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Abstract. We formulate and study a privacy guarantee to data owners,
who share information with clients by publishing views of a proprietary
database. The owner identifies the sensitive proprietary data using a secret
query against the proprietary database. Given an extra view, the privacy
guarantee ensures that potential attackers will not learn any information
about the secret that could not already be obtained from the existing views.
We define “learning” as the modification of the attacker’s a-priori probability
distribution on the set of possible secrets. We assume arbitrary a-priori dis-
tributions (including distributions that correlate the existence of particular
tuples) and solve the problem when secret and views are expressed as unions
of conjunctive queries with non-equalities, under integrity constraints. We
consider guarantees (a) for given view extents (b) for given domain of the
secret and (c) independent of the domain and extents.

1 Introduction

Database publishing systems export a set of views of a proprietary database. Clients
can access proprietary data only by formulating queries against the views. Data
owners are subject to two conflicting requirements when designing a publishing
system. On one hand, they need to publish appropriate views of the proprietary
data to support the various types of interactions with the clients. On the other
hand they must protect sensitive proprietary data. The purpose of this work is to
provide a privacy guarantee as well as algorithms for checking it.

The Publishing Setting. We consider the following setting, which corresponds to
the Global-As-View data integration scenario [12, 18]. We are given a proprietary
relational database of schema PR, a set of constraints ∆ formulated in terms of PR
and a set of relational views V̄ over PR. The public schema PU is the collection
of all view names. The data owner identifies the sensitive proprietary data using a
secret query S against PR. Note that no client can ask such a query, as the system
only accepts queries against PU . Instead, the attacking client (from now on referred
to as attacker or client) can try to formulate a series of legal queries against PU
(which the system is bound to answer) and combine their results locally to obtain
information on the secret answer to S, where the notion of “obtaining information”
on the secret will be refined shortly. The data owner wants to defend against such
attacks.
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A Relativized Privacy Guarantee. We formulate and study a guarantee per-
taining to the effect of adding new views in addition to the ones that are already
posted. More specifically, we assume that the owner considers the publishing of a
new view N . While the owner accepts the partial disclosure of the secret by the views
V̄ , he is willing to add N only if it does not disclose any additional information.
We view “disclosure” in its strongest, information-theoretic sense: we model the
attacker’s a priori beliefs about the secret by an assignment of probabilities to the
possible secrets and guarantee that, regardless of the a priori beliefs/probabilities
of the attacker, knowledge of the extent of view N does not lead to a revision of
the a priori beliefs/probabilities, even if the attacker has unbounded computational
resources. We first illustrate the key intuitions behind the proposed guarantee with
examples.

Example 1 shows that in the common case when the owner cannot make as-
sumptions on what the attacker already knows, the guarantee has to be quantified
over all a-priori probability assignments to secrets assumed by the attacker

Example 1. Consider the proprietary relational schema

PR = {RS(reviewer, subcom) SP (subcom, paper) RP (reviewer, paper)}

where RS associates reviewers with the program subcommittee they belong to, SP

associates each paper to the subcommittee it was assigned to, and RP associates
reviewers with the papers they reviewed.

The database satisfies the set of constraints ∆ = {C1, C2, C3}:

C1 : RP [reviewer] ⊆ RS[reviewer]
C2 : RP [paper] ⊆ SP [paper]
C3 : ∀r∀p RP (r, p)→ ∃c RS(r, c) ∧ SP (c, p)

where C1 states that there are no paper reviewers besides those listed in subcom-
mittees and C2 states that every reviewed paper belongs to a subcommittee, and C3

states that papers submitted to subcommittee c can only be reviewed by reviewers
associated to c.

RS reviewer subcom

r1 c1

r2 c1

r3 c2

r4 c2

SP subcom paper

c1 p1

c1 p2

c2 p3

c2 p4

RP reviewer paper

r1 p1

r2 p2

r3 p3

r4 p4

Fig. 1. Instance I for Example 1

The example instance I appears in Figure 1. Let the public data be described
by the schema PU = {VR, VS} where the views VR, VS expose respectively the set
of reviewers and subcommittees:

VR(r) ← RS(r, s) VS(s)← RS(r, s)
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with extents {r1, r2, r3, r4} and {c1, c2} respectively, when evaluated on I . We in-
vestigate the privacy breaches associated with posting the additional views

VRS(r, s)← RS(r, s) VSP (s, p)← SP (s, p).

Of course we want to prevent outsiders from obtaining information about who
reviewed a given paper, i.e., from changing their a-priori belief on the likelihood
of each fact of the form “a given reviewer reviewed p1”. Let’s say we want to hide
who reviewed paper p1.

1 This can be stated precisely as the following secret query
against the proprietary schema:

S(r)← RP (r, p1).

In the absence of knowledge besides VR and VS , any subset of VR’s extent could
have reviewed paper p1. The set of possible secrets therefore contains among others
the candidates s1 = {r1, r3} s2 = {r1, r2}, s3 = {r1, r2, r4}, etc.

