
Building an XQuery Interpreter
in a Compiler Construction Course

Sara Miner More Tim Pevzner Alin Deutsch
Scott Baden Paul Kube

{more, tpevzner, deutsch, baden, kube}@cs.ucsd.edu
Department of Computer Science & Engineering

University of California, San Diego
La Jolla, CA 92093-0114

ABSTRACT
For two years, we have been teaching a quarter-long com-
piler construction course where students implement an in-
terpreter for a variant of the XML query language XQuery.
Our goal is to motivate students’ interest in the course by
exposing them to an interesting and powerful new language
which they see as relevant to potential future experiences.

In this paper, we first explain the workings of the course
itself, and then describe some pedagogically interesting vari-
ants of the XQuery language. We close with a discussion of
challenges faced and conclusions.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information
Science Education—Computer Science Education

General Terms
Languages, Theory, Design

Keywords
Compiler construction, XQuery, XML, Capstone courses

1. INTRODUCTION
For years, our department taught a typical two-quarter se-

quence of courses on compiler construction. This sequence
represented an integrated, capstone experience which span-
ned the two quarters. The assigned projects afforded stu-
dents experience following a detailed specification, writing
modular software and testing code. However, faculty de-
scribed several problems with the existing situation. First,
it was difficult to motivate students to learn about compil-
ers. Most students were aware that it was unlikely that they
would write a compiler or interpreter for a source language
in their later careers, and seemed to devote less time and en-
ergy to the compiler sequence than to subjects which they
perceived as more “relevant”. Secondly, projects were com-
pleted in teams, and the second quarter project relied on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/05/0002 ...$5.00.

work completed in the first quarter. This situation led to
difficulties for students whose teammates did not remain en-
rolled in the course for the second quarter (either changed
major, or took the second course during a later quarter).
Furthermore, at the beginning of the second quarter, stu-
dents were not starting off on even footing - those who had
performed very well in the first quarter had a stronger base
of code from which to begin the second half of the project.

Therefore, two years ago, with support from the depart-
ment and university, we undertook a major change in our
compiler sequence. First, we separated the courses so that
the project in the second quarter did not depend on work
completed in the first quarter. Then, we changed the focus
language in the first quarter of the sequence in an attempt
to improve student motivation for the course. Additionally,
we tried to retain the integrative, capstone nature of the
student experience, albeit only over a single quarter. To ac-
complish these goals, we selected the the World Wide Web
Consortium’s (W3C [6]) XML query language XQuery [9] as
our new focus language, and asked students to build an in-
terpreter for a subset of XQuery. In this paper, we describe
our experiences using XQuery as the focus language in the
first quarter of our compiler construction sequence.

2. WHY XQUERY?
As mentioned above, the selection of XQuery as a new fo-

cus language for this course was, in part, a response to fac-
ulty perception that the existing sequence of compiler con-
struction courses was difficult to motivate. As Debray [11]
noted, most computer science majors do not write a source
language compiler or interpreter after graduation, so stu-
dents often feel that the sequence of compiler courses is less
relevant to contemporary practice. To mitigate this prob-
lem, we sought to relate the study of translators to emerg-
ing technologies that would be relevant to students’ likely
postgraduate experiences. Many of our undergraduates are
interested in databases, and have expressed a desire to learn
about XML. Since understanding the syntax and semantics
of XQuery would require first obtaining a basic understand-
ing of XML, we reasoned that students might become more
enthusiastic about the subject matter from the start.

Secondly, we wanted students to come away from the com-
piler sequence with the sense that, with minimal effort, they
would be capable of writing a compiler for a fairly com-
plex language. Requiring them to work with XQuery, a
rich language currently undergoing standardization, would

2

leave them with confidence about their ability to apply their
knowledge to different languages. Admittedly, there is not
enough time in a ten-week quarter to expect students to im-
plement an interpreter for the entire language, so we ended
up restricting the language somewhat.1 However, we use a
language subset that retains the flavor of the full language.

Furthermore, an XQuery interpreter lends itself nicely to
a modular XML-centric design, as we will describe below.
This design helps to reinforce students’ newly gained knowl-
edge about XML, allows for automated grading, and gives
the instructor flexibility in terms of requirements.

3. DESCRIPTION OF THE COURSE

3.1 Concepts Covered
The course in question traditionally focused on lexical

analysis, syntactic analysis, error analysis, type-checking
and, to some degree, syntax-directed translation. (The sec-
ond course in the sequence covers code generation and opti-
mization, which are not included in the first quarter.) With
the change to XQuery as our focus language, we did not
want to sacrifice any of this conceptual core. However, we
did now need to devote some time to teaching students about
XML and the Document Object Model [2], as well as about
XQuery itself. As a result, we reduced the amount of time
spent on the theory of lexing and parsing. However, we do
provide students with useful exposure to real-world language
specifications and the process of dealing with an evolving
standard. Furthermore, we introduce students to tools for
automating the lexer and parser generation process, which
they may encounter again after graduation.

