
Theoretical Computer Science 336 (2005) 57–87
www.elsevier.com/locate/tcs

XML queries and constraints, containment and
reformulation

Alin Deutscha,∗, Val Tannenb
aDepartment of Computer Science and Engineering, University of California San Diego, 9500 Gilman Drive,

La Jolla, CA 92093, USA
bDepartment of Computer and Information Science,University of Pennsylvania, 200 South 33rd Street,

Philadelphia, PA 19104, USA

Abstract

Starting from the XQuery language we define XBind, an XML analog of relational conjunctive
queries as well as a related class of XML integrity constraints (dependencies).We identify a fragment
of XBind for which containment is decidable, in fact�p

2 -complete, and a further fragment for which
containment is NP-complete. We extend the containment algorithm to take XML dependencies into
account. We give an algorithm for the reformulation of XBind queries under combinations of GAV
and LAV XQuery views, as well as additional dependencies.We prove a completeness theoremwhich
guarantees that under certain conditions, our algorithmwill find aminimal reformulation if one exists.
Moreover, we identify conditions when this algorithm achieves optimal complexity bounds. Our
results on containment and reformulation depend on certain restrictions on the query and constraint
languages.We calibrate the results by showing that lifting these restrictions significantly changes the
complexity of the problems.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

For the relational data model there exists a rich and interesting theory of conjunctive
queries and of the (embedded) dependencies1 corresponding to them. Query containment

∗ Corresponding author, supported in part by NSF/CAREER grant 0347968.
E-mail addresses:deutsch@cs.ucsd.edu(A. Deutsch),val@cis.upenn.edu(V. Tannen).
1Also known asintegrity constraints.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.10.032

http://www.elsevier.com/locate/tcs
mailto:deutsch@cs.ucsd.edu
mailto:val@cis.upenn.edu

58 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

and minimization, plain or under dependencies, were studied during the classical times
(see[1] for references). Query reformulation, specifically rewriting with views, was studied
more recently (see the survey [18]). A lot of interest in a similar theory for the XML data
model is now emerging and this paper is an attempt to contribute to such a theory.
In fact, our strategy is to solve the XML query containment and reformulation problems

via sound and complete reductions to relational problems that can be solved with thechase
technique and with theChase&Backchase(C&B) algorithm.2 The querying instruments
that have been standardized for XML, especially XQuery [33] and its critical component
XPath [31], are quite expressive and have been designed to deal with non-first-order features
like transitive closure and tree data. In view of this, the large size of the XPath/XQuery
fragments for which our relational reduction works is a pleasant surprise.
Thefirst problem is to identifywithinXMLqueryandconstraint formalisms the fragments

that can be the analogs of the relational queries and dependencies with a nice theory. We
begin by looking at the semantics of an XQuery example.

Example 1.1. Consider an XML document containingbook elements, each of which con-
tains atitle and someauthor subelements. The queryQ below restructures the data by
grouping the book titles with each author. The groups appear asitem elements, whose
writer subelement contains the author name and whose (possibly multiple)title subele-
ments contain all titles (co-) authored by this writer.

Q: <result>

for $a in distinct(//author/text())
return

<item>

<writer> $a </writer>

{for $b in //book, $a1 in $b/author/text(), $t in $b/title
where $a = $a1
return $t}

</item>

</result>

XQuery relies on XPath expressions such as//author/text() to navigate through the input
document. XPath pattern-matching binds the XQuery variables to the document’s elements,
text values, etc. In fact,Q’s computation can be described in two stages. First, all bindings
for the variable $a to distinct text values ofauthor elements are computed. Next, a unique
result root element is created and for every binding of $a, a newitem subelement of this
result element is created. Eachitem element has awriter subelement containing the text
$a was bound to, and as manytitle subelements as are returned by the nested inner query
shown in braces. Notice that the inner query is correlated with the outer query through the
occurrence of the variable $a. The execution of the inner query is also in two stages. First
a set of triples of bindings for the triple of variables $b,$a1,$t is computed (of course, the

2We introduced C&B with Lucian Popa in[8]. In [13] we proved that C&B is complete for relational mini-
mization under dependencies.

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 59

binding of $a1 is always the same as the current binding of $a). In the second stage,
for each triple of bindings the inner query returns acopy of the element bound
to $t .

The first stage of the XQuery semantics is reminiscent of the evaluation of relational
conjunctive queries. The analogy is strengthened by the fact that the semantics of XPath
expressions[34] consists of unary or binary relations over element (node) identities and/or
strings. We are naturally led to a syntax like that of conjunctive queries, but with atoms
defined by XPath expressions (in addition to usual relation predicates). For instance, we
associate to the queryQ in Example 1.1 the following queries:

Xbo(a) ← [//author/text()](a),

Xbi(a, b, a1, t) ← Xbo(a), [//book](b), [./author/text()](b, a1), [./title](b, t), a = a1.

The XPath atoms are understood as relations. For example,[./author/text()](b,$a1) is
true iff a1 is the text inside an element (node) taggedauthor who is a child of the nodeb.
And [//book](b) is true iff b is a child taggedbook of some element that is a descendant
of the root (in fact, all nodes are descendants of the root). The rest of the semantics is as
for conjunctive queries. Hence,Xbo computes the bindings for the outer query, whileXbi
computes the bindings for the inner query, for eacha in the outer query. Notice thata is
also inXbi ’s output, in order to preserve the correlation between variable bindings.
We call such queriesXBindqueries because they fully capture the first stage of XQuery

evaluation in which the document is navigated, patterns are matched, and all the bindings
for the variables are computed. XBind queries play for us the role of conjunctive queries,
with some restrictions on the XPath expressions used, as we shall see.
Note that relational conjunctive queries (for binary relation schemas) can be seen straight-

forwardly as particular cases of XBind queries. But the semantics of XBind queries is more
complicated, with more containments/equivalences holding, e.g.:

C(x)← [/a](x) is contained in D(x)← [//a](x),

E(x)← [/a/b](x), [./b](y, x), [./c](y, z) is equivalent to F(x)← [/a[c]/b](x).

A central concern of this paper is the problem ofreformulationof XQueries. The problem
of query reformulation is a very general one: given two schemasP andSand a correspon-
denceCR between them, and given a queryQ formulated in terms ofP, find a queryX
formulated in terms ofSthat is equivalent toQmodulo the correspondenceCR(see Fig.1).
Reformulation algorithms have many uses in database technology, for example in data in-
tegration whereP is theglobal integrated schema andSgathers thelocal schemas of the
actual data sources, or in schema evolution whereP is the old schema andS is the new
schema. An application concerning specifically XQuery is XMLpublishing, whereP is
the public XML schema whileS is the storage schema of proprietary data, which can be a
mixture of native XML repositories and relational DBMSs. The public data is virtual, hence
an XQueryQ formulated againstPmust be reformulated as a queryX that can be actually
executed on the stored proprietary data.

60 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

Fig. 1. General problem of query reformulation.

A important issue is how tomodel the schema correspondenceCR. Twomain approaches
have been used for this. With the terminology used in data integration[18,21] we have
“global-as-view” (GAV) and “local-as-view” (LAV) with the views themselves (sometimes
calledmappings) expressed in a query language and directed as follows:

GAV : S −→ P, LAV : P −→ S.

Assuming that we know how to compose queries and views, we have

Q ◦GAV = X, X ◦ LAV = Q.

We see that GAV reformulation amounts to, and is calledcomposition-with-viewswhile
LAV reformulation amounts to “solving an equation”, which is quite a bit harder, may have
multiple solutions, and is often calledrewriting-with-views.
In fact, our approach allowsbothGAV and LAV views in the schema correspondence,

each of them a mapping from a portion ofS to a portion ofP or conversely. This is very
useful in general and is actually crucial in XML publishing: GAV views are used for hiding
portions of the proprietary data, while LAV views are used to describe redundant stored
data such as materialized views or cached query answers, which play an important role in
tuning the performance of applications.
Moreover, we shall assume that the views, GAV or LAV, are expressed in XQuery. In

this we agree with[4] that stored relational data can be easily understood through virtual
XML encodings thus facilitating design and administration tasks when the data is mixed.
Although the query to be reformulated is expressed in XQuery, it turns out that only the
navigation/variable binding part depends on the schema correspondence. As in [4,17,24],
we split off the navigation part of an XQuery and therefore we concentrate only on the
reformulation of XBind queries. At the same time, for the views we cannot make this
simplification since their output is essential in reformulation.
In many applications containment and reformulation are considered only over classes of

documents that satisfy certainintegrity constraints. While much is known about relational
constraints, XML constraint formalisms are still “under construction” so we allowed our-
selves to be closely guided by an analogy with the relational case when defining a class of
dependencies for XML. Just as relational (embedded) dependencies [1], also called tuple-
and equality-generating dependencies (tgd’s and egd’s) in [2], correspond closely to rela-
tional conjunctive queries, we defineXML IntegrityConstraints (XIC) to relate closely to
XBind queries. Hence we use conjunctions of atoms defined by XPath expressions as in

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 61

XBind and we use the same logical format (quantifiers and implication) as in the relational
case.

Example 1.2. For an XML document recording persons, their addresses as children nodes,
and their social security numbers (ssn) asanattribute, (1), (2) and (3) belowstate respectively
that persons have at most one address, at least one address, and that thessn attribute is a
key forperson elements:

∀p∀a1∀a2 [//person](p) ∧ [./address](p, a1) ∧ [./address](p, a2) → a1 = a2, (1)

∀p [/person](p) → ∃a [./address](p, a), (2)

∀x, y, s [//person](x) ∧ [//person](y) ∧ [./@ssn](x, s) ∧ [./@ssn](y, s)→x=y. (3)

In general, XICs are expressive enough to capture a considerable part of XML Schema
[3,32] including keys and “keyrefs”. Expressiveness is both good and bad: XICs include as
particular cases the relational dependencies (tgd’s and egd’s for binary relation schemas,
that are enough to axiomatize undecidable theories [1]. Moreover, XICs have their own
sources of complexity, also leading to undecidability (see “(un)boundedness” below).
We can now state the main concerns of this paper:

• Containment of XBind queries under XICs,
• reformulation of XBind queries under GAV and LAV XQuery views, and XICs,
• calibration of the restrictions. (Our results on containment and reformulation depend on
certain restrictions on XPath, XQuery, and XICs.)
The results presented in this journal paper have already been announced in our conference

papers[13] and [9]. Here we give a more detailed presentation that contains most of the
proofs. In Section 2 we define the fragments of query and constraint languages for which
we can prove our decidability and completeness results. In Section 3 we describe the basics
of the translation from XML to relations that underlies our approach. In Section 4 we give
our decidability and complexity characterization results for containment of XBind queries,
alone and under XICs. In Section 5 we give the translation of XQuery views into relational
constraints, the reformulation algorithm, and its completeness property. In Section 6 we
show that lifting the restriction on the queries and constraints that we used in our results
does indeed change significantly the nature of the problems.We end with related and future
work.