Let’s assume that the attacker’s domain knowledge (e.g., his assumptions on who
is likely to bid and who has declared conflict-of-interest) prompts him to assign a
non-zero probability prob1 to s1. If the owner now publishes the extent of VRS ,
the attacker realizes (using constraint C3) that p1 must have been reviewed by
somebody who serves on committee c1, unlike r3. The attacker thus adjusts prob1

and prob3 to 0, distributing their value among the probabilities of the remaining
possible secrets (such as s2). In other words, the remaining possible secrets are more
likely after seeing the extent of the new views. This adjustment is due to learning
something about the secret, namely that it cannot contain r3 or r4.

Notice that if the attacker had known this fact from outside sources, he would
have set prob1 to 0 to begin with and hence not learned anything new from the
additional view extents. However, if the owner cannot predict the attacker’s prior
knowledge, he must follow the conservative approach that the views breach privacy
if they can be used to revise some a priori belief of the attacker. �

The following example illustrates the point that privacy breaches depend on the
proprietary database instance.

Example 2. In Example 1, the publishing of views VRS and VSP was breaching
privacy on instance I . In contrast, consider an instance I ′ obtained from I by
replacing all subcommittees with the same value c0. Then publishing VRS and VSP

does not change the probability distribution on possible secrets since all values in
the extent of VR remain candidates for reviewers of paper p1. In this case the privacy
guarantee holds and the new views can be published. �

Finally, note that integrity constraints can significantly boost the attacker’s
chances of defeating the privacy guarantee and must therefore be taken into account
by the owner. We have seen in Example 1 how integrity constraint C3 could be used

1 Note that in practice we would allow the owner to specify the secret as a parameterized
query, i.e., have in the place of p1 a parameter that stands for “any paper id”. In
the interest of simplifying the notation we assume that the secret involves a particular
constant p1. The generalization is straightforward.
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by the attacker to revise his a priori probabilities for the secrets. Note that if the
attacker did not know C1, C2, C3 to hold, the set of possible secrets would not change
after publishing the extra views. For instance, it does not matter what subcommittee
a paper is assigned to if outside reviewers can also review it. Example 3 shows a
scenario in which integrity constraints that specify cardinality constraints lead to
much more dramatic privacy breaches, exposing the secret fully. Our results take
into account such constraints.

Example 3. Let I ′′ be an instance that coincides with I on the extents of SP and
RS and in which RP states that papers p1 and p2 are reviewed by both r1 and r2

and that papers p3, p4 are reviewed by both r3 and r4. Before seeing VRS , VSP the
attacker considers any subset of reviewers as plausible, leading to 15 possible secrets
to pick from. If the attacker now sees the extents of VRS and VSP corresponding
to I ′′, he must conclude that only subsets of {r1, r2} are plausible secrets, leading
to 3 possibilities: {r1}, {r2}, {r1, r2}. Now assume that the attacker has the addi-
tional knowledge that each paper has exactly two reviewers. We express this prior
knowledge in the form of integrity constraints stating that each paper has at most
two (C4) and at least two reviewers (C5).

C4 : ∀p∀r1∀r2∀r RP (r1, p) ∧RP (r2, p) ∧RP (r, p)→ r = r1 ∨ r = r2

C5 : ∀p∀c SP (c, p)→ ∃r1∃r2 RP (r1, p) ∧RP (r2, p) ∧ r1 6= r2

C4 and C5 further prune the set of possible secrets to only {r1, r2}, the probability
of which is necessarily 1. In other words the secret is fully exposed! �

Contributions. We formulate a novel privacy guarantee that ensures that, given
existing views V̄ and integrity constraints ∆, a new view N can be safely published.
The guarantee does not assume any particular attack method; instead it checks
that regardless of the attacker’s a priori belief about the secret and computational
resources, posting the extent of N can not lead to a revision of the attacker’s belief.
The owner specifies the secret by a query S over the proprietary database instance I .
In that case we say that N is safe for S on I , denoted safe∆

V̄ (N, S, I). We formulate

two versions of the safety guarantee. The first, Gsafe∆
V̄ (N, S, I), assumes that the

attacker has domain knowledge about the possible worlds which witness (generate)
the secret. Then we formulate a less strict guarantee, Esafe∆

V̄ (N, S, I), which applies
when the attacker’s domain knowledge pertains to the likelihood of secrets, and he
has no opinion which distinguishes among the possible worlds witnessing the same
secret.

We solve the problem of deciding both guarantees when S, N and all views in V̄

are defined by unions of conjunctive queries with non-equalities (UCQ 6=) and the
constraints in ∆ are equivalent to containment statements between UCQ 6= queries.
These constraints extend classical embedded dependencies [2] with disjunction and
non-equality, and they can express the standard key and foreign key constraints, but
also cardinality constraints and beyond. All constraints in our motivating examples
belong to this class. We consider three levels of strengthening for each guarantee.

1. We show that Esafe∆
V̄ (N, S, I) is decidable in PSPACE in the size of the in-

stance I and that Gsafe∆
V̄ (N, S, I) is ΠP

2
-complete in the size of I .
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2. We prove that for a fixed domain D we can check in PSPACE in the size of
D that Esafe∆

V̄ (N, S, I) holds for all instances I over D. The analogous problem
for Gsafe is ΠP

2
-complete in the size of D.

3. For both kinds of safety, we show undecidability of checking safety on all in-
stances I (regardless of their domain).

