
PTIME Queries RevisitedAlan Nash1, Je� Remmel2, and Vitor Vianu31 Mathematis and CSE Departments, UC San Diego, La Jolla, CA 92093, USA2 Mathematis Department, UC San Diego, La Jolla, CA 92093, USA3 CSE Department, UC San Diego, La Jolla, CA 92093, USAAbstrat. The existene of a language expressing preisely the PTIMEqueries on arbitrary strutures remains the entral open problem in thetheory of database query languages. As it turns out, two variants ofthis question have been formulated. Surprisingly, despite the importaneof the problem, the relationship between these variants has not beensystematially explored. A �rst ontribution of the present paper is torevisit the basi de�nitions and larify the onnetion between these twovariants. We then investigate two relaxations to the original problemthat appear as tempting alternatives in the absene of a language for thePTIME queries. The �rst onsists in trying to express the PTIME queriesusing a riher language that an also express queries beyond PTIME, butfor whih there exists a query proessor evaluating all PTIME queriesin PTIME. The seond approah, studied by many researhers, is tofous on PTIME properties on restrited sets of graphs. Our results aremostly negative, and point out limitations to both approahes. Finally,we turn to a natural lass of languages that we all �nitely generated,whose syntax is obtained by applying a �xed set of onstrutors to agiven set of building bloks. We identify a broad lass of suh languagesthat annot express all the PTIME queries.1 IntrodutionThe existene of a language expressing preisely the PTIME queries on arbitrarystrutures remains the most tantalizing open problem in the theory of databasequery languages. This question was �rst raised by Chandra and Harel [3℄ andlater reformulated by Gurevih [9℄ who also stated the onjeture (now widelyaepted) that no suh language exists.To reason about the existene of a language for the PTIME queries, one hasto �rst ome up with a very broad de�nition of query language (or logi), thende�ne what it means for a logi to express the PTIME queries. It turns outthat two suh de�nitions have been proposed. To our knowledge, despite theimportane of the problem, the relationship between these variants has not beensystematially explored. We show that these two variants are di�erent and mayoneivably have distint answers.It is generally aepted that a query language spei�es queries using expres-sions onsisting of strings of symbols over some alphabet. We all these the

programs of the language. A �rst requirement is that a language should have ef-fetive syntax, meaning that its syntatially orret programs an be e�etivelyenumerated. The semantis of a language L assoiates to eah program in L apartiular query. For simpliity, and sine arbitrary strutures an be eÆientlyrepresented as graphs [9℄, we fous in this paper on queries that are properties ofgraphs. Thus, we onsider languages whose semantis assoiates to eah programin the language a property of graphs. We say that L expresses the set of PTIMEproperties of graphs, denoted by PG, if the set of graph properties assoiated toprograms in L by its semantis is preisely PG.It is lear that simply having a language L expressing PG is not satisfatory.At a minimum, we would like to be able to e�etively and uniformly evaluatethe programs in L. In other words, we would like to have a Turing mahine Ethat, given as input a program p in L and a graph G, deides whether G sat-is�es the property de�ned by p. We all E an evaluator for L. Intuitively, anevaluator orresponds to a query proessor for L. If suh an evaluator exists,we all the language L omputable. Sine we are targeting the PTIME proper-ties, we would further like E to uniformly evaluate every �xed program p in Lin polynomial-time with respet to G. If suh E exists, we all L P-bounded.The �rst formulation of the problem of the existene of a language for PTIME,by Chandra and Harel [3℄, asks whether there exists a P-bounded language ex-pressing the PTIME queries. Most other de�nitions (e.g. [9, 5℄) further requirethat an expliit polynomial bound for the number of steps of eah program inL as evaluated by the evaluator be e�etively omputable. In this ase, we allL e�etively P-bounded. The above notions extend naturally to properties ofgraphs: we all a set of PTIME properties of graphs omputable, P-bounded, ore�etively P-bounded i� there exists suh a language expressing it.Our �rst set of results shows that these two notions are distint. In terms oflanguages, we show that:(i) there exists a omputable language for PG that is not P-bounded and(ii) if PG is P-bounded, then there exists a P-bounded language for PG that isnot e�etively P-bounded.We also show that (i) and (ii) above hold for any omputable subset of PG thatinludes all �nite properties.It is legitimate to wonder whether P-bounded languages that are not e�e-tively P-bounded are mere uriosities that an be avoided: given a P-boundedlanguage, is it always possible to �nd an e�etively P-bounded language for thesame set of properties? We answer this question (and the orresponding one foromputable vs. P-bounded) in the negative by showing the following:(iii) there exist sets of PTIME graph properties that are omputable, but notP-bounded and(iv) there exist sets of PTIME graph properties that are P-bounded, but note�etively P-bounded.In the speial ase of PG, it remains open whether the existene of a P-boundedlanguage for PG implies the existene of an e�etively P-bounded one.