2. XML queries and constraints

We define here the fragments of XPath (hence XBind and XIC) and of XQuery on which
we can apply our proof techniques.

2.1. AT-XPath, LAT-XPath

Theall-taggedfragment ofXPath (AT-XPath) is definedby the followinggrammar (based
on the grammar and semantics given in [34]).

62 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

xpath ::= sep p | . sep p

(separator)sep ::= / | //
(path) p ::= p1|p2 | p1 sep p2| p[q] | . | n |@n |@∗ | text()| ancestor-or-self | id (p) | id (s)

(qualif ier) q ::= q1 and q2 | q1 or q2 | p | p = s | p1 = p2 | p1 == p2| p �= s | p1 �= p2| p1 �== p2

Above,n is any tag or attribute name, ands is any string constant.== stands for equality
on node identities, andid (p) returns the set of nodes whose ID attributes are the set of
strings returned by pathp. Of course, as in conjunctive queries, arbitrary negation is ruled
out. A non-intuitive but salient restriction is the absence of navigation to children of an
unspecified tag (wildcard child), hence the name of the fragment: all-tagged. More on rul-
ing out wildcard child below. Parent navigation is ruled out because, together with equality
on node identities, it can express wildcard child navigation. Proper ancestor navigation is
also ruled out, as it contains at least one parent navigation step. Minor restrictions include
ruling out the following/preceding navigation axes (handling document order is a separate,
challenging research issue), and universal quantification in the qualifiers (this, together with
non-equality, allowsus to express set inclusionanddifference,whichmakes the containment
problem undecidable). Observe that theAT-XPath fragment is still quite expressive: it al-
lows navigation to descendant-or-self/ancestor-or-self, arbitrary equalities (on values: text,
attributes; on node identities) disjunction/alternation, limited negation (non-equalities).
A further restriction is thelinear fragment ofAT-XPathwhichwedenoteLAT-XPath.This

fragment is obtained by disallowing path alternation, qualifier disjunction,ancestor-or-self
navigation, non-equalities and the equality on node identities (==).

2.2. AT-XQuery

Views will be described in a fragment of XQuery that we also callall-taggedand denote
it AT-XQuery. It is defined with following grammar rules, in addition to the ones above
(herev is any variable name, ands is any string constant):

query ::= for bindings where conditions return output

bindings ::= binding | binding , bindings
binding ::= var in path

path ::= var sep p | document(s) sep p

(variable)var ::= $ v

conditions ::= condition | condition and conditions | condition or conditions
condition ::= some var in path satisfies condition

| path = s | path1 = path2 | path1 == path2

| path �= s | path1 �= path2 | path1 �== path2

output ::= content | template

content ::= var | s | { query }
template ::= 〈 n 〉 content 〈/ n 〉 | 〈 n 〉 template 〈/ n 〉

| template1 template2

The major restriction here is the absence of aggregates. As before, arbitrary negation
and even universal quantification are disallowed in the conditions. A minor restriction is
the absence of user-defined functions (which take the semantics into unchartered territory).
The query in Example1.1 belongs toAT-XQuery. From a practical perspective, the features

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 63

that we cover are in our experience the most common ones anyway, with the exception of
aggregates. As discussed in Section6 even modest relaxation of these restrictions changes
the complexity of the problems, suggesting that different techniques are needed beyond this
class of XQueries.

2.3. XBind queries

Like [4,24] we follow [17] in splittingXQuery = navigation part + tagging template
corresponding to the two phases in the operational semantics of XQuery [33]. First, the
navigation part of an XQuery searches the input XML tree(s) binding the query variables to
nodes or string values. In a second phase that uses the tagging template a new element of the
output tree is created for each tuple of bindings produced in the first phase.3 The first phase
can be captured by a simplified syntax that disregards the element construction, focusing
only on the binding of query variables. We call the queries in this syntax XBind queries.
Their general form is akin to conjunctive queries. Their head returns a tuple of variables, and
the body atoms can be purely relational or are predicates defined by XPath expressions [31].
The predicates can be binary, of the form[p](x, y), being satisfiedwheneverybelongs to the
set of nodes reachable from nodex along the pathp. Alternatively, predicates are unary, of
form [p](y), wheneverp is an absolute path starting from the root (recall queriesXbo, Xbi
from Example 1.1).

2.4. AT-XBind, LAT-XBind

When theXPath expressions used in XBind are inAT-XPathwe denote the corresponding
class of XBind queries byAT-XBind. The restriction that corresponds toLAT-XPath is a
little more complicated, because we want it to also correspond to the navigation part of
certain XQueries. These XQueries are not only restricted to usingLAT-XPath but their
where clause cannot have disjunction, equality on node identities and non-equalities. A
careful analysis of these restrictions produces the following definition.ALAT-XBind query
is an XBind query that uses onlyLAT-XPath and moreover is such that variables that bind
to element nodes (as opposed to text and attribute values) may appear no more than once
in a unary atom or in the second position of a binary atom.

2.5. Review: disjunctive embedded dependencies (DEDs)

We recall the definition of DEDs from [11]. These are first-order logic assertions of the
form

∀x
[
�(x)→

l∨
i=1

∃zi �i (x, zi)
]
, (4)

wherex, zi are tuples of variables and�,�i are conjunctions ofrelational atomsof the form
R(w1, . . . , wl) and (dis)equality atomsof the form(w �= w′) w = w′, wherew1, . . . , wl, w,w′ are
variables or constants.� may be the empty conjunction. The definition of DEDs contains
for l = 1 that of the classical embedded dependencies[1] (as [1] calls them, but also known

3Previous research has addressed the efficient implementation of the second phase[16,30].

64 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

as tgd’s and egd’s[2]) for which a deep and rich theory has been developed. Extending
the theory to DEDs was suggested already in [2] and is fairly straightforward. The main
difference to the classical chase is that, instead of a chasesequence, the rewrite yields a
chasetree, whose leaves are conjunctive queries towhich nomore chase step applies (details
are in [7,10,11] and in Appendix A).

2.6. Set of constraints with stratified-witness

In general, checking the terminationof the chasewith embeddeddependencies (andhence
DEDs) is undecidable. We identify here a sufficient condition that guarantees
termination of any chase sequence with DEDs. This condition is efficiently checkable,
and it subsumes previously known guarantees of the chase termination for various classes
of dependencies: functional dependencies, total/full dependencies, typed 1-non-total de-
pendencies, typed dependencies with identical sets of total attributes [2] and sets of acyclic
inclusion dependencies [6].
Given a setC of constraints, define itschase flow graphG = (V ,E), as a directed graph

whose edge labels can be either∀ or ∃.G is constructed as follows: for every relationRof
arityamentioned inC,V contains a nodeRi (1� i�a). For every pair of relationsR,R′ of
aritiesa, a′ and every constraint∀x [. . .∧R(u1, . . . , ua)∧ . . .→ . . . R′(v1, . . . va′) . . .] in
C,Econtains the edges(Ri, R

′
j)1� i �a,1� j �a′ .Also, whenever the equalityx = y appears

in the conclusion of the implication, andx, y appear as thei, j th component ofR, resp.R′,E
contains the edge(Ri, R

′
j). Moreover, if for somej the variablevj is existentially quantified,

the edges(Ri, R
′
j)1� i �a are labeled with∃, otherwise they are labeled with∀. 4We say

that a set of constraints hasstratified-witnessif it has no cycles through∃-edges.5 Denoting
with |Q| the size of queryQ, with a the maximum arity of a relation in the schema and with
l the maximum number of∃-edges on a path in the chase flow graph, we have the following.

Proposition 2.1. The chase of any query Q with any set of DEDs with stratified-witness
terminates(see AppendixA for the definition of the chase). The size of the resulting query
is exponential in the maximum arity of a relation and the size of the resulting query is in
O(|Q|al+1

).

2.7. XML integrity constraints (XICs)

WedesignedaclassofXMLconstraints soas to preserve the fundamental correspondence
between query containment and constraint satisfaction which holds in the relational case
for (unions of) conjunctive queries and (disjunctive) embedded dependencies. XICs have
the same general form as (4), but the relational atoms are replaced by predicates defined by
XPath expressions, just like in the case of XBind queries.

4 The chase flow graph is similar to the graph used to determine the existence of stratified normal forms for
ILOG programs[20]. These invent object identities, just like the chase invents new variables.
5 The notion of a set of dependencies with stratified-witness first arose in a conversation between the first author

and Lucian Popa. It was then independently used in[13] and in[15] (in the latter paper, under the termweakly
acyclic).

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 65

Proposition 2.2. (a)For every disjunction-free XIC d there are XBind queriesQd
1,Q

d
2 such

that for any instance I, I�d ⇔ Qd
1(I) ⊆ Qd

2(I). (b) For all XBind queriesQ1,Q2, there
is a disjunction-free XICcont (Q1,Q2) such that for every instance I,Q1(I) ⊆ Q2(I)⇔
I �cont (Q1,Q2).

Proof. (a) Ford of form ∀x [B(x) → ∃y C(x, y)], constructQd
1(x) ← B(x) andQd

2(x) ← B(x) ∧
C(x, y). (b)ForQ1(x)← B1(x, y)andQ2(x)← B2(x, z), cont (Q1,Q2) = ∀x∀y [B1(x, y)→ ∃zB2(x, z)].