Our techniques shed additional light on the relationship between privacy and infor-
mation integration. In particular, in the process of establishing our undecidability
results, we expose an interesting connection with a problem from information inte-
gration, namely lossless answering of queries using views [4].

2 Two Formal Privacy Guarantees

Possible worlds and plausible secrets. Let I be a proprietary database instance
satisfying ∆. Denote with E the corresponding PU-instance, which associates to
each table V ∈ V̄ the extent V (I) (in short V̄ (I) = E). Given E, there is a set
of PR-instances w over an infinite domain, that satisfy the constraints ∆ (denoted
w |= ∆) and on which the views yield E (V̄ (w) = E). These instances are known as
possible worlds in the literature (see [11] and references therein). Denote their set
with

Worlds∆
V̄ (E) = {w | w |= ∆ ∧ V̄ (w) = E}.

Clearly, I ∈ Worlds∆
V̄ (E). We call a secret s plausible given E if it occurs in a

possible world, i.e., there exists w ∈Worlds∆
V̄ (E) such that S(w) = s. Observe that

S(I) is trivially plausible.

Attacker’s knowledge of secret assuming zero views. We model the attacker’s
general domain knowledge as a probability distribution P : S → [0, 1] defined over
the set of outcomes S [17] that consists of all possible instances of the secret which
are witnessed by some world that satisfies ∆. As usual, given an event, i.e., a set of
outcomes S ⊆ S, we denote by P(S) the probability Σs∈SP(s) of the event [17].

Note that we make no assumptions on P, thus allowing for distributions that
correlate particular tuples. For example, the distribution may model the knowledge
that “reviewers r1 and r2 have the same research background and are likely to review
the same papers” or that “a paper is very likely to have exactly three reviews and
it is impossible that it has less than two or more than four”. This modeling is in
contrast to the one used in [15], which assumes independent probability of individual
tuples appearing in the secret.

Induced probability distributions over private database. The attacker’s
knowledge of the secret, i.e., the distribution P, induces possible compatible prob-
ability distributions P′ : W → [0, 1] over the set W of instances of the private
database which satisfy ∆. Clearly, Worlds∆

V̄ (E) ⊆ W . Note that the attacker is
often unaware of the details of those distributions since they may also involve data
that are tangential or irrelevant to the secret, i.e., data that the attacker is unaware
of or is not interested in. For example, though the attacker of Example 1 only cares
about paper p1 and its potential reviewers, the induced probability distribution as-
signs probabilities to the full set of data pertaining to the conference. Our work
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considers two assumptions for deducing the compatible probability distributions
over the private database instance and produces corresponding results:

1. General: The distribution P induces the set Pg that consists of all distributions
Pg that are defined on W and have the property

∀s ∈ S : Σw∈W,S(w)=sP
g(w) = P(s) (1)

We will see that according to the general assumption, maintaining privacy re-
quires that no possible world w that witnesses a secret instance s (i.e., S(w) = s)
can be eliminated by the extra view. A less strict requirement, which is compat-
ible with the fact that the attacker may not have an opinion on the non-secret
data, is provided by the next assumption.

2. Equiprobable Witnesses: The distribution P induces the unique distribution
Pe, called equiprobable witness, that is defined on W and has the property

∀s ∈ S, w ∈ W : S(w) = s⇒ Pe(w) =
P(s)

|{w′ | w′ ∈ W , S(w′) = s}|

i.e., all witnesses w of a secret s have equal probability. Obviously Pe ∈ Pg.

Belief based on a-priori set of views. With a slight abuse of notation, in the
context of a distribution Pg :W → [0, 1] a secret instance s ∈ S will also stand for
the event {w | w ∈ W , S(w) = s} and E will also stand for the event Worlds∆

V̄ (E).
Then the conditional probability Pg(s|E) denotes the probability of s being the
secret once the view extents E have been observed, but before seeing the extent
of the additional view N that the owner considers whether to publish or not. We
will call Pg(s|E) the attacker’s a priori belief, and according to the conditional
probability definition [17] we have

Pg(s|E) =

∑
w∈Worlds∆

V̄
(E),S(w)=s Pg(w)

∑
w∈Worlds∆

V̄
(E) P

g(w)
(2)

Since Pe ∈ Pg , Equation (2) holds also for Pe. Notice that (2) associates probability
0 to implausible secrets. Also, the more possible worlds witness a certain secret
candidate s, the higher its probability. In particular, if all possible worlds yield the
same secret s then Pg(s|E) = 1.

A-posteriori belief. Now consider a new view N and let E ′ be the PU ∪ {N}-
instance which extends E by associating to N the extent N(I). E ′ is what the
attacker would observe after the additional publishing of view N . As above, we
denote with Worlds∆

V̄ ,N (E′) the set of possible worlds of E ′ and the conditional

probability Pg(s|E′) = Pg(s|Worlds∆
V̄ ,N (E′)) models the probability of each secret

instance once the instance of N is also observed.

The privacy guarantees. We propose two privacy guarantees that correspond to
the general and the equiprobable witness assumptions. Both guarantees ensure that
N can be safely published by checking that, regardless of the attacker’s domain
knowledge, the a priori and a posteriori beliefs coincide.
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Definition 1 (Instance-dependent View Safety Under Equiprobable Wit-
nesses). We say that view N is safe under equiprobable witnesses for the secret
query S on PR-instance I given views V̄ and constraints ∆ iff
for each probability distribution P on the candidate secrets and for each s we have

Pe(s|E) = Pe(s|E′)

where E = V̄ (I) and E′ = (V̄ , N)(I). We denote this property as Esafe∆
V̄ (N, S, I).