In the absene of a language for the PTIME properties, various relaxationsto the problem appear to o�er tempting alternatives. We examine two naturalapproahes. The �rst onsists in trying to apture PG using a riher languageallowing to express properties that likely lie beyond PTIME. Suppose we havea language L that expresses all of PG, and possibly more. For example, suha language is Existential Seond-Order logi (9SO), that is known to expressthe NP properties [6℄. Assuming that P 6= NP, some of the formulas in 9SOexpress polynomial-time properties, while others do not. Furthermore, underthe same assumption, it is easily shown, using Trakhtenbrot's theorem, that itis undeidable whether a given formula expresses a PTIME property. However,it is oneivable that 9SO has an evaluator E that happens to evaluate everypolynomial-time property in polynomial time. This would mean that a user ouldnot only express all polynomial-time properties using 9SO, but suh propertiesould atually be evaluated uniformly in polynomial time. Short of an atuallanguage for PG, this would seem like a good alternative. Unfortunately, thissolution is not a real alternative to a language for PG. Indeed, we show that, if9SO (or any language that an express all of PG) has an evaluator that omputesall PG properties in polynomial time, then there exists a P-bounded languageexpressing exatly PG. Thus, the alternative formulation is no easier than theoriginal problem of �nding a language for PG.The seond alternative to �nding a language for PG is to fous on interestingsubsets of graphs rather than all graphs. For example, a beautiful result byGrohe shows that the PTIME properties of planar graphs an be expressed bya P-bounded language, spei�ally FO+LFP augmented with ounting [8℄. Suhresults raise the hope that the PTIME properties on larger and larger subsets ofgraphs an be aptured and perhaps that, one a ertain threshold is overome,this might be extended to any set of PTIME properties. However, we prove aresult that suggests there is no suh threshold. It states that, for every PTIME-reognizable lass G of graphs with in�nite omplement there exists a set ofPTIME properties of graphs that inludes all the PTIME properties of graphsin G and for whih there is a omputable, yet not P-bounded language. Wealso show an analogous result for e�etively P-bounded languages. Of ourse,this does not invalidate the program of �nding inreasingly large sets of graphswhose PTIME properties have an (e�etively) P-bounded language.The notion of language used above is extremely general and may allow forvery arti�ial onstruts, not aeptable in real query languages. Given the dif-�ulty in settling the question of the existene of a language for the PTIMEqueries in this general setting, it is tempting to wonder if additional riteria ofnaturalness may render the problem easier. Motivated by this, we onsider here�nitely generated languages (FGLs). These apture a wide array of languagesin whih queries are de�ned from �nitely many \building bloks" using a �xed�nite set of onstrutors. The lassial example of an FGL is FO (the onstru-tors implement 9;8;_;^; and :). However, our notion of FGL is muh morepowerful, sine it allows for the individual building bloks and onstrutors toperform arbitrary PTIME omputations. In fat, building bloks are formalized

as polynomial-time properties, and onstrutors as polynomial-time Turing ma-hines with orale alls to other onstrutors or building bloks. The restritedstruture of FGLs immediately removes some of the issues disussed above: allFGLs are e�etively P-bounded. One might naturally wonder if the additionalstruture of FGLs allows to prove that there is no suh language expressing ex-atly the PTIME properties of arbitrary graphs. This question remains open.However, we exhibit a broad lass of FGLs, alled Set FGLs (SFGLs), for whihthis an be proven. Informally, SFGLs are FGLs restrited in the way the on-strutors and building bloks in a program exhange information. Calls to or-ales are made on hereditarily �nite sets. The information exhanged does notbreak automorphisms of the input and is subjet to restritions on size anddepth of nesting. Hereditarily �nite sets an easily represent omplex valuesused in many onrete database query languages [1℄. SFGLs apture a naturalprogramming paradigm, shared by many languages. One way to view SFGL'sis as a generalization of FO with �nitely many polynomially-omputable Lind-str�om quanti�ers (see [5℄). It is known that �xpoint logis with �nitely manypolynomially-omputable Lindstr�om quanti�ers annot express PG (see [4, 5℄).The paper is organized as follows. In Setion 2 we formalize the notions oflanguage, evaluator, and (e�etively) P-bounded language and property. Setion3 presents our results omparing these notions. In Setion 4 we disuss the twoalternatives to obtaining a language for the PTIME properties: onsidering riherlanguages, and fousing on restrited sets of graphs. Finally, Setion 5 presentsthe results on SFGLs.2 PreliminariesIn this setion we review some of the basi onepts related to query languagesand their omplexity, and introdue notation used throughout the paper.We assume familiarity with Turing mahines. We also assume a �xed e�etiveenumeration of all Turing mahines and denote by Me the e-th Turing mahine.We also assume knowledge of usual query languages suh as �rst-order logi(FO), and FO extended with a least �xpoint operator, denoted FO+LFP (e.g.,see [1, 5℄). For a positive integer k, FOk denotes the FO sentenes using at mostk variables, and similarly for (FO+LFP)k.Properties and their omplexity. For simpliity, we fous here on PTIME prop-erties rather than output-produing queries. A relational signature is a �niteset of relation symbols together with assoiated arities. A �nite struture overa given signature onsists of a �nite domain D and interpretations of the rela-tion symbols in the signature as �nite relations of appropriate arities over D.A property of strutures over some signature is a set of �nite strutures overthat signature, losed under isomorphism. We denote properties by Q;R; S:::and sets of properties by Q;R;S:::. Sine strutures over an arbitrary signaturean be eÆiently enoded as graphs (e.g., see [9, 5℄), we will only onsider in thesequel the relational signature onsisting of a single binary relation representing