2.8. Bounded AT-XICs

This is a class of XICs in whose presence the containment ofAT-XBind queries is
decidable (see Theorem4.3 below). Of course, anAT-XIC is an XIC whose atom path
expressions belong toAT-XPath. The boundedness condition is perhaps surprising, but we
show inTheorem6.2 below that this class ismaximal, in the sense that containment becomes
undecidable if we allowevenmodest use of unboundedness. Intuitively, boundednessmeans
that existential quantification isdisallowedover variablesbinding toattributeand text values,
and is allowed only over nodes whose depth in the XML tree is bounded by the size of the
XIC. Specifically, we say that an XIC variablev has bounded depth if it appears in some
atom[p](v), or [p](v,w) or [p](w, v) where: (i)p is an XPath expression consisting only
of a chain of child navigation steps, and (ii)w has bounded depth. An XIC is bounded
if all existentially quantified variables have bounded depth (there is no restriction on the
universally quantified variables).
The class is quite expressive, it contains XML Schema key constraints, many keyref

constraints, and constraints implied by the content model definition of XML elements. In
Section 1, all XICs (2), (1), (3) are bounded. However, the following variation of XIC (2) is
not, because variablea does not have bounded depth:∀p [//person](p)→ ∃a [./address](p, a).

3. Translation to a relational framework

Our strategy is to translate XML queries and constraints to relational queries and con-
straints. To this end we define ageneric relational encoding for XML whose schema
we callGReX. More specifically, we shall represent XML documents as certain relational
instances6 over the schema

GReX= [root ,el , child ,desc , tag ,attr , id , text].
The “intendedmeaning”of the relations inGReXreflects the fact thatXMLdata isa tagged

tree. The unary predicateroot denotes the root node of the XML document, and the unary
relationel is thesetof all nodes.child anddesc aresubsetsofel ×el such that their sec-
ond component is a child, respectively a descendant (including itself) of the first component.

6We emphasize that this does not mean that the XML data is necessarily stored according to the relational
schemaGReX. Regardless of its physical storage, we reason about XML data usingGReXas its virtual relational
view.

66 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

Note that, for brevity of notation, ourdesc modelsXPath’sdescendant-or-self nav-
igation axis.tag ⊆ el × stringassociates the tag in the second component to the node in
the first.attr ⊆ el × string× stringgives the node, attribute name and attribute value
in its first, second, respectively third component.id ⊆ string× el associates the element
in the second component to a string attribute in the first that uniquely identifies it (if DTD-
specified ID-type attributes exist, their values can be used for this).text ⊆ el × string
associates a node to the text inside it.

3.1. Relational translation of XPath expressions

We begin by moving outward (clearly preserving equivalence) the disjunction (| in
paths, or in qualifiers), thus obtaining adisjunctionof (|, or)-free XPath expressions.
E.g., /(son|daughter) translates to/son ∪ /daughter. Next, we translate these disjunction-free
expressions intoconjunctionsof GReXatoms or equality atoms.
This is done using the operatorsT (c, p, n) andQ(c, q) defined in Fig.2. Herec is the

context node (which is ignored for/p and//p), p is a(|, or)-free path expression,n is a
variable denoting anode in the node set yieldedbyp, andq is an or-free qualifier expression.
(z, u below denote fresh variables, ands is a string constant.) Note that the translation of
both value-based(=) and identity-based(==) equality conditions is the same.7

When theGReXis interpretedwith theintendedmeaningdescribed above, this translation
corresponds exactly to the formal semantics in [34].

3.2. Relational translation of XBind queries and XICs

We saw how to translate XPath expressions to disjunctions of conjunctions ofGReX
or equality atoms. This immediately gives a translation of XBind queries into unions of
conjunctive queries. For instance, the conjunctive queries corresponding toXbo andXbi in
Example 1.1 are

Bo(a)← root (r),desc (r, d), child (d, c), tag (c,′′ author′′), text (c, a), (5)

Bi(a, b, a1, t)← Bo(a), root (r),desc (r, d), child (d, b), (6)

tag (b,′′ book′′), child (b, au), tag (au,′′ author′′),
text (au, a1), child (b, t), tag (t,′′ t it le′′), a1= a.

Using the same translation of XPath expressions, we obtain a translation of XICs to
DEDs. For instance, the constraint (2) in Example 1.2 translates to

∀ r, d, p (root (r) ∧ child (r, p) ∧ tag (p,′′ person′′)
→ ∃a child (p, a) ∧ tag (a,′′ address′′)).

7 For simplicity of presentation we assume that value-based equalityp1 = p2 (and non-equality) is used only
whenp1, p2 end in attribute or text navigation steps, i.e. we do not check value-based equality of element nodes.
We can easily allow this type of equality by extendingGReXwith a new relationvaleq , and dependencies stating
thatvaleq is an equivalence relation. All results presented in the paper hold for this case.

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 67

Fig. 2. Relational compilation ofAT-XPath expressions.

For the query reformulation problem we will also need to translate the views, which are
expressed in XQuery. Translating the output of XQueries is more complicated and in fact
we shall see that XQuery views are best translated into relationalconstraints—DEDs. We
dedicate a large part of Section5 to that task.

3.3. GReXmodels

The translations we just gave are semantically sound only when theGReXpredicates
are interpreted according to theintended meaningdescribed above. Our goal however is to
transfer reasoning about XBind queries and XICs into relational reasoning, preferably with
DEDs, for which we can use thechasetechnique. However, it is not possible to capture the
class ofGReX-models with the intendedmeaning using just first-order logic. Indeed, neither
the fact thatchild is the edge relation of a tree nor the fact thatdesc is the reflexive,
transitive closure ofchild are first-order definable [14] (much less DED-definable!). On
the other hand, the translations ofAT-XBind queries and bounded XICs are quite special
kinds of first-order formulas; they are not even as general as the class of all DEDs over
GReX. This leaves room for pursuing our strategy.

3.4. TIX

We have indentified a certain set of DEDs over the signatureGReXthat, although in-
capable of completely capturing the intended meaning, suffice to give us a chase-based

68 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

decision procedure for containment ofAT-XBind queries, even under bounded XICs, as
well as logical implication of bounded XICs. We call this set of dependenciesTIX (from
TrueInXML): 8

(base) ∀ x, y [child (x, y) → desc (x, y)],
(trans) ∀ x, y, z [desc (x, y) ∧ desc (y, z) → desc (x, z)],
(refl) ∀ x [el (x)→ desc (x, x)],
(elc) ∀ x, y [child (x, y) → el (x) ∧ el (y)],
(eld) ∀ x, y [desc (x, y) → el (x) ∧ el (y)],
(elid) ∀ s, x [id (s, x)→ el (x)],
(elr) ∀ x [root (x)→ el (x)],

(someTag)∀ x [el (x)→ ∃t tag (x, t)],
(oneTag) ∀ x, t1, t2 [tag (x, t1) ∧ tag (x, t2)→ t1 = t2],
(keyId) ∀ s, e1, e2 [id (s, e1) ∧ id (s, e2) → e1 = e2],

(oneAttr) ∀ x, n, v1, v2 [attr (x, n, v1) ∧ attr (x, n, v2)→ v1 = v2],
(noLoop) ∀ x, y [desc (x, y) ∧ desc (y, x)→ x = y],

(oneParent)∀ x, y, z [child (x, z) ∧ child (y, z)→ x = y],
(oneRoot) ∀ x, y [root (x) ∧ root (y)→ x = y],
(topRoot) ∀ x, y [desc (x, y) ∧ root (y)→ root (x)],
(inLine) ∀ x, y, u [desc (x, u) ∧ desc (y, u)→x=y∨desc (x, y) ∨ desc (y, x)],
(choice) ∀ x, y, z [child (x, y) ∧ desc (x, z) ∧ desc (z, y)→ x = z ∨ y = z].

4. Deciding containment ofAT-XBind queries

Our first important result justifies the development given in Section 3.

Theorem 4.1. Let B1 and B2 be two AT-XBind queries and let theGReX-conjunctive
queriesc(B1) andc(B2) be their translations. Then, B1 is contained inB2 over all XML
documents if and only ifc(B1) is contained inc(B2) over allGReX-instances that satisfy
TIX .

The proof is in AppendixB. This result then yields decision procedures for containment
of XBind queries from our fragments.

Theorem 4.2.
1. Deciding containment for AT-XBind queries is�p

2 -complete,
2. containment for LAT-XBind queries is NP-complete and

8A collectionD1, . . . , Dn of XML documents is represented by the disjoint union of schemasXi and the union
of constraints in eachTIX i , where eachXi (TIX i) is obtained fromX (resp.TIX) by subscripting all relational
symbols withi.

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 69

3. the LAT-XBind fragment is maximal, in the following sense: extending it with any subset
of the additional features allowed in the AT-XBind fragment yields�p

2 -hardness of
containment.

The upper bounds in parts (1) and (2) follow from Theorem4.1 by chasingc(B1) with
TIX (the chase is guaranteed to terminate by Proposition 2.1). According to Theorem A.2
in Appendix A, the containment test for part (1) reduces to checking the existence of ex-
ponentially many containment mappings, whence the�p

2 upper bound. TheLAT-XBind
fragment is easier because its translation does not involve union, and the chasewith (inLine)
and (choice) does not apply, so the containment test reduces to finding only one containment
mapping (whence the NP upper bound). The lower bounds in Theorem 4.2 are inherited
from the lower bounds established in [9] for containment for fragments of XPath, which in
turn come from similar lower bounds for (unions of) conjunctive queries [5,29]. Hence, part
(3) is not surprising when considering disjunction or non-equalities. A bit more surprising
are the observations thatancestor-or-self can be translated away by introducing disjunc-
tion, and that descendant navigation together with equality on node identities can be used
to simulateancestor-or-self.

Proposition 4.1. Given any XBind query B and set D of bounded AT-XICs, let c(B) and
c(D) be the corresponding relational translations. Then the chase ofc(B) with c(D) will
either
1. produce the atomschild (x, y),desc (y, x) for some variablesx, y, or
2. an equality atomc1 = c2 with c1, c2 distinct constants, or
3. terminate.

Note that if either of (1) or (2) come to hold,B is unsatisfiable (returns the empty answer
over all documents satisfyingD).

Theorem 4.3. Containment of AT-XBind queries under bounded AT-XICs is decidable. If
we fix the set of XICs, containment is in�p

2 .

The proof of this theorem follows easily from TheoremA.2 in Appendix A, as well as
the following generalization of Theorem 4.1 to containment under boundedAT-XICs:

Theorem 4.4. Let B1 and B2 be two AT-XBind queries and let theGReX-conjunctive
queriesc(B1) andc(B2) be their translations. Let X be a set of bounded AT-XICs andc(X)

the set of DEDs obtained from its translation. Then, B1 is contained inB2 over all XML
documents satisfying X if and only ifc(B1) is contained inc(B2) over allGReX-instances
that satisfyTIX ∪ c(X).

