is Q�x�(�x�z), then t� := tfQ(t�; th�xi).To illustrate,
onsider the simulation of a
onjun
tion �(�x)^�(�y). On input A�a,Mf^ �rst queries its last ora
le on atomless sets in their
anoni
al order untilsome set s is a

epted. If s does not en
ode appropriate tuples of variables, the
onstru
tor reje
ts. Otherwise, Mf^ uses �x and �z to obtain from �a the tuples onwhi
h to issue queries to t� and t� : Noti
e that in the simulation of FO(Q),requirements (2) and (3) in the de�nition of SFGL are satis�ed:
onstru
tors
all ora
les on inputs of the form A�a where �a is a tuple of variables whose rankin
reases by at most a
onstant at ea
h
all. Thus, (2) and (3)
an be viewed asgeneralizing this mode of
omputation.Theorem 7. There is no SFGL that expresses all PTIME properties of graphs.Proof. (outline) By Proposition 1 below, there is some b so that we
an de
idex j= t in time O(jjxjjb) for x satisfying x = atoms(x) (i.e. a \naked" set). In this
ase we
an set r = 1 and s = 0 and we have jjxjj = jatoms(x)j. The result followsby a straightforward adaptation of the Time Hierar
hy theorem [10℄.Proposition 1. If every building blo
k of an SFGL runs in time O(nt
) andevery
onstru
tor runs in time in time O(ntf) and has arity at most k, then forevery term t, for every �xed r; s;m and for every x satisfyingjsupp(x)j � s; jjxjj 2 O(jatoms(x)jm); and rank(x) � r;we
an de
ide x j= t in time O(jatoms(x)jb), where b := m �max(t
; tf ; 4).Proof. (outline) Assume we have t
, tf , k, r, s and m satisfying the hypotheses.We show by indu
tion on term depth d that the statement holds for ea
h xsatisfying the hypotheses. This is
lear for d = 0; for the indu
tive step we usethe following simulation to evaluate term t = f(t1; : : : ; tj). We
ompute as Mfdoes on input x, ex
ept for ea
h query q to ora
le i we �rst look for q0 isomorphi
to q within an internal table Ti (initially empty). If su
h q0 is found, we do notissue the query and instead use the answer we obtained for q0. Otherwise, weissue the query and add q and the result of the query to the table Ti. We
andivide the running time of this simulation into three parts: time spent in (1) thebody of Mf , (2) table lookup, (3) queries. We set nx = jjxjj, ax = jatoms(x)j,rx = rank(x), sx = jsupp(x)j, sq := s+ b, and rq := g(t; r).1. The time spent in the body of Mf is O(ntfx) � O(amtfx) � O(abx).2. To do the table lookup for a query q, we �rst
ompute its support, whi
h we
an do in time O(a2xn2x). To
he
k for isomorphism against q0 in the table, wetry all possible bije
tions � : supp(q)! supp(q0). By Lemma 2 we know that

jsupp(q)j � sq for large enough x, so this adds a fa
tor of sq!. Finally, alsoby Lemma 2 we know that the number of isomorphism
lasses of q dependsonly on rq and sq . Sin
e jjxjj 2 O(jatoms(x)jm), we
an do the table lookupin time O(a2+2mx) � O(abx).3. We know from above that the total number of queries we need to make de-pends on k, rq , and sq , but not on nx. We
an show that jatoms(q)j � sqor jatoms(q)j � ax � sq. If the former holds, jjqjj is bounded by a
on-stant depending only on rq and sq If the latter holds we have O(amx) =O(jatoms(q)m). Either way, jjqjj 2 O(jatoms(q)jm) so we
an apply the in-du
tion hypothesis using rq and sq in pla
e of r and s. Therefore, we
ananswer all queries in time O(jatoms(q)jb) � O(abx).Lemma 2. If every
onstru
tor runs in time O(nb=mx), then for �xed s and largeenough x satisfying 1, 2, and 3 of Proposition 1 every query q 2 Qtx must satisfyjsuppA(q)j � s+ b where A = atoms(x) and therefore also jsupp(q)j � s+ b. Thenumber of isomorphism
lasses in Qtx depends only on g(t; r) and s+ b.Lemma 2 is an extension of Theorem 24 in [2℄. The (diÆ
ult!) proof is omitted.Referen
es1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison Wesley,1995.2. A. Blass, Y. Gurevi
h, and S. Shelah. Choi
eless polynomial time. Annals of Pureand Applied Logi
, 100:141{187, 1999.3. A. Chandra and D. Harel. Stru
ture and
omplexity of relational queries. J. Com-put. Syst. S
i., 25(1):99{128, 1982.4. A. Dawar and L. Hella. The expressive power of �nitely many generalized quanti-�ers. Inf. Comput., 123(2):172{184, 1995.5. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.6. R. Fagin. Generalized �rst-order spe
tra and polynomial-time re
ognizable sets.In R. Karp, editor, Complexity of Computation, pages 43{73. SIAM-AMS Pro
eed-ings, 1974.7. M. Grohe. The stru
ture of �xed-point logi
s. PhD thesis, Albert-Ludwigs Univer-sit�at Freiburg, 1994.8. M. Grohe. Fixed-point logi
s on planar graphs. In Pro
. Symp. on Logi
 in Com-puter S
ien
e, 1998.9. Y. Gurevi
h. Logi
 and the
hallenge of
omputer s
ien
e. In E. Borger, editor,Trends in Theoreti
al Computer S
ien
e, pages 1{57. Computer S
ien
e Press,1988.10. J. Hop
roft and J. D. Ullman. Introdu
tion to Automata Theory, Languages, andComputation. Reading, MA: Addison Wesley, 1979.11. N. Immerman. Relational queries
omputable in polynomial time. Informationand Control, 68:86{104, 1986.12. M. Y. Vardi. The
omplexity of relational query languages. In Pro
. ACM SIGACTSymp. on the Theory of Computing, pages 137{146, 1982.