the edges of a direted graph whose nodes are the elements of the domain. Wedenote this signature by , and the set of all �nite graphs (�nite strutures over) by G.The omplexity of a property is de�ned using lassial omplexity lasses. Todo this, we need to talk about the resoures used by a Turing Mahine \imple-menting" an algorithm for heking that a struture has the desired property.Sine Turing Mahines do not take strutures as inputs, we need to use insteadenodings of strutures as strings. We use the following simple enoding for stru-tures over signature . Suppose the struture represents a graph G whose set ofnodes is D of size n. Let � be a one-to-one mapping from D onto f1; : : : ; ng, andlet �G : f1; : : : ; ng2 ! f0; 1g be the harateristi funtion of the set of edgesin G via � (so �G(�(u); �(v)) = 1 i� (u,v) is an edge). The enoding of G is astring over alphabet f0; 1g onsisting of all �G(i; j) listed in lexiographi orderof the pairs (i; j). This enoding learly depends on the labeling � and is de-noted by en�(G). The length of en�(G) is denoted by jen�(G)j, and note thatjen�(G)j = n2, where n is the number of nodes in the graph. As a shorthand,we also denote jen�(G)j by jGj.Let Q be a property of graphs. We say that a Turing mahine M deides Qi� for every graph G and labeling � of its nodes, M halts on input en�(G) andaepts i� G has property Q. Note that there is no requirement on inputs thatare not orret enodings of graphs. Also observe that, sine Q is losed underisomorphism, aeptane by M must be independent of the partiular labeling�. That is, for all labellings �1; �2, M aepts en�1(G) i� M aepts en�2(G).We an now relate properties and omplexity. We say that a property Q ofgraphs is a PTIME property i� there exists a Turing mahine M deiding theproperty, and k 2 N, suh that M halts on input en�(G) in at most jen�(G)jksteps. We denote the set of PTIME properties of graphs by PG.Languages and evaluators. To reason about the existene of a language for thePTIME properties, we need a very broad de�nition of query language (or logi).It is generally aepted that a query language spei�es queries using expressionsonsisting of strings of symbols over some alphabet, whih we all its programs.Moreover, the language should have e�etive syntax, meaning that its synta-tially orret programs an be e�etively enumerated. As a useful side e�et,this allows us to ignore the spei� syntax of a language, and simply refer to itsprograms by their index in the enumeration (1st program, 2nd program, et).Sine we will only be interested in data omplexity and not query omplexity,the ost of the translation between an index and the orresponding program isirrelevant. Thus, we an simply assume that the programs of the language arethe indexes themselves, onsisting of all strings in f0; 1g�. Whenever needed, weinterpret suh strings as positive natural numbers as follows: the string w orre-sponds to the natural number whose binary representation is 1w (this eliminatesthe problem of leading zeros and renders the mapping bijetive). We denote theset of all suh strings in f0; 1g� by E .Given that the syntax of languages onsists of the expressions in E and anbe assumed �xed, we an de�ne a language by the semantis assoiated to the

expressions in E . Thus, a language L for graph properties is a mapping assoi-ating to eah expression e 2 E a property L(e) of graphs. We write [L℄ for theset of properties de�ned by L. Of ourse, two di�erent languages may expressthe same set of properties.Observe that the semantis of a language is an abstrat mapping, independentof any notion of omputability or omplexity. To apture the latter, we onsiderthe notion of evaluator of a language. Intuitively, an evaluator orresponds toa query proessor: it takes as input a program in the language together with agraph, and evaluates the program on the graph. More formally, an evaluator fora language L is a Turing mahine E that takes as input a program e and theenoding of a graph G and evaluates e on G. To make this more preise, let us�rst �x a PTIME-omputable pairing funtion h�;�i for N, that is, a bijetionh�;�i : N2 ! N suh that both h�;�i and �1; �2 satisfying �1(hx; yi) = xand �2(hx; yi) = y are PTIME omputable (e.g., suh a pairing funtion isprovided in [10℄). The tape alphabet of E is f0; 1g and e and G are enoded asthe binary representation of the integer he; en�(G)i for some labeling � of thenodes of G. On any input of the form he; en�(G)i, E halts and outputs 1 if Ghas property L(e) and 0 otherwise. Note that a given language an have manydi�erent evaluators.Languages and omplexity. What does it mean to have a language for the PTIMEproperties? We onsider several notions that relate languages to properties of agiven omplexity, most of whih have been proposed before. One of the ontri-butions of the paper is to larify the relationship between the di�erent notionsin a systemati way.Consider a language L, de�ning a set of properties [L℄. A �rst attempt atrelating L to the polynomial-time properties is to look at the onnetion between[L℄ and PG. We say that L expresses PG i� [L℄ =PG. However, it is lear that thisalone is not satisfatory. At a minimum, we would like to be able to e�etivelyevaluate the queries in L. In other words, we would like to have, at the veryleast, an evaluator for L. If suh is the ase, we all the language L omputable.We would also like to atually evaluate the queries of L in polynomial time.This is formalized as follows. We say that L has a P-bounded evaluator if it hassome evaluator E that, for every �xed program e, runs in polynomial time oninput he; en�(G)i. The fat that we �x e means that our de�nition apturesdata rather than query omplexity. Of ourse, a language that has a P-boundedevaluator only expresses polynomial-time properties.Next, suppose we are given a P-bounded evaluator E for a language. Theevaluator runs in polynomial time, but we do not neessarily know ahead oftime the bounding polynomial. However, for many spei� languages, suh asFO+LFP, we are able to infer an expliit polynomial bound from the syntax.This is a nie property to have. We all an evaluator E e�etively P-boundedif there exists a omputable total mapping B : E ! N that produes, for everyprogram e, a number k suh that E runs in time jGjk on input he; en�(G)i.