See AppendixB for the proof of Theorem 4.4. With this reduction we can then chase
with TIX and (in view of Proposition 4.1) the relational translation of the XICs.

5. AT-XBind query reformulation with AT-XQuery views

The strategy of our algorithm is to translate each XBind query to a union of conjunctive
queries, translate all XQuery views (not just their XBind parts; the output part as well!) to

70 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

DEDs and apply the C&B algorithm (which we introduced in[8] and extended in [13]),
to the resulting relational problem of reformulation of unions of conjunctive queries under
DEDs.

5.1. Relational query reformulation: the C&B algorithm

5.1.1. Review: capturing views with dependencies
The key observation that enables the uniform treatment of views and integrity constraints

by the C&B algorithm is the fact that unions of conjunctive query views can be captured
by DEDs relating the input of the defining query with its output. For example, consider the
view defined byV (x, z) ← A(x, y), B(y, z). In any instance over the schema{A,B, V },
the extent of relationV coincides with the result of this query if and only if the following
dependencies hold:
(cV) ∀x∀y∀z [A(x, y) ∧ B(y, z)→ V (x, z)],
(bV) ∀x∀z [V (x, z)→ ∃y A(x, y) ∧ B(y, z)],
where(cV) states the inclusion of the result of the defining query in the extent of relation
V, and(bV) states the opposite inclusion.

5.1.2. Review of C&B
Assume that in addition, the followingdependencyholdson thedatabase (it is an inclusion

dependency):(ind) ∀x∀y [A(x, y)→ ∃z B(y, z)]. Suppose that we want to reformulate
the queryQ(x)← A(x, y).
First,Q is chasedwith all available dependencies, until no more chase steps apply (see

AppendixA for a detailed definition of the chase). The resulting query is called theuniversal
plan. In our example, a chase step with(ind) yieldsQ1(x) ← A(x, y), B(y, z), which in
turn chases with(cV) to the universal planQ2(x) ← A(x, y), B(y, z), V (x, z). Notice
how the chase step with(cV) brings the view into the chase result, and how this was only
possible after the chase with the semantic constraint(ind).
In the secondphaseof the algorithm (called thebackchase) thesubqueriesof the universal

plan are inspected and checked for equivalencewithQ. Subqueries are obtained by retaining
only a subset of the atoms in the body of the universal plan, using the same variables in
the head. For example,S(x) ← V (x, z) is a subquery ofQ2 which turns out to be equiv-
alent toQ under the available constraints, as can be checked by chasingS “back” to Q2
using(bV).

5.2. Translating schema correspondences

5.2.1. Obstacles in capturing XQuery views with dependencies
In [8,13] we point out that conjunctive query views can be captured using two inclusion

dependencies and hence (minimal) rewriting with views becomes minimization under de-
pendencies.We cannot capture XQuery views with two inclusion dependencies in the same
way because they are more expressive: (i) XQueries contain nested, correlated subqueries
in the return clause, (ii) they create new nodes, which do not exist in the input document,
so there is no inclusion relationship between input and output node id sets, and (iii) they

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 71

return deep, recursive copies of elements from the input. We sketch the solution using
Example1.1 (see [7] for more details).
Nested, correlated subqueries: Recall that the navigation part of an XQuery is described

by a set of decorrelated XBind queries. Also recall that every XBind query can be straight-
forwardly translated to a union of conjunctive queries over schemaGReX. This can now
be captured with inclusion dependencies (in fact with two DEDs) as in [8,13]. For XBind
queriesXbo,Xbi in Example 1.1, we obtainBo, Bi defined by queries (5), respectively (6).
Here is one of the four resulting dependencies:

∀a [Bo(a)→ ∃ r∃d∃c root 1(r)

∧ desc 1(r, d) ∧ child 1(d, c) ∧ tag 1(c,
′′ author ′′) ∧ text 1(c, a)].

Construction of new elements:Element nodes with constant identity. RecallQ from
Example 1.1, which constructs auniqueresult element node, which is a child of the root
and whose identity does not exist anywhere in the input document, but rather is an invented
value. The invented identity does not depend on the bindings ofQ’s variables, i.e. it is a
constant.We shall represent this constant as a function of no argumentsFresultdescribed by
the unary relationGresult whose intended meaning is given byGresult(x) ⇔ x = Fresult().
This meaning is captured by the following dependencies (note that we model the XML
documents corresponding to the output and input of the XQuery view as relational instances
of schemaGReX2, respectivelyGReX1):

∃ y Gresult(y), (7)

∀ y1∀y2 [Gresult(y1) ∧Gresult(y2)→ y1 = y2], (8)

∀ r∀c [root 2(r) ∧ child 2(r, c) ∧ tag 2(c,
′′ result ′′)→ Gresult(c)], (9)

∀ c [Gresult(c)→ ∃r root 2(r) ∧ child 2(r, c) ∧ tag 2(c,
′′ result ′′)]. (10)

5.2.2. Element nodes whose identity depends on the variable bindings
For every binding for $a, a newitem element node is created whose identity does not

exist anywhere in the input document, but rather is an invented value. Distinct bindings of
$a result in distinct inventeditem elements. In other words, the identities of theitem
element nodes are the image of the bindings for $a under some injective functionFitem. 9

We capture this function by extending the schemawith the relational symbolGitem, intended
as the graph ofFitem (Gitem(x, y) ⇔ y = Fitem(x)) and use dependencies to enforce this
intended meaning.

∀ x1∀x2∀y [Gitem(x1, y) ∧Gitem(x2, y)→ x1 = x2], (11)

∀ x∀y1∀y2 [Gitem(x, y1) ∧Gitem(x, y2)→ y1 = y2], (12)

∀ x [Bo(x)→ ∃y Gitem(x, y)], (13)

9Many semistructured andXMLquery languages use functions likeFitemas explicit query primitives, under the
name of Skolem functions. Our technique for translating into DEDs fits seamlessly with an extension of XQuery
with Skolem functions.

72 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

∀ x∀c [Gitem(x, c)→ ∃r Gresult(r) ∧ child 2(r, c) ∧ tag 2(c,
′′ item′′)], (14)

∀ a∀w [Gwriter(a,w)→ text 2(w, a)], (15)

∀ a∀w [Gwriter(a,w) ∧ desc 2(w, d)→ d = w]. (16)

Fitem is an injective function by (11) and (12). The domain ofFitem contains the set of
bindings for $a (13). The range ofFitem consists ofitem nodes that are children of the
result node (14). The contents of thewriter elements is the text $a was bound to (15),
and thewriter node has no children (16).
Deep copies of elements: Here is howwe capture the fact thatQ returns, for every binding

of $a, a copy of the tree rooted at thetitle -element node which $t was bound to. We
model copying by an injective functionFa

t which, for a fixed $a, takes as argument any
noden in the tree rooted at $t , and outputs an invented noden′ that is a copy ofn. We
say thatn′ is an($a,$t)-copy ofn to emphasize that there is one copy of the tree rooted
at $t for each value of $a. We represent the family of($a,$t)-copy functions{Fa

t }a,t by
the relationC: ∀a∀t F a

t (n, n′) ⇔ C(a, t, n, n′). Again, we capture the intended meaning
for C using DEDs. We illustrate only one of these DEDs. DED (17) states that ifn′ is an
($a,$t)-copy ofn, then the descendants ofn are($a,$t)-copied as descendants ofn′ (Q’s
output is encoded as an instance over schemaGReX2):

∀a∀t∀n∀n′∀d [C(a, t, n, n′) ∧ desc 1(n, d) → ∃d ′ desc 2(n′, d ′) ∧ C(a, t, d, d ′)].
(17)

5.3. The algorithm

5.3.1. Plans: reformulations using auxiliary schema
If any variables of the XBind queryXb are bound to element nodes, thenXb cannot be

reformulated against the storage schemaSbecause the node identities in the storage and
published data are disjoint. This is because the semantics of the XQuery views specifies that
for each inputXMLdocument, anewXMLdocument is created.Wehenceneed tofindquery
“plans” which collect data from the storage but alsoinventandcopynodes, according to
the semantics of the XQuery views that define the schema correspondence.We have shown
in Section5.2 how to model this semantics using Skolem and copy functions. Suppose a
plan retrieves the storage data tuples that satisfy conditionc(x) and returnsy and an invented
noden = F(z) whereF is a Skolem function andy, z ⊆ x. This plan can be described as the
queryP(y, n)← c(x),G(n, z), withG the graph ofF (G(n, z)⇔ n = F(z)). Denote withAux the
relational symbols modeling the graphs of Skolem and copy functions (for Example 1.1,
Aux includesGitem). Then any plan can be represented by a query against the extended
storage schemaS ∪ Aux. However, we have to be careful when doing so: note that, since
the relations inAux model functions, they must be treated as relations with limited binding
patterns [23] in which the invented node identity is an output, all other attributes are inputs.
We say that a plan isviable if all variables appearing on input positions ofAux relations
also occur in relations fromS.

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 73

Algorithm for XBind reformulation

Given:
• anAT-XBind queryXb,
• a schema correspondence described by a set ofAT-XQuery viewsV (in both directions),10

• the setCX of boundedAT-XICs over the various XML documents,
• the setCR of integrity constraints over the relational part of the schema;
Do:
• translateXb to the union of conjunctive queriesc(Xb);
• translate the schema correspondence to the set of DEDsc(V) (in the process, we introduce the setAux of
Skolem and copy function graphs as in Section5.2);

• translateCX to the setc(CX) of DEDs;
• compute the setR of reformulationsagainstS ∪ Aux by applying the C&B algorithm toc(Xb) under
TIX ∪ c(V) ∪ c(CX) ∪ CR.

Return:
• allminimal(see below) queries inR that correspond to aviable(see above) reformulation plan.

End.

5.3.2. Minimality
We first define it for conjunctive queries. LetC be a set of relational constraints (e.g.,

DEDs). We say that a conjunctive queryR is minimal under a set of constraints C(or
C-minimal) if no relational atoms can be removed fromR’s body, even after adding arbi-
trarily many equality atoms, without compromising the equivalence toRunderC. Clearly,
if a query is not alreadyC-minimal then there exists aC-minimal query that is equiv-
alent to it underC. Correspondingly, we define a union of conjunctive queries to be
minimal if (i) none of the conjunctive queries in the union is contained in another, and
(ii) by removing any relational atom from any conjunctive query in the union (even if
we add arbitrarily many equalities instead), we compromise the equivalence to the orig-
inal union. To define minimal XBind queries, substitute in the above “relational atom”
with “individual navigation step within the XPath expressionp appearing in some
atom[p](x, y)”.