In addition, in order to foster interest in the language and
to help students relate it to potential real-world experiences,
we invite an XQuery expert to give a guest lecture about how
XQuery is used in practice and where it is headed.

3.2 Student Teams
We have a large number of CS majors in our department,

and, as a result, even upper-level major courses have large
enrollments. In the past two years, we have taught this
class with sizes ranging from 75 to 250 students. Students
are permitted to work in teams of two on the task of con-
structing the interpreter. (Teams typically remain together
for the entire quarter, though this is not strictly required,
and some students elect to work individually for some or all
of the quarter.) Working in pairs ameliorates the problem
of large enrollments by reducing the amount of time spent
grading, and it carries with it the added benefits of encour-
aging student interaction, and allowing us to assign a more
complex project. In fact, for most students, the project
completed in this course is by far the largest programming
project they have undertaken. They are also given much
more flexibility and independence during the quarter than
they have encountered in previous courses. Unfortunately,
this freedom causes some students to struggle; we will dis-
cuss this problem further in Section 5.1.

1An alternative would be to create a simpler language such
as MinimL [10], which was built to contain just enough fea-
tures to be interesting, but not so many that students are
overwhelmed. We opt for the subset approach because we
feel that students are more excited about a language which
they might imagine using in future employment. We discuss
various subsets of the language in Section 4.

3.3 Phases of Interpreter Construction
The task of building an interpreter is often broken into

three phases. We follow this traditional sequence of phases
as follows. First, the lexer translates source code into a
stream of tokens. Secondly, while enforcing syntax rules, the
parser translates this stream of tokens into an abstract syn-
tax tree (AST) or some other intermediate representation.
Finally, the semantic engine evaluates the AST, performing
type checking, and executes the code it represents.

In our XML-centric project design, XML output is used
during intermediate phases. Specifically, in the first phase,
students write driver programs for their lexers which, when
given XQuery input, output the stream of tokens as an XML
document. In the second phase, their driver programs out-
put an XML representation of the abstract syntax tree, a
natural fit with the tree-based structure of XML documents.

3.3.1 Lexer
At the beginning of the lexer portion of the course, stu-

dents are introduced to the Java-centric JFlex [3] scanner-
generator tool. They are then provided with a Lexical Spec-
ification documenting the requirements of their lexer. The
goal of the lexer itself is to generate a stream of tokens found
in the given input, including line and column information
from the input file. A lexer driver extracts this token stream
and outputs it in XML format. If any errors are found, they
are reported in XML as well.

An interesting issue in the lexer phase (which also arises
in Pascal compilers) is that XQuery comments are delim-
ited by matching (: and :). That is, comments may be
nested. In the traditional division of labor within an inter-
preter, the lexer identifies comments and strips them from
the input rather than tokenizing them, so that the parser is
not burdened with them. However, a lexer which is a finite
automaton is not sufficient for recognizing nested comments.
Without the power of a stack, an XQuery lexer cannot reli-
ably determine how to tokenize the text occurring after :).
This feature of XQuery breaks the traditional clean modu-
lar structure of an interpreter, but exposes students to real-
world language issues. In addition, some XQuery language
constructs require the use of lexical states, so we provide
students with a Lexical State Specification.

3.3.2 Parser
We begin the parser portion of the course with an intro-

duction to the Java-centric CUP [1] parser-generator. Stu-
dents are given a Syntax Specification which contains the
grammar rules for the language. (As mentioned above, the
language is a subset of the full XQuery language, with minor
modifications.) Their task is to generate an abstract syntax
tree (AST) representing any given source input which con-
forms to the grammar. We also provide a specification for
the representation of the AST, which we call the XQueryX
Specification. (It is loosely based on an early version of the
W3C’s XQueryX specification document [8], which specifies
a standard XML representation of an XQuery program.) In
the case that the program contains syntax errors, the parser
generates an XML file describing the location of the error.

There is one practical issue to mention here. When CUP
is used to generate a parser, it creates a file called sym.java
which contains list of token names and integers represent-
ing those tokens. The symbolic constants contained in this
file are actually necessary for the scanner produced by run-

3

ning JFlex. Since the lexer phase of the project occurs prior
to the parser phase, students have not created their own
sym.java file yet. To rectify this problem, we provide stu-
dents with the sym.java file generated from our reference
parser to use during the lexer phase. Furthermore, parsers
generated from different CUP files will generate different
mappings in the resulting sym.java file. Providing a single
file from which all teams can work avoids the problem of
grading lexers which output different integers correspond-
ing to a particular token. In the parser phase, however, stu-
dents abandon the provided sym.java file from the earlier
phase and run CUP to create their own. Since the output of
the parser does not include tokens, the internal integer rep-
resentation for a particular token does not affect the output.

3.3.3 Semantic Engine
In the final phase of the interpreter construction, the goal

is evaluation of ASTs generated by the parser. Students are
given a full Semantic Specification detailing the meaning of
language constructs and its type system.