We say that a language is (e�etively) P-bounded if it has an (e�etively)P-bounded evaluator. Similarly, a set of properties P is (e�etively) P-boundedif there exists some (e�etively) P-bounded language de�ning P .In onsidering the existene of a language L for the polynomial-time proper-ties, two alternative requirements for suh a language have been proposed. (1)requires L to express preisely PG, and have a P-bounded evaluator [3℄. (2) addi-tionally requires L to have an e�etively P-bounded evaluator [9, 5℄. That is, (1)requires PG to be P-bounded and (2) requires PG to be e�etively P-bounded.3 Computable, P-bounded, and E�etively P-boundedLanguagesWhat is the onnetion between the notions of omputable, P-bounded, ande�etively P-bounded language? We onsider this question next. As we shallsee, these notions are generally distint. This says that there are di�erent avorsof the question of the existene of a language for PTIME and that the answersmay be distint for di�erent avors.Obviously, every e�etively P-bounded language is P-bounded and everyP-bounded language is omputable. Consider now the onverse inlusions. Ofourse, a omputable language L may express properties that are not in PG, inwhih ase it annot be P-bounded. However, suppose L expresses only proper-ties in PG. Is it the ase that L must also be P-bounded? We next show this isnot the ase. In fat, we exhibit a omputable language expressing preisely theproperties in PG, that has no P-bounded evaluator.Before we state the result, note that it is easy to �nd a omputable languagefor PG. We reall suh a language, de�ned in slightly di�erent form by AndreasBlass and Yuri Gurevih [9℄, that we denote LY . The syntax of LY onsists of allFO+LFP sentenes ' over signature [f�g. Reall that an FO+LFP sentene' over this signature is order-invariant on a graph H i� its value on H and anordering � of the nodes of H is independent of the hoie of �. Furthermore, 'is order invariant i� it is order invariant on all graphs. The semantis of LY isde�ned next. Although we are onsidering sentenes ' using � in addition to ,we de�ne LY (') as a property of graphs alone, as follows. Let ' be a senteneand G a graph. If ' (viewed as a usual FO+LFP sentene) is order-invariant forall graphsH of size at most that of G, then G has property LY (') i� ' evaluatedas an FO+LFP sentene on G with some arbitrarily hosen ordering � is true.Otherwise, G does not have property LY ('). Note that, if ' is order invarianton all graphs, then LY (') de�nes the same property as ', so is a property inPG. If ' is not order invariant, then LY (') ontains only �nitely many graphs,so it is again in PG. Finally, sine order-invariant FO+LFP sentenes express allPG properties [11, 12℄, it follows that LY expresses preisely the PG properties.Clearly, LY has an evaluator, so it is a omputable language for PG. That is,Remark 1. PG is omputable.

Remark 2. Note that the language LY is oNP-bounded. One might naturallywonder if it an be proven that LY has no P-bounded evaluator. Clearly, suha result must be onditional upon assumptions suh as P 6= NP. However, weare not aware of any proof that LY has no P-bounded evaluator even undersuh omplexity-theoreti assumptions. Thus, LY remains, for the time being, aandidate language for PG.As an intriguing aside, we mention a onnetion to another problem thatappears to be similarly open:(y) Input: A non-deterministi Turing mahine M and a string 1n.Question: Does M aept � (the empty string) in at most n steps?It an be shown that LY is P-bounded i� there exists some algorithm solving(y) in TIME(nf(M)) for some arbitrary funtion f . In other words, the probleman be solved by a (uniform) algorithm that is polynomial in n for �xedM (notethat the non-uniform version of the problem is trivial: for eah �xed M thereexists an algorithm that is polynomial in n and solves (y)). Interestingly, the(non)-existene of suh an algorithm for (y) appears to be open, and does notimmediately follow from usual omplexity-theoreti assumptions.Theorem 1. Every omputable set of properties P that inludes all �nite prop-erties has a omputable language L whih is not P-bounded.Proof. Sine P is omputable, it has a omputable language LC ; we use LC tobuild L. The semantis of L is de�ned as follows. We view the expressions in E asnatural numbers. Let L(2n+1) = LC(n). Next, let L(2n) be de�ned as follows.Let G be a graph and �G the omplete graph with the same nodes as G. Runthe n-th Turing mahine Mn on input h2n; en�(�G)i for some arbitrary � (notethat the enoding of �G is independent of �). If Mn does not stop in 2j �Gj steps,then G 62 L(2n). If j �Gj is the smallest size for whih Mn stops in 2j �Gj steps, thenG 2 L(2n) i� Mn rejets �G. If j �Gj is not the smallest suh size, then G 62 L(2n).Note that L(2n) ontains only �nitely many graphs, so is in PG.Next, suppose L has a P-bounded evaluator E, and suppose E is Me. SineE is P-bounded, Me runs in polynomial time with respet to j �Gj on every inputof the form hf; en�(G)i for �xed f . In partiular, Me runs in polynomial timewith respet to j �Gj on input h2e; en�(�G)i. It follows that there exists some �Gsuh that Me stops in at most 2j �Gj steps. By de�nition of L(2e), the smallestsuh �G has property L(2e) i� Me rejets. This ontradits the assumption thatE is an evaluator for L.Sine PG is omputable,Corollary 1. PG has a omputable language that is not P-bounded.We next onsider the onnetion between the notions of P-bounded languageand e�etively P-bounded language.Theorem 2. Every P-bounded set of properties P that inludes all �nite prop-erties has a P-bounded language L whih is not e�etively P-bounded.