Theorem 5.1(relative completeness). If the constraints inCX are bounded andCR has
stratified-witness, thenR isaminimal reformulationofXb iffc(R) is aminimal reformulation
of c(Xb) underTIX ∪ c(V) ∪ c(CX) ∪ CR.

The proof is in AppendixC.

10As in all data integration scenarios where the schema correspondence is given by exact views, we assume that
distinct LAV views (used for adding redundancy subsequently, during tuning) have disjoint target schemas. We
assume also that the integrity constraints do not relate these schema portions. These assumptions hold by default
in publishing, where the integrity constraints are expressed in terms of the original proprietary schema (published
by a GAV view), and the LAV views are added subsequently, during tuning, to model redundant data.

74 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

We combine this result with the following result given in[13] which states the complete-
ness of the C&B algorithm:11

Theorem 5.2(Deutsch and Tannen[13]). Let Q be a conjunctive query and D be a set of
embedded dependencies. Assume that there is some terminating chase sequence of Q with
D, yielding the universal plan U. Let R be any query that is D-minimal and is equivalent to
Q under D. Then, R is isomorphic to a subquery of U.

Remark. In fact, we need an extension of this result that holds whenQ is a union of
conjunctive queries andD is a set ofdisjunctiveembedded dependencies (DEDs). The
extension is straightforward, details are given in[7].

Theorem 5.1 and (the extension of) Theorem 5.2 imply.

Corollary 5.1 (overall completeness). The algorithm finds all minimal reformulations for
AT-XBind queries, under AT-XQuery views, bounded AT-XICs and stratified-witness rela-
tional dependencies.

6. Calibrating the results

We investigate what happens if we attempt to relax the restrictions we have put on XPath,
XBind, XQuery and XICs.

6.1. Justifying the restrictions in the containment results

The result we find most intriguing is about the effect of adding wildcard child navigation
to the fragment whose containment problem is in NP.

Theorem 6.1. Extending theLAT-XBind fragmentwithwildcard child navigation(∗) raises
the complexity of containment from NP- to�p

2 -complete.

The proof is in AppendixD. It follows that the containment of such queries cannot
be decided by simply chasing withTIX . In fact, unlessNP = �p

2 , it follows that no
addition of disjunction-free embedded dependencies toTIX can give us a theorem similar
to Theorem 4.1. We conjecture that adding DEDs won’t help either. To obtain the upper
bound,wehad todeviseamore complexalgorithm for deciding containment of thesequeries
(see Appendix D).12

The next result says that boundedAT-XICs are themaximal class of constraints for which
AT-XBind containment is decidable. Its proof is in Appendix E.

11The journal version of this result will be presented elsewhere.
12 Interestingly, the wildcard algorithm works also forparent andancestor navigation[9].

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 75

Theorem 6.2. Containment of AT-XBind queries underunbounded AT-XICs is
undecidable.

Remark. XICs cannot expressall the constraints captured by DTDs. In fact, DTDs and
boundedAT-XICs do not mix well: a modification of the previous result can be used to
show that containment ofAT-XBind queries under boundedAT-XICs and DTDs is also
undecidable[7,9]. (Actually, this is how we prove Theorem 6.2, seeAppendix E.) In [9] we
also have the result that containment ofAT-XBind queries under DTDs is PSPACE-hard.
Since then, this was improved (even with wildcard navigation) to EXPTIME-completeness,
using tree automata techniques [26].

6.2. Justifying the restrictions in the reformulation algorithm

Since the backchase checks subqueries for equivalence under dependencies to the uni-
versal plan, the C&B algorithm inherits the complexity lower bounds of the equivalence
check. Moreover, the C&B cannot be complete if equivalence is undecidable. A natural
question is whether there are alternate algorithms that do better (are complete even when
equivalence is not decidable, and have lower complexity when it is). The answer isno as
the following reduction shows:

Proposition 6.1. Deciding minimality of a conjunctive query over all models that belong
to some class C and satisfy a set of dependencies is at least as hard as deciding containment
of conjunctive queries over C.

The proof of Proposition6.1 is inAppendix F. Notice that in particular, the classCmay be
specifiedasallmodels satisfyingaset of dependencies.Undecidability of containment under
dependencies therefore implies that the set of minimal reformulations under dependencies
is in general not recursive.
It turns out that the C&B algorithm is asymptotically optimal even when used as an

alternative to classical algorithms for rewriting with views in the absence of additional
integrity constraints (such as Minicon [28]): the associated decision problem is checking
the existence of a rewriting using solely the views, in the absence of constraints. The C&B-
based solutionwould consist in picking from the universal planU themaximal subquery that
mentions only views, and checking its equivalence toU. The complexity analysis reveals
that the resulting algorithm is in NP in the size of the query, which is optimal according
to [22].
Proposition 6.1 allows us to transfer the lower bounds on the problem of deciding query

containment for various XBind classes to the problem of finding minimal reformulations
of XBind queries. It follows therefore from Theorem 6.1 that even modest use of non-
AT-XBind features such as wildcard child navigation makes any NP algorithm for finding
minimal reformulations incomplete unlessNP = �p

2 . A careful analysis of our C&B-
based algorithm shows that it can find a minimal reformulation in NP for queries hence
these considerations apply to it. It also follows from Theorem 6.2 that there is no complete

76 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

algorithm for finding minimal reformulations ofAT-XBind queries in the presence of even
modest use of XICs from outside the bounded class.

7. Related work

The results presented here have already been announced in[9,13]. The completeness of
our reformulation algorithm relies on the completeness of the C&B algorithm [8] that was
given in [13] and its proof will be detailed elsewhere (currently, it can be found in [7]).
Clearly, XPath containment is a particular case of (single-atom) XBind containment.

XPath containment for a fragment corresponding to theLAT-XPath fragment without any
equality conditions, but extended with wildcard child navigation was shown to be coNP-
complete byMiklau andSuciu [25]. The upper bound proof technique is similar to our proof
ofTheorem6.1. In both cases, containment is characterizedby theexistenceof exponentially
many containment mappings. The difference is that, for the fragment of Miklau and Suciu,
each mapping is found in PTIME (as the expressions are acyclic), while for Theorem 6.1,
finding the containment mappings is NP-complete (the queries are cyclic due to use of
variables). This explains the jump from coNP to�p

2 . Wood [35] shows the decidability of
decidingcontainmentof variousXPath fragmentsunderDTDsandaspecial classof integrity
constraints. Neven and Schwentick [26] have solved the problem of containment of XPath
expressions with wildcard under DTDs, showing the problem to be EXPTIME-complete
(usingautomata-theoretic techniques).Theyalso considerXPathexpressionswith variables,
showing that their containment (in theabsenceofDTDs) isPSPACE-complete.Theapparent
discrepancy between this result and our�p

2 -completeness result forAT-XBind
∗ queries

(which have variables too) is due to the fact that [26] considers variables to be free in
the XPath expression, and bound in an outside context. Containment is decided under all
possible contexts (hence universal semantics), which means treating variables as constants.
In contrast, we defined in [9] an existential semantics that allows us to bind a variable to
a node reached by XPath navigation, and reuse that binding in another part of the XPath
expression. This is the natural semantics needed to generalize from containment of XPath
expressions to containment of XBind queries, and it was devised keeping in mind the larger
goal of XBind reformulation.

8. Summary

Wehavepresentedanalgorithm for finding theminimal reformulationsof clientXQueries
in XML publishing scenarios, when the correspondence between public and storage schema
is given by a combination of GAV and LAV XQuery views. The algorithm handles in the
same unifiedway redundant storage (typical in XML applications), constraints in XML data
(as specified by XML Schema) and constraints in the relational storage. The algorithm is
complete and asymptotically optimal for an expressive class of client query and views (AT-
XBind queries) and integrity constraints (boundedAT-XICs and stratified-witness DEDs).
The algorithm can be reused for reformulation of XICs. Given its direction-independence,
it applies also to reformulating integrity constraints on the storage to constraints on the

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 77

public schema. This is useful for publishing integrity constraints to help clients understand
the semantics of the published data.

8.1. Practicality of the approach

There are of course XQuery features we cannot translate to dependencies. User-defined
functions, aggregates and universally quantified path qualifiers[33] are the main examples.
We emphasize that the soundness of the algorithm presented here holds for any query that is
compilable relationally. Features beyondAT-XPath that are compilable relationally are navi-
gationalong theparent ,ancestor ,previous-sibling , following-sibling ,
previous andfollowing axes. While reasoning completely about document order is
a challenging research issue, we show in [9] a partial result saying that all of our deci-
sion algorithms extend if we allowprevious-sibling andfollowing-sibling
navigation and add appropriate axioms toTIX .
We have built a query reformulation system [7] based on the method presented here.

Putting these ideas to work required a good deal of challenging engineering but, as reported
in [12], theperformanceof the resultingsystemproves that themethod isdefinitely practical.

Acknowledgements

Weare very grateful to Lucian Popa for his contributions.We also thankDanSuciu, Mary
Fernandez, Susan Davidson, Peter Buneman, Yi Chen and Yifeng Zheng for their useful
suggestions. We thank the reviewer of this submission for the very insightful comments.

Appendix A. Chasing with DEDs

Let � be a conjunction of relational, equality and non-equality atoms whose terms are
variables or constants. We call� a �=-conjunction. We denote withvars(�) (const(�))
the set of variables (constants) appearing in�. Given a set of variables̄u ⊆ vars(�) and
denotingv̄ = vars(�) \ ū, �(ū) denotes the query defined by the formula∃v̄ �. We will
interchangeably refer to� as the FO formula represented by the conjunction of its atoms,
or as the set of atoms per se. We will therefore use the notationa ∈ � to say that the atom
a appears in�. We say that�=-conjunction� is consistentiff (i) its equality atoms do not
imply 13 the equalityc1 = c2, wherec1, c2 ∈ const (�), and (ii) for each non-equality atom
x �= y, �’s equality atoms do not implyx = y.
Given �=-conjunctions�1, �2, a �=-homomorphismfrom �1 to �2 is a mappingh from

vars(�1) ∪ const (�1) to vars(�2) ∪ const (�2) such that
• h(c) = c for eachc ∈ const (�1),
• for each relational atomR(w̄1) ∈ �1, wherew̄1 is a tuple of variables and constants,
there exists an atomR(w̄2) ∈ �2 such that the component-wise equalityh(w̄1) = w̄2 is
implied by the equality atoms in�2 (via reflexivity, symmetry and transitivity).