Definition 2 (Instance-dependent View Safety Under General Induced
Probabilities). We say that view N is safe under general induced probabilities for
the secret query S on PR-instance I given views V̄ and constraints ∆ iff
for each probability distribution P on the candidate secrets, for each s, and for each
Pg ∈ Pg we have

Pg(s|E) = Pg(s|E′)

where E = V̄ (I) and E′ = (V̄ , N)(I). We denote this property as Gsafe∆
V̄ (N, S, I).

Safety over classes of instances. As shown in Example 2, the satisfaction of
the privacy guarantee depends on the proprietary database I . The owner is thus
faced with the following dilemma. Checking the guarantee on a given instance I
avoids being overly conservative and rejecting the publishing of many extra views
because they breach privacy on another instance I ′. On the other hand, this means
re-checking the privacy guarantee upon each update to I . Alternatively, we consider
the following two levels of strengthening the safety guarantees from Definitions 1
and 2 to take into account classes of instances.

Esafe∆
V̄ (N, S,D) := ∀I ∈ Inst(D) : Esafe∆

V̄ (N, S, I) (3)

Esafe∆
V̄ (N, S) := ∀I : Esafe∆

V̄ (N, S, I) (4)

Gsafe∆
V̄ (N, S,D) := ∀I ∈ Inst(D) : Gsafe∆

V̄ (N, S, I) (5)

Gsafe∆
V̄ (N, S) := ∀I : Gsafe∆

V̄ (N, S, I) (6)

(3) and (5) extend safety to a (finite) set Inst(D) of PR-instances over some given,
finite domain D (useful when modeling dictionary attacks), while (4) and (6) extend
safety to all PR-instances.

Dictionary Attacks. It is often appropriate to assume that the attacker already
knows the domain of the secret and hence is able to launch dictionary attacks, i.e.,
attacks that consist of potentially large numbers of queries that involve constants
that have not been retrieved from the database; instead the attacker already knows
those constants from his “dictionary knowledge”. A typical example is an insurance
database, in which we may want to assume that the list of potential patients and
the list of diseases are publicly known (from the employee lists of the participating
companies and a medical encyclopedia) but the data owner wants to hide the asso-
ciation between patients and diseases. When dictionary attacks are of concern, we
model the dictionary knowledge of the attacker by including among the published
views dictionary views which publish projections of the secret on those attributes
whose domain is considered to be known to the attacker. Notice that in our running
example dictionary views arise naturally and need not be added: VR is already one.
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3 Preliminaries: Queries and Constraints

Queries. A term is a variable or constant. By x̄ we denote a finite sequence of
terms x1, . . . , xk. The language of conjunctive queries with non-equalities (CQ 6=)
consists of expressions of the form Q(z̄) ← `1(x̄1), . . . , `n(x̄n) where each `i(x̄i) in
the rule body is a literal, i.e., an atom R(x̄), an equality xi = xj or an inequality

xi 6= xj . Given Q ∈ CQ6=, we define head(Q) and body(Q) to give the parts to the
left and to the right of the arrow, respectively. A union of conjunctive queries with
non-equalities (UCQ 6=) is an expression of the form Q =

∨n
i=1 Qi where Qi ∈ CQ 6=

for each 1 ≤ i ≤ n. We have Q(D) =
⋃

i Qi(D), where Q(D) denotes the result of
query Q on database D. All queries and views in the motivating examples belong
to UCQ 6=.

Constraints. For a given query language L, we consider the corresponding con-
straint language

IC(L) := {∀x̄(U → V ) : U, V ∈ L}

where x̄ is the set of free variables in both U and V . These kinds of constraints
express the containment of the queries U in V and are known as embedded depen-
dencies when L = CQ (conjunctive queries). Given a set of constraints Σ ⊆ IC(CQ),
there is a well known procedure for extending a query Q ∈ CQ to another query Q′

by an iterative procedure known as the chase. However, the constraints in Exam-
ple 1 belong to the more expressive language IC(UCQ 6=) (see also the cardinality
constraints in Example 3). In [8, 5], we extended the chase to Q ∈ UCQ 6= and
Σ ⊆ IC(UCQ 6=). The extension is repeated in the full version of this paper [6].
We only give an example here, which illustrates that the chase produces unions of
conjunctive queries with non-equalities (or, equivalently, queries whose body is in
disjunctive normal form).

Example 4. Consider the query body T (x, y) and the constraint σ := ∀x∀yT (x, y)→
(∃z R(x, z)) ∨ (x 6= y). 2 A chase step of T (x, y) with σ yields the following query
body in disjunctive normal form: T (x, y) ∧R(x, z) ∨ T (x, y) ∧ x 6= y. �

It is well-known that checking termination of the chase is undecidable even for the
constraint language IC(CQ). In the full paper [6], we repeat a sufficient condition
for termination introduced in [8], namely the property of a set of constraints having
stratified witnesses. This condition is the most general termination condition we
are aware of, and it is efficiently checkable (in PTIME in the size of the constraint
set). Essentially, it ensures that only a finite number of new variables (such as z in
Example 4) can be introduced into the chase result, which therefore must be finite.