Proof. Let K be some P-bounded language de�ning P . We de�ne a language Las follows. First, L(2n+1) = K(n). This ensures that L expresses all propertiesexpressed byK. Next, we de�ne L(2n) as follows. Suppose n = he; bi. Intuitively,we de�ne L(2n) so thatMe annot be an evaluator for L with bounding funtionMb. To this end, let G be a graph. To determine if G 2 L(2n), proeed as follows.First, run Mb on input 2n for jGj steps. If Mb does not halt in � jGj steps, thenG 62 L(2n). Otherwise, suppose that jGj = t2. Then if Mb(2n) halts in � (t�1)2steps, then G 62 L(2n). Finally, ifMb(2n) halts in s steps where (t�1)2 < s � t2,then let k be the output of Mb(2n). Next, run Me on input h2n; en�(�G)i forjGjk steps. If Me halts, then G 2 L(2n) i� Me rejets. Otherwise, G 62 L(2n).Note that L(2n) is a �nite property, so it is already expressed by K. Clearly, Lexpresses preisely P and is P-bounded.Now suppose L is e�etively P-bounded. Then L has an evaluator E withbounding funtion B. Let E = Me and B = Mb. Let n = he; bi and onsiderL(2n). Sine Mb halts on input 2n, there exists a graph G suh that Mb haltson 2n in at most jGj steps. Consider the smallest suh G. Let k = Mb(2n).Sine Mb omputes the bounding funtion for Me, it follows that Me stops oninput h2n; en�(�G)i in at most jGjk steps. However, by the de�nition of L(2n),G 2 L(2n) i�Me rejets on input h2n; en�(�G)i. This ontradits the assumptionthat Me is an evaluator for L.Example 1. Consider the �xpoint queries de�ned by the FO+LFP sentenes.The language FO+LFP is e�etively P-bounded, and the properties it de�nesinludes all �nite properties. By Theorem 2, there exists some other languagede�ning the �xpoint queries, that is P-bounded but not e�etively P-bounded.Corollary 2. If PG is P-bounded,4 then it has a P-bounded language that is note�etively P-bounded.Remark 3. Theorem 2 states the existene of P-bounded languages that are note�etively P-bounded, for all P-bounded sets of properties that inlude the �-nite ones. A natural question is whether there are P-bounded sets of propertiesthat do not have any e�etively P-bounded language. The answer is aÆrma-tive: Theorem 5 in the next setion shows the existene of many suh lasses ofproperties.Clearly, it would be of interest to know if the existene of a P-bounded lan-guage expressing PG implies the existene of an e�etively P-bounded one. Thisremains open.4 PTIME from Above and from BelowIn the absene of a language expressing preisely the polynomial-time queries,various relaxations to the problem of apturing PG an be useful. We desribehere two natural approahes. The �rst onsists in trying to apture the PTIME4 Reall that it is not known whether PG is P-bounded.