13Via reflexivity, symmetry and transitivity.

78 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

• for each equality atomx = y ∈ �1, with x, y variables or constants, the equalityh(x) =
h(y) is implied by the equality atoms in�2,

• for each non-equality atomx �= y ∈ �1, with x, y variables or constants, there exists a
non-equality atomu �= v ∈ �2 such thath(x) = u andh(y) = v are implied by the
equality atoms in�2.

Let d be the DED ∀x̄ �→
l∨

i=1
∃ȳi �i , (18)

where� is a �=-conjunction withx̄ = vars(�), and for eachi, �i is a �=-conjunction with
ȳi ⊆ vars(�i) ⊆ x̄ ∪ ȳi . Let � be a �=-conjunction and assume w.l.o.g. thatvars(�) ∩
vars(d) = ∅ and that∀i �= j ȳi ∩ ȳj = ∅ (this can always be achieved by renaming the
variables ind). We say that achase stepof � with d appliesiff there is a�=-homomorphism
h from� to� such that for eachi, hhas no extension to a�=-homomorphism from�∧�i to
�. In other words, there is no�=-homomorphismh′ from�∧�i to� such thath′(x) = h(x)

for eachx ∈ x̄. Theresultof this chase step is a disjunction of�=-conjunctions obtained as
follows: First obtain the disjunction

∨l
i=1 � ∧ h′(�i), whereh

′ is a mapping onvars(d)
that extendsh to be the identity on̄yi . Next, remove from this disjunction all inconsistent
�=-conjunctions. Note that all CQ�=s may be inconsistent, so the result of the chase step is
the unsatisfiable empty disjunction⊥.

Example A.1. Consider the DED

∀x∀y R(x, y)→ ∃z S(x, z) ∧ z �= x ∨ ∃u T (y, u) (19)

Then no chase step with DED (19) applies toR(m, n) ∧ T (n, o) because the only�=-
homomorphismh = {x !→ m, y !→ n} from R(x, y) to R(m, n) has an extension to
R(x, y) ∧ T (y, u), namely{x !→ m, y !→ n, u !→ o}. However, a chase step applies to
R(m, n), yieldingR(m, n)∧S(m, z)∧z �= m∨R(m, n)∧T (n, u). Note that no inconsistent
disjuncts were created in this case.

We lift the definition of chase step of a�=-conjunction to that of a disjunctionD of
�=-conjunctions. LetD = ∨

j �j , and let� be a DED such that, again w.l.o.g.,vars(�) ∩
vars(D) = ∅. Then a chase step ofD with � applies iff there is aj0 such that a chase step
with � applies to the�=-conjunction�j0

, yielding the resultstep�(�j0
). The result of the

chase step onD is defined as
∨

j �=j0
�j ∨ step�(�j0

).
Given a set of DEDs� and a disjunction of�=-conjunctionsD, we say that the chase of

D with � terminatesiff there exists a sequence of chase steps with DEDs from� which
starts fromD and yields a disjunction of�=-conjunctionsU for which no chase step applies
anymore. We callU a result of chasingD with �, denotedchase�(D). Note that the chase
with DEDs is not confluent, so there may be several terminating chase sequences, with
distinct results.chase�(D) refers to a non-deterministically picked result.

Theorem A.1. Let D be a set of DEDs and d a single DED of general form(18).Assume
that the chase of� with D terminates, yielding the following disjunction of conjunctions
with equality and non-equality atomschaseD(�) = ∨m

j=1 �j . ThenD �d iff for each
j ∈ {1, . . . , m} there is ani ∈ {1, . . . , l} and a �=-homomorphism from�i to�j .

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 79

Theorem A.2. Let D be a set of DEDs, Q1 a union of conjunctive queries with non-
equalities(UCQ�=), andQ2 a UCQ�= queryQ2(ȳ) ← ∨

l �l (ȳ). Assume that the chase
of Q1 with D terminates, yielding the UCQ�= queryU(x̄) ← ∨m

k=1 �k(x̄). ThenQ1 is
contained inQ2 under D iff for each k, there exists an l and a�=-homomorphism h from�l

to�k, such thath(ȳ) = x̄.

Appendix B. Proof sketch for Theorems 4.1 and 4.4

Theorem 4.1.We say that an instance of the relationalGReXis intended if it obeys the
intended meaning described in Section 3. Of course, there is a one-to-one correspondence
between XML documents and such intended instances. Intended instances evidently satisfy
TIX , but moreover they exhibit two crucial features: (i) thechild relation corresponds to
a tree and (ii)desc is the reflexive, transitive closure ofchild . Clearly, the containment
of B1, B2 holds on all XML documents if and only if it holds forc(B1), c(B2) on all
intendedGReXinstances. Since the latter satisfy the constraints inTIX , the “if ” direction
of the theorem follows trivially. Observe however that there are unintended instances which
nevertheless satisfyTIX (e.g. ones in whichdesc contains pairs of nodes not connected
by a chain ofchild edges).
“only if ”: 14AssumingB1 is contained inB2 (i.e. c(B1) is contained inc(B2) over

intendedGReXinstances) we show thatc(B1) is contained inc(B2) over allTIX instances.
By the classical chase theorem [1], it suffices to show that there is a containment mapping
fromc(B2) into the resultUof chasingc(B1)withTIX . The chase is guaranteed to terminate
by Proposition 2.1. �

The canonical instance is not intended.Denoting with CI(U) the canonical instance of
U (the database instance obtained fromU by treating all variables as constants [1]) observe
that CI(U) is aGReXinstance. Moreover, since no more chase step with constraints from
TIX applies toU, CI(U) is aTIX instance as well. Note that, if CI(U) were an intended
instance as well, then by our assumption,c(B2) would necessarily have a mapping into
CI(U) which would correspond to the sought containment mapping. However, CI(U) is
not necessarily an intended instance: feature (ii) above may be violated by descendant
navigation steps fromB1 which correspond inc(B1) (and hence inU) to atomsdesc (x, y)

such that there is no path ofchild edges fromx to y. Let’s call such atomsunsupported.
The supported instanceSI(U). Let SI(U) be the instance obtained as a copy of CI(U)

to which we add atoms as follows: for every unsupported atomdesc (x, y) in CI(U) add
child (x, y) to SI(U).
Claim SI(U) is intended.Proof of claim. We first show that (ii) is satisfied. Since no

chase step of CI(U) applies with (base), (refl), (trans) and all the (elX) axioms, it follows

14For simplicity, we only sketch here the proof for the case whenB1 is satisfiable (has a non-empty answer on
some XML document). We also show only the case whenc(B1), c(B2) and the result of chasingc(B1) with TIX
are conjunctive queries (free of disjunction and inequalities). See[7] for the extension of the chase to unions of
conjunctive queries and DEDs, and for the proof of Theorem4.1 in the general case.

80 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

that desc contains the reflexive, transitive closure of thechild relation. It is easy to
check that by construction, alldesc atoms in SI(U) are supported, sodesc is precisely
the closure ofchild . We next show that SI(U) satisfiesTIX , i.e. no chase step with a
DED fromTIX was enabled by the addition ofchild atoms to CI(U). For this observe
that the only chase steps that may be triggered this way are with (oneParent), (choice) and
(elC). A case analysis shows that if any such chase step applied in SI(U), using the fact that
CI(I) satisfiesTIX we would derive the contradiction thatdesc (x, y) must be supported
in CI(U). (i) follows from the satisfiability ofB1 and the fact that (noLoop) holds in SI(U).
A few minor points to show are that each element node in SI(U) has precisely one tag,
unique attribute names, etc., all of which are guaranteed because no more chase step with
TIX applies.End of proof of claim. �

The claim and our assumption imply the existence of a containment mappingm from
c(B2) into SI(U). But B2 is anAT-XBind query, so all child navigation steps test for a
specific tag name. (Here it is crucial that wildcard child navigation is absent.) Therefore, all
atomschild (x, y) in c(B2) are accompanied by some atomtag (y,′′ t ′′), with t a constant.
But observe that for any unsupported atomdesc (x, y), the chase with(someTag) adds an
atomtag (y, f), wheref is a fresh variable, notmentioned anywhere else inU.We conclude
that thechild atoms from SI(U) \CI(U) cannot serve as image of atoms fromc(B2), so
m is really a containment mapping fromc(B2) into CI(U).
Generalization to Theorem 4.4.The proof is essentially the same as for Theorem4.1,

with two modifications: (1) modify the claim to state that SI(U) is an intended instance
satisfying the set of XICsX, and (2) observe that thetag (y, f) atoms added during the
chase are still guaranteed to contain fresh variablesf. This is becauseX contains onlyAT-
XICs, which can never match against thetag (y, f) atoms, and therefore cannot introduce
equalities betweenf and any other variable or constant inU.

Appendix C. Proof sketch of Theorem 5.1

Theorem 4.1 (proven in Appendix B) can be (easily) generalized to containment in the
presence of boundedAT-XICs, DEDs stemming from compilingAT-XQuery views, and
arbitrary DEDs over the proprietary relational schema. The important additional observa-
tion is that the supported instance SI(U) (notation refers to proof inAppendix B) satisfy all
constraints because no chase step applies, as all DEDs either stem fromAT-XPath expres-
sions or do not mentionGReXat all. From this generalization, it follows immediately that,
if the chase terminates,R is a reformulation ofXb if and only if c(R) is a reformulation
of c(Xb).
The termination of the chase follows from the observation that all LAV views (used

for adding redundancy subsequently, during tuning) have distinct target schemas, disjoint
from the original proprietary schema, and therefore not mentioned in any of the integrity
constraints pertaining to the proprietary schema. It follows thatc(V) ∪ CR ∪ TIX have
stratified witness so the chase with only these DEDS terminates by Proposition 2.1. It
also follows that if addingc(CX) results in a divergent chase, then the chase with only
c(CX) ∪ TIX must diverge as well. But this is excluded by Proposition 4.1.�

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 81

Appendix D. Proof sketch for Theorem 6.1

Let’s denoteAT-XPath expressions extended with wildcard child navigation withAT-
XPath∗ and the resultingXBind querieswithAT-XBind∗. For the compilation ofAT-XBind∗
queries just add the ruleT (x, ∗, y) = {child (x, y)}.
It turns out that the DEDs inTIX become insufficient in reasoning about wildcard nav-

igation. A counterexample to Theorem4.1 is given by/ ∗ //∗ and // ∗ /∗: these are
obviously equivalent, yet their relational compilations are not equivalent underTIX . The
problem could be fixed by adding toTIX the axiom∀x, y, z child (x, y)∧desc (y, z)→
∃u desc (x, u) ∧ child (u, y). However, no extension ofTIX can cover the following
counterexample which will play a central role in the lower bound proof.