Theorem 1 ([8]). If ∆ ⊆ IC(UCQ 6=) has stratified witnesses, then the chase with
∆ of any Q ∈ UCQ 6= terminates. It yields a result

∨n

i=1 Qi where each Qi ∈ CQ 6=

has size polynomial in the size of Q and n is exponential in the size of Q.

In this paper, we assume that all queries belong to UCQ 6= and that all
constraints belong to IC(UCQ 6=).

2 σ belongs to IC(UCQ 6=) as it can be restated as the containment of Q1(x, y)← T (x, y)
in Q2(x, y)← T (x, y) ∧R(x, z) ∨ T (x, y) ∧ x 6= y.
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4 General Induced Probability

Privacy on Given Instance or Domain. The main difficulty we need to over-
come when checking Gsafe∆

V̄ (N, S, I) is the fact that the guarantee is universally
quantified over infinitely many probability distributions P on the secrets and over
infinitely many induced probability distributions Pg on the possible worlds. The
following result solves this problem partially, showing that we can ignore proba-
bility distributions altogether, reducing the problem to comparing possible worlds
only. Recall that E′ is E extended with the new materialized view N .

Lemma 1. Gsafe∆
V̄ (N, S, I) holds if and only if Worlds∆

V̄ (E) = Worlds∆
V̄ ,N(E′).

What is left to do is to compute the sets of possible worlds, Worlds∆
V̄ (E) and

Worlds∆
V̄ ,N (E′). The problem here is that these sets have potentially infinite cardi-

nality. In the remainder of this section, we solve this problem as follows. First, we
show that the infinite set of possible worlds is finitely representable by a set of tem-
plates, denoted TWorlds∆

V̄ (E). Then we show how do adapt Lemma 1 to compare

only TWorlds∆
V̄ (E) and TWorlds∆

V̄ ,N(E′) (Theorem 3 below). Finally, we show how

to compute TWorlds∆
V̄ (E).

Possible world templates. It was shown in [11] that for conjunctive query views
and in the absence of constraints, the infinite set of possible worlds is finitely rep-
resentable by a set of templates. We extend this result to UCQ 6= views and in the
presence of constraints. Let D be a set of constants and V a set of variables. A
database over D associates to each relation in its schema a set of tuples of constants
from D. A database template over D and V associates to each relation a set of tuples
of constants and variables from D∪V [11]. The notion of evaluating a UCQ 6= query
over a database template extends in the obvious way. Given the views V̄ of extent
E, a possible world template is a database template T such that V̄ (T ) = E.

Example 5. Consider a proprietary database of schema R(A, B, C) and domain D.
Also consider the view V (A, C) ← R(A, B, C) of extent E = {(a1, c1), (a2, c2)}.
Then T1 = {R(a1, x1, c1), R(a2, x2, c2)} and T2 = {R(a1, x3, c1), R(a2, x3, c2)} are
possible world templates since V (T1) = V (T2) = E. WorldsV (E) is represented by
{T1, T2} in the following sense: for any possible world W ∈ WorldsV (E), there is
an injective homomorphic embedding from T into W . In particular, if we instan-
tiate x1, x2, x3 with constants from D in all possible ways (but never x1 and x2

with the same constant, as T2 takes care of that case), we are sure to obtain only
possible worlds (infinitely many if D is infinite). Notice that in general we need
more than one template to represent the possible worlds. If in the above example
we also exported the view V ′(B)← R(A, B, C) of extent {b1, b2} then the possible
worlds would be given by the templates T1 = {R(a1, b1, c1), R(a1, b2, c2)}, T2 =
{R(a1, b2, c1), R(a1, b1, c2)}, T3 = {R(a1, b1, c1), R(a1, b1, c2)}, T4 = {R(a1, b2, c1),
R(a1, b2, c2)}, which happen to be full-fledged databases as they mention no vari-
ables.

Definition 3 (Reduced Universal Set of Possible World Templates). We
say that a set T of possible world templates is universal for a view extent E if
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for any possible world W of E, there is an injective homomorphic embedding h

from some T ∈ T into W , i.e. the images under h of distinct variables from T are
distinct. T is reduced if (i) for each T1, T2 ∈ T with T1 6= T2 there is no injective
homomorphic embedding from T1 into T2 and (ii) for each T ∈ T there is no injective
homomorphism from T into a proper subset of T ’s tuples.

Given the integrity constraints ∆ and the published views V̄ of extent E, there may
be several universal sets of possible world templates, but only a single reduced one:

Theorem 2. The reduced universal set of possible world templates is unique up to
isomorphism. We denote this set with TWorlds∆

V̄ (E).

It turns out that instead of comparing sets of possible worlds, we can compare their
reduced universal sets of templates:

Theorem 3. Gsafe∆
V̄ (N, S, I) holds if and only if TWorlds∆

V̄ (E) = TWorlds∆
V̄ ,N(E′).