queries using a riher language allowing to express queries possibly not in PTIME,but that has an evaluator that evaluates every PTIME query in PTIME. Theseond approah, studied by many researhers, is to fous on PTIME proper-ties on restrited sets of graphs. Our results are mostly negative and point outlimitations to both approahes.4.1 P-Faithful EvaluatorsSuppose we have a language L that expresses all of PG and possibly more. Forexample, suh a language is Existential Seond-Order logi (9SO), that is knownto express the NP properties [6℄. Assuming that P 6= NP, some of the formulasin 9SO express polynomial-time properties, while others do not. Furthermore,under the same assumption, it is easily shown using Trakhtenbrot's theorem thatit is undeidable whether a given formula expresses a PTIME property. However,it is oneivable that 9SO has an evaluator E that happens to evaluate everypolynomial-time property in polynomial time. This means that a user an notonly express all polynomial-time properties using 9SO, but suh properties anatually be evaluated in polynomial time. Short of an atual language for PG,this would seem like a tempting alternative.Unfortunately, this solution is not a real alternative to a language for PG.Indeed, we show that, if 9SO (or any language that an express all of PG) has anevaluator that omputes all PG properties in polynomial time, then there existsa P-bounded language expressing exatly PG. Thus, the alternative formulationis no easier than the original problem of �nding a language for PG.We �rst formalize the above notions.De�nition 1. Let L be a language expressing all properties in PG. An evaluatorE for L is P-faithful i� E(he; en�(G)i) runs in polynomial time with respet toG for every �xed e suh that L(e) 2 PG. Furthermore, E is e�etively P-faithfuli� there exists a omputable mapping B : E ! N that produes, for every e forwhih L(e) 2 PG, a number k suh that E(he; en�(G)i) runs in time jGjk.We an now show the following.Theorem 3. If there is an (e�etively) P-faithful language L for PG, then thereis an (e�etively) P-bounded language K for PG.Proof. The syntax of K onsists of pairs (e; ') where e 2 E is interpreted withthe semantis of L and ' is in LY (reall LY , the omputable language expressingPG, from Setion 3). Suppose L has a P-faithful evaluator EL, and let EY be anevaluator for LY . Let us de�ne an evaluator EK for K as follows. EK on input(e; ') and G does the following. First, start omputing EL(e;H) and EY (';H)on all graphs H smaller than G for jGj steps. If in this number of steps EL(e;H)and EY (';H) both halt for some H and one aepts while the other rejets, thenrejet G (so G does not have property K(e; ')). Otherwise, run EL on input(e;G) and aept i� EL aepts. Note that, if L(e) and LY (') de�ne di�erentproperties, then K(e; ') is �nite (and is evaluated in polynomial time by the

evaluator EK). Otherwise, K is evaluated on input (e; ') and G in polynomialtime with respet to G, using the evaluator EL applied to e and G, whih takespolynomial time with respet to G beause L(e) is in PG and EL is P-faithful.An analogous argument shows that if EL is e�etively P-faithful then K is ane�etively P-bounded language for PG.4.2 PTIME properties with no (e�etively) P-bounded languageA produtive alternative approah to the problem of �nding a language forthe PTIME queries has been to fous on interesting subsets of graphs ratherthan all graphs. We briey mention two results that provide some insight intothis approah. The results, proven by diagonalization, show that every \well-behaved" lass of graphs an be extended to a lass of graphs whose PTIMEproperties do not have an (e�etively) P-bounded language (we omit the details).Theorem 4. For every PTIME-reognizable set of graphs G0 with in�nite om-plement there exists a omputable set of graph properties H �PG that is notP-bounded and inludes all PTIME properties of G0.Theorem 5. For every PTIME-reognizable set of graphs G0 with in�nite om-plement suh that its set of PTIME properties is P-bounded, there exists a P-bounded set of graph properties H �PG that is not e�etively P-bounded andinludes all PTIME properties of G0.5 Finitely generated languagesIn this setion we turn to �nitely generated languages (FGLs). These apture awide array of languages in whih queries are de�ned from �nitely many \buildingbloks" using a �nite set of onstrutors. The lassial example of an FGL is FO.However, our notion of FGLs is muh more powerful.Sine we will be fousing on languages expressing PTIME queries, we requireeah of the building bloks and eah onstrutor to be omputable in polynomialtime. We formalize this as follows. The syntax of an FGL L is given by all termsthat an be built by using a �nite set C of onstant symbols and a �nite set F offuntions symbols with assoiated �nite arities. The semantis of L is as follows:{ to eah 2 C we assoiate a property K (a \building blok") de�ned by apolynomial-time Turing mahine M and{ to eah f 2 F of arity k, we assoiate a polynomial-time Turing mahineMf (a \onstrutor") with aess to k orales.The evaluator E for L is de�ned reursively as follows:{ If t 2 C, then E on input ht; en�(G)i runs M on input en�(G).{ If t = f(t1; : : : ; tk) then E on input ht; en�(G)i runs Mf on input en�(G)with orales E(t1;�); : : : ; E(tk;�).