Example D.1. There areAT-XPath∗ expressionsp, p′ such that (the booleanXBind query)
Xb() := [p](x) is contained inXb′() := [p′](x) but the relational compilationc(Xb) of
Xb is not contained inc(Xb′) underTIX :
p = / [b/1[@x =′′ 1′′]]

[a[a[@x =′′ 1′′][∗/descendant-or-self :: a][c]][∗/ ∗ [c][∗/∗][x =′′ 0′′]]]
[b/0[@x =′′ 0′′]]

p′ = /[.// ∗ [a[a][c]][∗/ ∗ [c][∗/∗][@x = /b/ ∗ /@x]]
A graphical representation ofpandp′ appears in Fig.3, in which we depict child naviga-

tion steps with single arrows anddescendant-or-self navigation steps with double,
dashed arrows. The tag names are used to label the nodes (* is used for wildcards), and solid
non-arrow lines associate attributes with nodes.@x = 0 indicates that the string value of the
x-attributes is “0”. The dotted line represents an equality condition onx-attributes. To see
thatXb is contained inXb′, observe thata/∗/descendant-or-self :: a in p is equiv-
alent to(a/a)|(a/ ∗ //a), and henceXb is equivalent toQ1() := [p1](x) ∪Q2 := [p2](x)
wherep1, p2 are obtained by replacing the subpatha/ ∗ /descendant-or-self :: a
with a/a, respectivelya/∗//a in p. But bothQ1,Q2 are contained inXb′, as witnessed by
two containmentmappings fromc(Xb′): onematching thex-attributes inc(Xb′) against the
“0”-valuedx-attributes inT (p1) and onematching them against the “1”-valuedx-attributes
of T (p2). On the other hand, according to the chase theorem [1],c(Xb) is not contained
in c(Xb′) underTIX because there is no containment mapping fromc(Xb′) into the result
of chasingc(Xb) with TIX . �

Upper bound. First, observe that// = ⋃
0�k ∗k, where∗k is short for the concate-

nation of k wildcard navigation steps. More generally, everyAT-XBind∗ query p with
n occurrences of// is equivalent to an infinite union of //-free queries: denoting with
p(k1, . . . , kn) the result of replacing theith occurrence of// in pwith ∗ki , p is equivalent
to

⋃
0�k1,...,0�kn

p(k1, . . . , kn). Therefore, the containment ofp in p′ reduces to checking
the containment of eachp(k1, . . . , kn) in p2. The key results making our containment deci-
sion procedure possible are that (i) each individual containment can be decided according
to Theorem 4.1, (Proposition D.1) and (ii) it is sufficient to check the containment for only
finitely many //-free XBind queries in the union (Proposition D.2).

82 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

b a b

a *

* c *

*

*

c

1 0

*

@x=0
@x=1

@x = 1

@x=0

b

a

a c

*

c *

*

*
@x

@x

=

*

a

Fig. 3.AT-XPath∗ expressions in counterexampleD.1.

Proposition D.1. Letp, p′ be AT-XBind∗ queries,where p is//-free, andc(p), c(p′) their
relational compilations. Then p is contained inp′ if and only ifc(p) is contained inc(p′)
underTIX .

Proposition D.2. Let p1, p2 be AT-XBind∗ queries and let l be1 plus the number of
occurrences of∗ in p2. Thenp1 is contained inp2 if and only if⋃
0�k1� l,...,0�kn � l p1(k1, . . . , kn) is contained inp2.

The analysis of the resulting decision procedure yields the�p
2 upper bound[7].

Lower bound. The proof is by reduction from the�p
2 -complete∀∃3−SAT problem [27]:

the instances of this problem are first-order sentences� of general form

∀x1 . . .∀xn∃y1 . . . ∃ym

l∧
i=1

Ci,

where each clauseCi is a disjunction of three literals which are any of the variables
x1, . . . , xn, y1, . . . , ym or their complements.� is a “yes” instance if and only if it is valid.
For every sentence�, we construct theAT-XBind∗ queriesp1, p2, where�’s vari-

ables appear as attribute and variable names, andp1, p2 contains occurrences of @xi, xi

for every 1� i�n, and occurrences of @yj , yj for every 1�j �m. We use the nota-
tion p1(k1, . . . , kn) introduced for PropositionD.2. The containment holds if and only if
p1(k1, . . . , kn) is contained inp2 for all 0�ki . The reduction is defined such that these
containments hold if and only if� has a satisfying assignment which makesxi false if
ki = 0, and true ifki > 0. This makes� valid if and only ifp1 ⊆ p2.
Bothp1, p2 are booleanAT-XBind∗ queries.p1 has the formp1() := [qi](f) whereq1

is a relative XPath expression andf a fresh variable.q1 is constructed as the conjunction of
7l +m+ n subexpressions:
• for every clauseCi , let ui, vi, wi be its variables, andai,1, . . . , ai,7 the seven satis-
fying assignments forCi . For every 1� i� l and 1�j �7, q1 contains[/Ci[@ui =
ai,j (ui)][@vi = ai,j (vi)][@wi = ai,j (wi)].

• for everyyj , we add toq1 theexistential gadget[/yj [@yj =′′ 0′′][@yj =′′ 1′′]].

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 83

• We also addn copies of auniversal gadget(one copy for everyxi). The universal gadget
(defined shortly) is denotedU(x) and it is aAT-XPath∗ expression having occurrences
of @x for some attribute namex. For everyxi , the corresponding copy ofU has @x
substituted with @xi , denotedU(xi).
This completes the construction ofq1, up to the specification of the universal gadget. First

we show the construction ofp2() := q2, whereq2 is the query body.q2 containsl+m+ n

subexpressions:
• for every 1� i� l, q2 contains[/Ci](ci), [@ui](ci, ui), [@vi](ci, vi), [@wi](ci, wi)

where, as before,ui, vi, wi are the variables occurring in clauseCi .
• for every 1�j �m, q2 contains the atom[/yj /@yj](yj).
• for every 1� i�n,q2 containsasatisfactiongadget[S(xi)](xi).S(x)denotesAT-XPath∗
expression with occurrences of @x for somex (defined shortly).
We now specify the universal and satisfaction gadgets. Recalling counterexampleD.1,

U(x) is a copy ofp, andS(x) is a copy ofp′ modified to return the attribute @x: [// ∗
[a[a][c]][∗/ ∗ [c][∗/∗][@x = /b/ ∗ /@x]/@x]].
We still have to prove that this construction is a reduction. According to Proposition D.2,

p ⊆ p′ if and only if p(k1, . . . , kn) ⊆ p′ both for ki = 0 andki > 0. Recalling the
discussion in counterexample D.1, the containment mapping corresponding toki = 0 binds
xi to “0”, while that corresponding toki > 0 bindsxi to “1”. Moreover, it is easy to see
that any containment mapping fromp′ to p corresponds to a satisfying assignment of�.
Therefore,p1 ⊆ p2 if and only if every truth assignment to thexis has an extension to the
yjs that satisfies all clauses of� (or, equivalently, if and only if� is valid). �

Appendix E. Proof sketch for Theorem 6.2

By reduction from the following undecidable problem: Given context-free grammarG =
(�, N, S, P) where� is the set of terminals (containing at least two symbols),N the non-
terminals,S ∈ N the start symbol,P ⊆ N × (� ∪ N)∗ the productions, andL(G) the
language generated byG, the question whetherL(G) = �∗ is undecidable [19].
In fact, it is simpler to present a reduction to containment in the presence of boundedAT-

XICs and DTDs and we do so below. However, a careful analysis of the used DTD features
reveals that these are captured as XICs of two forms:∀x [//A](x)→ ∃y [./A](x, y)∨∃y [./B](x, y)
and∀x [//A](x)→ ∃y [./@s](x, y). These are not boundedAT-XICs: note the illegal existential
quantification ofy.
The reduction.Given context-free grammarG = (�, N, S, P), we construct an instance

(DTDG, DG, XP1 ⊆ XP2) such thatXP1 is contained inXP2 over all XML documents
conforming to the description DTDG and satisfying the XICs in DG if and only if �∗ ⊆
L(G). We first show DTDG, which does not exercise all features of DTDs. The features of
DTDG used to prove undecidability can be easily shown to be fully captured by XICs:

<!ELEMENT B (A|E)>
<!ELEMENT A (A|E)>
<!ELEMENT E (PCDATA)>
<!ATTLIST B i #ID, S #IDREFS>
<!ATTLIST A i #ID, sym (a1|a2|...|an), N1 #IDREFS,...,Nk #IDREFS>.

84 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

B,E,A are fresh names,a1, . . . , an are the alphabet symbols in�, N1, . . . , Nk are the
nonterminals inN. Every document conforming to DTDG is a list (unary tree) of elements,
whose head is taggedBand unique leaf taggedE. The inner elements (if any) of the list are
taggedA, and theirsymattribute contains a symbol of�. Every document conforming to
DTDG thus corresponds to a wordw ∈ �∗, and every pairs, t of A-elements such thatt is
a descendant ofsdetermines a substring ofw.
The set ofXICsDG (shownshortly) is designedsuch that,whenever adocument conforms

to the DTDG and satisfies DG, the followingclaimholds: for every pairs, t of A-elements
with t a descendant ofs, let u be the corresponding substring ofw (if s = t , u is the unit
length string given by the value oft’s sym attribute). Then for every 1�j �k such that
there is a derivation ofu starting from nonterminalNj , the value of the attributei of t is a
token of the value of theNj attribute ofs. 15 Furthermore, theSattribute of theB-element
contains all tokens of theSattribute of the firstA-element, if any.
We omit the proof of the claim, but illustrate for the grammarS → cS | cc and word

w = ccc. An XML document corresponding tow which conforms to DTDG and satisfies
the claim is

<B i=”0” S=”2 3”>

 <E>any text goes here</E>.