We next provide an algorithm for finding TWorlds∆
V̄ (E). The algorithm is based on

capturing the view definitions with a set of constraints ΣV and chasing the extent
E with ΣV as well as the integrity constraints in ∆. All these constraints belong to
IC(UCQ 6=) and are described below.

Let V̄ = V1, . . . , Vn. We define ΣV as the following set of constraints:

ΣV := {∀x̄iȳi(body(Vi)→ head(Vi)) | 1 ≤ i ≤ n}

∪{∀x̄i(head(Vi)→ ∃ȳibody(Vi)) | 1 ≤ i ≤ n}

where x̄i are the variables in head(Vi), and where ȳi are the variables in body(Vi)
which do not appear in head(Vi).

For a given extent E of the views, we introduce the following set of constraints
ΣE . Let E associate to view Vi the set of tuples {t1, . . . , tni

}. Then define

ΣE := {∀t Vi(t)→

ni∨

j=1

t = tj | 1 ≤ i ≤ n}

which states that for each i, the only tuples in Vi are the ones given by E.
Finally, define the following axiom about equality: σ 6= := ∀x∀y true → x =

y ∨ x 6= y. Also, let the canonical tableau of E be the conjunction of all facts in E:

CanT (E) :=
n∧

i=1

ni∧

j=1

Vi(tj).

Function PWT below returns the desired set of possible world templates.

function PWT(E; V̄ ; ∆)
(1) Compute Σ := ∆ ∪ΣV ∪ΣE ∪ {σ 6=}.
(2) Let

∨m

l=1 Tl be the result of chasing CanT (E) with Σ.
(3) For each l, compute T ′

l := Tl|PR (that is, keep only the PR literals).
(4) Set T1 := {T ′

l |1 ≤ l ≤ m}.
(5) Let T2 be the reduced T1, obtained by dropping each T from T1

for which there is another T ′ ∈ T1 and a homomorphic embeddingfrom T ′ into T .
(6) Return T2.

Since function PWT is based on chasing, it is not a priori clear that it even termi-
nates. Theorem 4 guarantees termination of PWT and implies the finiteness and
computability of TWorlds∆

V̄ (E).

10



Theorem 4. If ∆ has stratified witnesses then:

1. Function PWT is guaranteed to terminate for any V̄ and E.
2. The result of PWT is a template set of cardinality at most exponential in the

size of E. Each template has size polynomial in the size of E.
3. PWT(E; V̄ ; ∆) = TWorlds∆

V̄ (E).

Theorems 3 and 4 immediately suggest a decision procedure for Gsafe∆
V̄ (N, S, I):

Corollary 1. If ∆ has stratified witnesses, then Gsafe∆
V̄ (N, S, I) holds if and only

if PWT(V̄ ; ∆; E) = PWT(V̄ , N ; ∆; E′).

Notice that, by Theorem 4 (2), the naive algorithm which eagerly computes the
results of PWT requires exponential space in the size of I . However, checking
that PWT(V̄ ; ∆; E) 6= PWT(V̄ , N ; ∆; E′) is clearly in Σ

p
2 : guess a template T ∈

PWT(V̄ ; ∆; E) and then ask an NP oracle whether T ∈ PWT(V̄ ; ∆; E′). Hence
Gsafe∆

V̄ (N, S, I) is in ΠP

2
, which turns out to be asymptotically optimal:

Theorem 5. If ∆ has stratified witnesses then

1. Gsafe∆
V̄ (N, S, I) is ΠP

2
-complete in the size of I.

2. Gsafe∆
V̄ (N, S,D) is ΠP

2
-complete in the size of D.

Unrestricted Privacy. We next show that the strongest level of Gsafe , namely
Gsafe∆

V̄ (N, S) := ∀I Gsafe∆
V̄ (N, S, I) is undecidable. Towards achieving this result,

we expose an interesting connection with a problem that has recently received con-
siderable attention in the area of information integration, namely lossless query
answering using views.

Lossless Query Answering. Given a set of views V̄ and a query Q (both formu-
lated against the same schema) in data integration we are interested in answering Q

using only the extents E of the views. Typical algorithms proposed in the literature
(e.g. [9]) find the certain answers to Q, defined as certQ(E) :=

⋂
w∈Worlds

V̄
(E) Q(w).

Notice that regardless of which possible world I ∈ Worlds V̄ (E) actually gener-
ated the view extents E, we have certQ(E) ⊆ Q(I). [4] asks whether for each
I and corresponding E, we can retrieve the exact answer to Q(I) from E, i.e.
∀I E = V̄ (I) → certQ(E) = Q(I). If so we say that the views V̄ can be used
to losslessly answer Q, denoted V̄ |= Q. [4] identifies the decidable cases for regu-
lar path queries and views over semistructured data. In contrast, in the relational
model [7] shows that even in the absence of constraints, if Q and V̄ belong to UCQ,
the problem is undecidable.

It turns out that the problem V̄ |= Q reduces to Gsafe∅
V̄

(Q, id) where id is the
identity secret query which returns the entire database. This implies:

Theorem 6. Gsafe∆
V̄ (N, S) is undecidable, even under no constraints (∆ = ∅).

In some scenarios the Gsafe∆
V̄ (N, S, I) guarantee may turn out to be too strong.