Clearly, FGLs an be viewed as languages aording to our general de�nition,sine there exists an e�etively omputable bijetion between the terms providingthe syntax of FGLs and the set of strings E used for arbitrary languages. Thefollowing is immediate from the de�nition of FGLs.Remark 4. Every FGL is e�etively P-bounded.One might naturally wonder if the additional struture of FGLs allows to provethat there is no suh language expressing exatly the PTIME properties ofgraphs. This question remains open, even for ordered strutures. To gain someintuition into the diÆulties involved in settling this question, let us onsiderFGLs on ordered strutures. Let FO+LFPr onsist of FO+LFP sentenes us-ing seond-order variables (indutively de�ned relations) of arity at most r. Wean show the following using an extension of the standard simulation of PTIMETuring mahines on ordered strutures by FO+LFP:Lemma 1. On ordered strutures:(i) Eah FGL is inluded 5 in FO+LFPr for some r.(ii) For every r, FO+LFPr is inluded in some FGL.It is known that on ordered strutures, (a) if FO+LFPr = PTIME for some rthen PTIME 6= PSPACE, and (b) if FO+LFPr 6= PTIME for some r > 1 thenLOGSPACE 6= PTIME [5, 7℄. This together with Lemma 1 implies the following:Theorem 6. (i) If there exists an FGL expressing PTIME on ordered stru-tures then PTIME 6= PSPACE.(ii) If no FGL expresses PTIME on ordered strutures then LOGSPACE 6=PTIME.Theorem 6 shows that settling the question of whether an FGL an expressPTIME on ordered strutures would resolve long-standing open problems inomplexity theory. The question remains open for arbitrary strutures. This leadsus to onsider a restrition of FGLs for whih this question an be settled. Weintrodue set FGLs (SFGLs), whih are FGLs that operate on hereditarily �nitesets under some restritions. Before we do this, we introdue some terminologyrelated to sets.Sets. Given x and y, the pairing of x and y is fx; yg and the union of x and yis x [y. For any �nite set A, the set of hereditarily �nite sets over A, HF(A), isthe smallest set ontaining all elements in A (atoms), the empty set, and losedunder the operations of pairing and binary union. Consider x 2 HF(A). Thetransitive losure of x, t(x), is the smallest set y satisfying x � y and 8u; v(u 2v 2 y ! u 2 y): We write jjxjj for jt(x)j. We set atoms(x) := t(x) \ A and saythat x is atomless if atoms(x) = ;. We an think of x as a direted ayli graphwith jt(x)j + 1 nodes. Given an order of the atoms A, we an x as a string of5 Inlusion refers to the sets of properties expressed by eah language.

length jjxjj2. The rank of an atom is 0, the rank of the empty set is 0, and therank of any other set x, rank(x), is max(1 + rank(y) : y 2 x). We enode theordered pair hx; yi in the standard way as ffxg; fx; ygg and we enode tuplesindutively by hx; y; zi = hhx; yi; zi. As an aside, note that hereditarily �nitesets an represent the omplex values ommon in databases, obtained by nestedappliation of set and tuple onstrutors (e.g., see [1℄).Every permutation � of A indues an automorphism of HF(A) (whih we alsoall �) in the obvious way. We say that S � A A-supports x if every permutation� of A whih �xes S pointwise �xes x. We set suppA(x) := S where S � A isthe smallest set S whih A-supports x if there is suh S satisfying jSj < jAj=2.Otherwise, we set suppA(x) := A. It is not obvious, but suppA(x) is well-de�ned.We set supp(x) := suppatoms(x)(x). Notie that supp(x) = suppA(x)\ atoms(x).We say that x; y 2 HF(A) are isomorphi, x �= y, if there is a bijetion� : atoms(x)! atoms(y) suh that �(x) = y.A set FGLs (SFGL) is an FGL for whih all inputs are (enodings of) setsx 2 HF(atoms(x)) and for whih there is a number m and a funtion g suhthat for eah term t = f(t1; : : : ; tk), every input q to an orale all made by theonstrutor Mf in the evaluation of t on input x satis�es:1. atoms(q) � atoms(x)2. jjqjj 2 O(atoms(x)m), and3. rank(q) � g(t; rank(x)).In addition, for eah orale ti, the set Qit(x) onsisting of all inputs q to alls toti made by Mf in the evaluation of t on input x is independent of the enodingof x (so is well de�ned). This requirement implies that Qit(x) is �xed by allautomorphisms of x, a fat that is ritial to the proof of Lemma 2 below.Finally, we require losure under isomorphism. That is, if x �= y, then for allterms t, x j= t i� y j= t.6SFGLs are powerful enough to simulate FO with �nitely many Lindstr�omquanti�ers Q [4, 5℄. We briey outline the simulation on a struture A. We need{ one onstant R for every relation symbol of A,{ funtion symbols f: of arity 2 and f_, f^ of arity 3,{ one funtion symbol fQ of arity 2 for every Lindstr�om quanti�er Q,{ a onstant ; orresponding to ;, and{ funtion symbols fp and fu of arity 2 orresponding to pairing and union.The term t� providing the simulation mimis the struture of � 2FO(Q): eahlogial operator orresponds to a onstrutor, whih makes alls to its orales oninputs A�a onsisting of A extended with a tuple �a providing a valuation for asubset �z of the variables. There is one subtlety: the onstrutors alling oralesorresponding to sub-formulas must deide what omponents of �a to pass toeah sub-formula, whih is determined by its free variables. This informationis spei�ed by an additional orale de�ned by a term using ;, fp, and fu and6 We write x j= t if t aepts x.