Now we havew ∈ L(G) if and only if there is a derivation ofw in G starting from
S, which by the claim is equivalent to thei-attribute in the parent of theE-element being
among the tokens of theS-attribute in theB-element. Therefore,�∗ ⊆ L(G) is equivalent
to the containment//.[/E]/@i ⊆ /B/@S which we pick forXP1 ⊆ XP2.
We now show the XICs DG. For every productionp ∈ P , we construct an XIC(prodp) as

illustrated by the following example. LetR, T be nonterminals anda, b alphabet symbols
in the productionR → aRbT . The corresponding XIC is

(prodp) ∀x, y [./A[@sym= ”a”]/id (@R)/A[@sym= ”b”]/id (@T)/@i](x, y)→ [./@R](x, y).

We enforce that the tokens in theS-attribute of the firstA-element be included in the
S-attribute of theB-element with the XIC

(startB) ∀x, y [/B](x) ∧ [./A/@S](x, y) → [./@S](x, y).

Furthermore, we may assume without loss of generality thatG has at most one	-
production, namelyS → 	 (see the procedure for elimination of	-productions employed
when bringing a grammar in Chomsky Normal Form[19]). If S → 	 ∈ P , add to DG the
XIC

(d) ∀x, y [/B](x) ∧ [./@i](x, y) → [./@S](x, y). �

15Recall that an IDREFS attributea models asetof IDREF attributes, represented by the set of whitespace-
delimited tokens ofa’s string value.

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 85

Appendix F. Proof of Proposition 6.1

LetC be any class of relational instances. We reduce the problem CON to the problem
MIN where
CON: given conjunctive queriesQ1,Q2, decide whetherQ1 is contained inQ2 on a

class of models C such thatQ2 returns a non-empty answer for at least one model in C
(denotedQ1 ⊆C Q2)
MIN: given conjunctive query Q and set of embedded dependencies D, decide if Q

is minimal under all models from C that satisfy D.
Our definition of conjunctive queries allows equality and constants so queries may be

unsatisfiable. The condition thatQ2 return a non-empty answer on at least some model
I ∈ C is easy to check in all common scenarios. WhenC is the class of all instances, the
canonical instance ofQ2 is an example forI. WhenC is specified by a set of stratified-
witness dependencies, the result of chasingQ2 with these dependencies is an example,
as long as it does not equate two constants, in which caseQ2 is equivalent to the empty
query.
First we reduce CON to the auxiliary problem DISJ where,
DISJ: given conjunctive queriesP1, P2, decide whetherP1 ⊆C P2 or P2 ⊆C P1.
LetQ1(x)← body1(x, y)andQ2(x)← body2(x, z)beconjunctivequeriesover schema

S. Herex denotes a tuple of variablesx1, . . . , xn, and similarly fory, z. Let e be a fresh,
nullary predicate. We extend instances by interpretinge in two ways: one as the empty set,
and the other as the singleton empty tuple.We denote withCe the class of models obtained
by extending every model inC in both ways. DefineQe

1(x)← body1(x, y), e(). We claim
that

Q1 ⊆C Q2⇔ Qe
1 ⊆Ce Q2 ∨Q2 ⊆Ce Qe

1.

Proof of Claim. Let I ∈ C, and letJ be the extension ofI with an interpretation for
e. Notice first that sinceQ2 is not defined in terms ofe, Q2(J) = Q2(I) regardless of
e’s interpretation. Moreover,Qe

1(J) = Q1(I) whene is interpreted as non-empty, and
Qe
1(J) = ∅ otherwise.

⇒: Pick an arbitraryJ ∈ Ce and letI ∈ C be J’s restriction. If e is the empty set,
Qe
1(J) = ∅ ⊆ Q2(J). Whene is interpreted as the singleton empty tuple,Qe

1(J) =
Q1(I) ⊆ Q2(I) = Q2(J).⇐: Q2 returns a non-empty answer on at least one instance
I ∈ C. ThenQ2 ⊆Ce Qe

1 is false. Indeed,Q2 must have a non-empty answer also on the
extensionJ of I with the empty sete. ButQe

1(J) = ∅, which contradicts the containment
statement.
It must therefore be the case thatQe

1(J) ⊆ Q2(J) is true for allJ ∈ Ce, in particular for
those in whiche is interpreted as non-empty, but on these,Q1(I) = Qe

1(J) ⊆ Q2(J) =
Q2(I). Since the corresponding set of restrictionsI of J is exactlyC, we haveQ1 ⊆C Q2.
(End of proof of claim.) �

Now we reduce DISJ to MIN. DenoteP1(x)← body1(x, y) andP2(x)← body2(x, z).
LetD be the set of dependencies{c1, b1, c2, b2} over the schema in which we addedP1, P2

86 A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87

as relational symbols:
(ci) ∀x∀y [bodyi(x, y)→ Pi(x)],
(bi) ∀x [Pi(x)→ ∃y bodyi(x, y)].
Notice that, on any instance satisfyingD, the relationPi contains exactly the result of

thequeryPi . Also notice thatci, bi are exactly the kind of dependencies we use in the C&B
approach to capture views. We claim that

P1 ⊆C P2 ∨ P2 ⊆C P1

⇔
P(x)← P1(x), P2(x) is not minimal overC-instances satisfyingD .

Notice that, on any instance satisfyingD, P defines the intersection ofP1 andP2 when
regarded as queries.

Proof of Claim. SinceP has only two atoms in its body, it is not minimal if and only if it
is equivalent to eitherM1(x) ← P1(x) orM2(x) ← P2(x). But this is true if and only if
when regarded as queries,P1 =C P1 ∩ P2 or P2 =C P1 ∩ P2, if and only ifP1 ⊆C P2 or
P2 ⊆C P1. �

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, Reading, 1995.
[2] C. Beeri, M.Y. Vardi, A proof procedure for data dependencies, J. ACM 31 (4) (1984) 718–741.
[3] P. Buneman, S. Davidson, W. Fan, C. Hara, W.-C. Tan, Keys for XML, in: WWW10, 2001.
[4] M. Carey, J. Kiernan, J. Shanmugasundaram, E. Shekita, S. Subramanian, XPERANTO: middleware for

publishing object-relational data as XML documents, in: VLDB, 2000.
[5] A. Chandra, P. Merlin, Optimal implementation of conjunctive queries in relational data bases, in: STOC,

1977.
[6] S.S. Cosmadakis, P.C. Kanellakis, Functional and inclusion dependencies, in: Advances in Computing

Research, Vol. 3, 1986, pp. 163–184.
[7] A. Deutsch, XML query reformulation over mixed and redundant storage, Ph.D. Thesis, University of

Pennsylvania, CIS Department, 2002.
[8] A. Deutsch, L. Popa, V. Tannen, Physical data independence, constraints and optimization with universal

plans, in: VLDB, 1999.
[9] A.Deutsch,V.Tannen,Containmentand integrity constraints forXPath fragments, in:KRDB2001,September

2001.
[10] A. Deutsch, V. Tannen, Containment for classes of XPath expressions under integrity constraints, Technical

Report MS-CIS-01-21, University of Pennsylvania, 2001.
[11] A. Deutsch, V. Tannen, Optimization properties for classes of conjunctive regular path queries, in: DBPL,

2001.
[12] A. Deutsch, V. Tannen, Mars: a system for publishing XML from mixed and redundant storage, in: VLDB,

2003.
[13] A. Deutsch, V. Tannen, Reformulation of XML queries and constraints, in: ICDT, 2003.
[14] H.D. Ebbinghaus, J. Flum, Finite Model Theory, Springer, Berlin, 1995.
[15] R. Fagin, P. Kolaitis, R. Miller, L. Popa, Data exchange: semantics and query answering, in: ICDT, 2003.
[16] M. Fernandez, A. Morishima, D. Suciu, Efficient evaluation of XML middle-ware queries, in: SIGMOD

2001, May 2001.

A. Deutsch, V. Tannen / Theoretical Computer Science 336 (2005) 57–87 87

[17] M. Fernandez, WangChiew Tan, D. Suciu, SilkRoute: trading between relations and XML, in: WWW9
Conference, May 2000.

[18] A. Halevy, Answering queries using views: a survey, VLDB J. 10 (4) (2001) 270–294.
[19] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley,

Reading, 1979.
[20] R. Hull, M.Yoshikawa, ILOG: declarative creation and manipulation of object identifiers, in: VLDB, 1990.
[21] M. Lenzerini, Data integration: a theoretical perspective, in: PODS, 2002.
[22] A. Levy,A.O. Mendelzon,Y. Sagiv, D. Srivastava,Answering queries using views, in: Proceedings of PODS,

1995.
[23] A. Levy,A.Rajaraman, J. Ullman,Answering queries using limited external query processors, in: Proceedings

of PODS, 1996.
[24] I. Manolescu, D. Florescu, D. Kossman, Answering XML queries on heterogeneous data sources, in: Proc.

of VLDB 2001, 2001.
[25] G. Miklau, D. Suciu, Containment and equivalence for an XPath fragment, in: Proceedings of PODS, 2002.
[26] F. Neven, T. Schwentick, XPath containment in the presence of disjunction, DTDs and variables, in: ICDT,

2003.
[27] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, 1994.
[28] R. Pottinger, A.Y. Halevy, Minicon: a scalable algorithm for answering queries using views, VLDB J. 10

(2–3) (2001) 182–198.
[29] Y. Sagiv, M.Yannakakis, Equivalences among relational expressions with the union and difference operators,

J. ACM 27 (1980) 633–655.
[30] J. Shanmugasundaram, J. Kiernan, E.J. Shekita, C. Fan, J. Funderburk, Querying XML views of relational

data, in: VLDB, September 2001.
[31] W3C, XML Path Language (XPath) 1.0. W3C Recommendation 16 November 1999. Available from

http://www.w3.org/TR/xpath .
[32] W3C, XML Schema Part 0: Primer, Working Draft 25 February 2000. Available from

http://www.w3.org/TR/xmlschema-0 .
[33] W3C, XQuery: a query Language for XML, W3C Working Draft 15 February 2001. Available from

http://www.w3.org/TR/xquery .
[34] P.Wadler,A formal semantics of patterns inXSLT, in: Proceedingof theConference forMarkupTechnologies,

1999.
[35] P.T. Wood, Containment for XPath fragments under DTD constraints, in: ICDT, 2003.

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xquery