By Lemma 1, it requires the set of possible worlds not to change, which in turn
means that N(I) can be obtained solely from V̄ (I). Depending on I , only few and
non-interesting N ’s could pass this test. In the next section we relax this guarantee
assuming that attackers treat witnesses for a secret as equiprobable.
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5 Equiprobable Witnesses

Privacy on Given Instance or Domain. As was the case for the Gsafe guaran-
tee, the main difficulty to overcome when checking Esafe∆

V̄ (N, S, I) is the universal
quantification over infinitely many probability distributions P on the candidates
for secrets. Again we solve this problem by showing that we can ignore proba-
bility distributions entirely. This time however we reduce the problem to count-
ing possible worlds and plausible secrets. Denote the multiplicity of secret s when
E is published as the number of possible worlds on which the secret query eval-
uates to s: multE(s) = |{w | w ∈ Worlds∆

V̄ (E), S(w) = s}| and multE′(s) =

|{w′ | w′ ∈ Worlds∆
V̄ ,N(E′), S(w′) = s}|. Notice that s is plausible for E if and

only if multE(s) > 0.

Lemma 2. Esafe∆
V̄ (N, S, I) holds if and only if

1. each plausible secret for E stays plausible for E ′, and

2. all pairs s1, s2 of secrets that are plausible for E satisfy multE(s1)
multE(s2)

= mult
E′ (s1)

multE′ (s2) .

What is left to do is to compute the multiplicities of secrets, which requires com-
puting the sets of possible worlds, Worlds∆

V̄ (E) and Worlds∆
V̄ ,N(E′). We again use

the finite representations of these sets TWorlds∆
V̄ (E), respectively TWorlds∆

V̄ ,N (E′)
and we show next (Theorem 7) that the privacy guarantee reduces to running the
test of Lemma 2 on these template sets. We first introduce a notation for the mul-
tiplicity of templates witnessing s: TmultE(s) = |{t ∈ TWorlds∆

V̄ (E) | S(t) = s}|

and TmultE′(s) = |{t′ ∈ TWorlds∆
V̄ ,N(E′) | S(t′) = s}|.

Theorem 7. 1. Assume that the set of views V̄ contains dictionary views for each
projection of the secret query S. Then every candidate secret s is plausible for
E if and only if there exists T ∈ TWorlds∆

V̄ (E) with S(T ) = s.

2. Esafe∆
V̄ (N, S, I) holds if and only if for every pair of plausible secrets s1, s2 we

have TmultE(s1)
TmultE(s2)

= TmultE′ (s1)
Tmult

E′ (s2) .

Putting together Theorem 7 and Theorem 4, we obtain that algorithm ESAFE be-
low is a decision procedure for Esafe∆

V̄ (N, S, I).

algorithm ESAFE (V̄ , ∆, N, S, I)
(1) Compute E := V̄ (I) and E′ := (V̄ , N)(I).
(2) Compute TWorlds∆

V̄ (E) := PWT(V̄ ; ∆; E), TWorlds∆
V̄ ,N (E′) := PWT(V̄ , N ; ∆; E′).

(3) Compute Secrets∆
V̄ (E) := {S(w) | w ∈ TWorlds∆

V̄ (E)}.
(4) For each s1, s2 ∈ Secrets∆

V̄ (E) do

if TmultE(s1)
TmultE(s2)

6=
Tmult

E′ (s1)

Tmult
E′ (s2)

then return false.

(5) Return true.

Notice that, as presented, algorithm ESAFE needs exponential space in the size of
I . Indeed, the two calls of function PWT yield results of size exponential in the size
of E and E′ (therefore exponential in the size of I). This presentation was chosen
for the sake of simplicity. It turns out that we can do better.

Theorem 8. If ∆ has stratified witnesses then

12



1. Esafe∆
V̄ (N, S, I) is decidable in PSPACE in the size of I.

2. Esafe∆
V̄ (N, S,D) is decidable in PSPACE in the size of D.

The proof is based on the key idea that we do not need to first list the en-
tire result of PWT, instead enumerating the possible world templates on demand.
The technique extends straightforwardly to deciding Esafe∆

V̄ (N, S,D): enumerate

in PSPACE in the size of D all instances I ∈ Inst(D) and check Esafe∆
V̄ (N, S, I)

using algorithm ESAFE.
We do not have a matching lower bound for these results. Indeed, we conjecture

that the exact complexity lies in the counting complexity class C=P [19] which is
included in PSPACE.

Unrestricted Privacy. Using a reduction from the problem of lossless query an-
swering, we show that Esafe∆

V̄ (N, S) := ∀I Esafe∆
V̄ (N, S, I) is undecidable:

Theorem 9. Esafe∆
V̄ (N, S) is undecidable even under no constraints (∆ = ∅).

6 Discussion

The key insight on which our framework for privacy diagnostics is based is the fact
that the modeling of the attacker’s knowledge should start from possible worlds
or at least plausible secrets. The individual tuples in the secret are correlated by
appearing together in possible worlds.

For a comparison of the two proposed flavors of privacy guarantees, assume that
E has 200 possible worlds, on which the secret query evaluates to s1 for 100 worlds
and to s2 for the remaining worlds. If after publishing E ′, only 100 worlds remain,
of which none witnesses s1, both guarantees will fail. The same happens if 101 world
remain, of which 1 witnesses s1 and the rest s2. However, if a posteriori we are left
with 100 secrets of which half witness s1 and half witness s2, Gsafe fails while Esafe
holds. We leave it to the data owner to decide which guarantee is more appropriate
for a specific application.