aepting preisely one atomless set that enodes the needed information. Wewrite t�v for the term that aepts preisely the set representing �v. We de�ne:{ If � is an atomi formula R�x, then t� := R.{ If �(�z) is �(�x) ^ �(�y), then t� := f^(t�; t�; th�x;�yi) (similarly for _ and :).{ If �(�z) is Q�x�(�x�z), then t� := tfQ(t�; th�xi).To illustrate, onsider the simulation of a onjuntion �(�x)^�(�y). On input A�a,Mf^ �rst queries its last orale on atomless sets in their anonial order untilsome set s is aepted. If s does not enode appropriate tuples of variables, theonstrutor rejets. Otherwise, Mf^ uses �x and �z to obtain from �a the tuples onwhih to issue queries to t� and t� : Notie that in the simulation of FO(Q),requirements (2) and (3) in the de�nition of SFGL are satis�ed: onstrutorsall orales on inputs of the form A�a where �a is a tuple of variables whose rankinreases by at most a onstant at eah all. Thus, (2) and (3) an be viewed asgeneralizing this mode of omputation.Theorem 7. There is no SFGL that expresses all PTIME properties of graphs.Proof. (outline) By Proposition 1 below, there is some b so that we an deidex j= t in time O(jjxjjb) for x satisfying x = atoms(x) (i.e. a \naked" set). In thisase we an set r = 1 and s = 0 and we have jjxjj = jatoms(x)j. The result followsby a straightforward adaptation of the Time Hierarhy theorem [10℄.Proposition 1. If every building blok of an SFGL runs in time O(nt) andevery onstrutor runs in time in time O(ntf) and has arity at most k, then forevery term t, for every �xed r; s;m and for every x satisfyingjsupp(x)j � s; jjxjj 2 O(jatoms(x)jm); and rank(x) � r;we an deide x j= t in time O(jatoms(x)jb), where b := m �max(t; tf ; 4).Proof. (outline) Assume we have t, tf , k, r, s and m satisfying the hypotheses.We show by indution on term depth d that the statement holds for eah xsatisfying the hypotheses. This is lear for d = 0; for the indutive step we usethe following simulation to evaluate term t = f(t1; : : : ; tj). We ompute as Mfdoes on input x, exept for eah query q to orale i we �rst look for q0 isomorphito q within an internal table Ti (initially empty). If suh q0 is found, we do notissue the query and instead use the answer we obtained for q0. Otherwise, weissue the query and add q and the result of the query to the table Ti. We andivide the running time of this simulation into three parts: time spent in (1) thebody of Mf , (2) table lookup, (3) queries. We set nx = jjxjj, ax = jatoms(x)j,rx = rank(x), sx = jsupp(x)j, sq := s+ b, and rq := g(t; r).1. The time spent in the body of Mf is O(ntfx) � O(amtfx) � O(abx).2. To do the table lookup for a query q, we �rst ompute its support, whih wean do in time O(a2xn2x). To hek for isomorphism against q0 in the table, wetry all possible bijetions � : supp(q)! supp(q0). By Lemma 2 we know that

jsupp(q)j � sq for large enough x, so this adds a fator of sq!. Finally, alsoby Lemma 2 we know that the number of isomorphism lasses of q dependsonly on rq and sq . Sine jjxjj 2 O(jatoms(x)jm), we an do the table lookupin time O(a2+2mx) � O(abx).3. We know from above that the total number of queries we need to make de-pends on k, rq , and sq , but not on nx. We an show that jatoms(q)j � sqor jatoms(q)j � ax � sq. If the former holds, jjqjj is bounded by a on-stant depending only on rq and sq If the latter holds we have O(amx) =O(jatoms(q)m). Either way, jjqjj 2 O(jatoms(q)jm) so we an apply the in-dution hypothesis using rq and sq in plae of r and s. Therefore, we ananswer all queries in time O(jatoms(q)jb) � O(abx).Lemma 2. If every onstrutor runs in time O(nb=mx), then for �xed s and largeenough x satisfying 1, 2, and 3 of Proposition 1 every query q 2 Qtx must satisfyjsuppA(q)j � s+ b where A = atoms(x) and therefore also jsupp(q)j � s+ b. Thenumber of isomorphism lasses in Qtx depends only on g(t; r) and s+ b.Lemma 2 is an extension of Theorem 24 in [2℄. The (diÆult!) proof is omitted.Referenes1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison Wesley,1995.2. A. Blass, Y. Gurevih, and S. Shelah. Choieless polynomial time. Annals of Pureand Applied Logi, 100:141{187, 1999.3. A. Chandra and D. Harel. Struture and omplexity of relational queries. J. Com-put. Syst. Si., 25(1):99{128, 1982.4. A. Dawar and L. Hella. The expressive power of �nitely many generalized quanti-�ers. Inf. Comput., 123(2):172{184, 1995.5. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.6. R. Fagin. Generalized �rst-order spetra and polynomial-time reognizable sets.In R. Karp, editor, Complexity of Computation, pages 43{73. SIAM-AMS Proeed-ings, 1974.7. M. Grohe. The struture of �xed-point logis. PhD thesis, Albert-Ludwigs Univer-sit�at Freiburg, 1994.8. M. Grohe. Fixed-point logis on planar graphs. In Pro. Symp. on Logi in Com-puter Siene, 1998.9. Y. Gurevih. Logi and the hallenge of omputer siene. In E. Borger, editor,Trends in Theoretial Computer Siene, pages 1{57. Computer Siene Press,1988.10. J. Hoproft and J. D. Ullman. Introdution to Automata Theory, Languages, andComputation. Reading, MA: Addison Wesley, 1979.11. N. Immerman. Relational queries omputable in polynomial time. Informationand Control, 68:86{104, 1986.12. M. Y. Vardi. The omplexity of relational query languages. In Pro. ACM SIGACTSymp. on the Theory of Computing, pages 137{146, 1982.