Notice that our framework can easily model and defend against collusion by
multiple attackers. Suppose that access control mechanisms allow attacker a1 to
see a set of views V̄1 and attacker a2 to access V̄2. Then defending against their
collusion requires checking safe∆

V̄1,V̄2
(E).

Also observe that since integrity constraints have the same effect as additional
views, namely of ruling out possible worlds, the publishing of integrity constraints
can also lead to privacy breaches. The publisher can employ the same framework
to decide whether the publication of a constraint is safe.

In light of the high complexity bounds we obtained in terms of data complexity,
our future work will focus on finding special cases for the view and secret definitions
which yield tractability. We are also looking into further relaxations of the privacy
guarantees.

7 Related Work

Prior work on privacy in databases has focused on implementing access control, i.e.
allowing clients to see only those published views which they are authorized to. The

13



techniques are based on cryptographically encoding the data (see [13, 14] and refer-
ences within). Other techniques involve the authentication of users via credentials,
as in the TrustBuilder project (see [20] for a comprehensive list of publications).
Our work is orthogonal to work on access control, as it helps data owners design
the views such that attackers cannot breach privacy using only authorized accesses.

[1] introduces c-tables, a compact formalism for finitely representing large (and
potentially infinite) sets of possible worlds, and shows Π

p
2 -complete data complexity

for checking that the sets of possible worlds represented by two c-tables are the same.
c-tables are not sufficiently expressive to model the set of possible worlds given by
a view instance. [11] introduces database templates to this end and shows how to
compute them using the chase, but does not address the comparison of the sets of
possible worlds. Our approach for finding possible world templates coincides with
the one in [11] when there are no constraints on the private database and the views
are conjunctive queries.

[10] solves the problem of limiting privacy breaches in a scenario in which the
aggregation of a set of private client data items is computed at the server. A privacy
breach is essentially defined as a significant difference between the a posteriori and
the a priori probability distributions. [10] provides not only a diagnostic tool, it also
scrambles the data to improve privacy. The model assumes independence among
the private values at the clients. Thus, the techniques do not apply directly to our
scenario, where the secret tuples are not independent of each other (indeed they
are correlated via the possible worlds in which they appear). On the other hand,
we do not handle aggregation, which is at the center of the model in [10]. [3] takes
aggregation into account and shows that exposing the result of counting queries
allows the retrieval of an isomorphic copy of the structure of the database.

[16] takes a dual approach to ours. While we use queries to specify what cannot
be disclosed, [16] uses conjunctive query views to specify what may be seen by
outsiders. In this setting, conjunctive client queries asked against the proprietary
database are answered only if they have a rewriting using the allowable views.

[15] is the closest work in spirit to ours. It pioneers the idea of specifying the
secret as a conjunctive query and checking that the new view does not leak infor-
mation about the secret by modifying the a priori probabilities of possible secrets.
The most significant difference stems from the fact that [15] assumes that the tuples
in the secret answer are independent events. This fails to defend against attackers
who take into account correlations between tuples. This restriction is used to de-
rive decidability even for the unrestricted guarantee. [15] lists as open the problem
of deciding the guarantee when the independence assumption on secret tuples is
lifted. This is the problem we address in this work. Not surprisingly, this problem is
harder: the unrestricted guarantee becomes undecidable. Furthermore, we needed
to refine the privacy guarantee in order to model whether the attacker knows or
does not know anything about the witnesses of the secrets. Other differences are
the fact that the guarantee is checked in [15] only for restricted integrity constraints
(functional dependencies) and a-priori views (only boolean views). Also, [15] does
not address the case when the instance is given, focusing on given domain and
unrestricted guarantee only. Extending the results to the instance-based guarantee
when no finite domain is given would require generating the set of possible world
templates.

14



References

1. S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying of
sets of possible worlds. Theoretical Computer Science, 78:159–187, 1991.

2. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

3. Michal Bielecki and Jan Van den Bussche. Database interrogation using conjunctive
queries. In ICDT, pages 259–269, 2003.

4. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Lossless regular views. In Symposium on Principles of Database Systems (PODS 2002),
pages 247–258, 2002.

5. Alin Deutsch and Val Tannen. XML Queries and Constraints, Containment and Re-
formulation. To appear in Journal of Theoretical Computer Science (TCS), 2005.

6. Alin Deutsch and Yannis Papakonstantinou. Privacy in Database Publishing. Techni-
cal report, Department of Computer Science and Engineering, UCSD, 2004. Extended
version of this paper, available from http://www.db.ucsd.edu.

7. A. Deutsch, L. Sui, and V. Vianu. Queryies determined by views. Manuscript available
from http://www.db.ucsd.edu/people/alin/papers/QdV.ps, 2004.

8. Alin Deutsch and Val Tannen. Reformulation of xml queries and constraints. In ICDT,
2003.

9. Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recursive query plans
for data integration. Journal of Logic Programming, 43(1):49–73, 2000.

10. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy pre-
serving data mining. In PODS, 2003.
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