Evaluation of some XQuery constructs is quite straight-
forward for students, e.g., literals or the if-then-else state-
ment. A central construct in an XQuery program, how-
ever, is a FLWOR expression, which supports iteration and
binding of variables to values. Students are unfamiliar with
the semantics of this expression, so implementing its evalu-
ation takes some time. In particular, the order-by clause of
a FLWOR is most troublesome for students. Furthermore,
constructors and path expressions are constructs which allow
for the creation and traversal, respectively, of nodes within
XML document trees, and seem to be the most troubling
for students to implement. In addition, the preexisting XML
and XPath[7] schema on which XQuery was based introduce
some unusual constructs into the language, adding to the
complexity of the assignment. Luckily, the Java standard
packages org.w3c.dom, org.xml.sax, and javax.xml.parsers
provide much functionality for manipulating XML docu-
ments and Document Object Model interfaces. To assist
students further, we supply them with our own utility pack-
age for manipulating XML in Java that provides much of
the components of path expression functionality. Students
are left with the task of combining these different given com-
ponents of a path expression in the appropriate way.

Type checking is also performed in this phase. XQuery
has a detailed hierarchical structure of predefined datatypes.
We include a subset of these, consisting of what we believe
is a manageable number of types (approximately 15, about
half of which are the various XML node types). In addition,
we simplify the language further by disallowing user-defined
types. It turns out that implementing an XQuery interpreter
in Java is convenient, as there is a nice mapping of most
XQuery types to Java types. Furthermore, we encourage
students to make use of Java inheritance when implementing
the hierarchical type system of XQuery.

Because some students begin the course without prior
knowledge of XML and nearly all students begin without
prior knowledge of XQuery, we spend some time introduc-
ing these languages during lecture. In addition, we have
found it useful to include an initial programming assignment
that forces students to use these languages. Students write
several fairly short XQuery programs which are intended to
acquaint them with unfamiliar language constructions such
as FLWOR expressions, constructors, path expressions and

predicates. Although it delays the beginning of the lexer
assignment, we find that familiarity with XQuery is very
helpful for students during the semantic analysis phase.

3.4 The Grading Process
The XML-centric nature of the interpreter project allows

fairly clean automation of the grading process. By running
all test inputs through our reference implementation, we
generate reference XML output files. Students use a script
to turn in their source code electronically, and we use our
own script to collect the turn-in files, compile them, and
run them. We then use xmldiff [4], a freely available diff-like
tool for comparing XML files, to compare student output to
our reference output. We take an all-or-nothing approach to
assigning points. For a 100-point assignment, we test each
team’s code on 100 different input files designed to cover all
language features. The team earns one point for each out-
put file which matches the corresponding reference output
according to xmldiff. Generally, we do not award partial
credit for partial matches, as this would require too much
time for such a large class. This means that even minor
spacing errors can cost a team significant points. To make
this process more fair, we do provide a small set of pub-
lic test inputs and outputs to the students while they work
on a particular phase, and they have access to the xmldiff
tool. This gives them the opportunity to check their out-
put against the posted output, to help eliminate these types
of errors. Grades are returned to students via email, along
with the xmldiff output from the test runs and some individ-
ual comments on their progress, so that they can determine
which types of tests they did not pass. Because the next
phase of the interpreter builds on the current phase, timely
feedback about mistakes is important for student progress.

In addition to the programming projects, we give midterm
and final examinations to test the students’ knowledge of
course concepts. Students take these exams individually.
Inevitably, there are some project teams in which one stu-
dent performs a disproportionate amount of the work, and
these individual assessments help us to assign appropriate
grades. To this end, it is important to test understanding
of the XQuery language in addition to compiler theory on
the exams. This allows us to identify students who did not
learn XQuery well because they did not put in their share
of effort on the projects.

4. OUR VARIANTS OF XQUERY
In this section, we describe a language based on XQuery

which we believe is interesting from a pedagogical stand-
point. First, however, we begin with a very elementary
overview of some of the features of full XQuery.

4.1 Some Basic Features of XQuery
XQuery is a functional language. The basic building blocks

in XQuery are expressions, whose values consist of sequences
of items. Designed as a query language for the widely-used
markup language XML, XQuery allows concise yet power-
ful queries over XML documents. As such, built-in types in
XQuery are based on the XML type system. A large number
of standard functions are specified in XQuery, for tasks such
as arithmetic, logical and set operations. Both user-defined
types and functions are also allowed.

A central construct in the language is the FLWOR expres-
sion, where the letters in the acronym stand for the clauses

4

available in the expression, namely, for, let, where, order by
and return. This type of expression allows iteration over
and binding of values to variables, along with selection of
particular values. Specifically, for clauses permit iteration,
let clauses permit binding, and an optional where clause
“gates” the execution of the return clause. That is, for a
particular iteration, the boolean expression associated with
the where clause is evaluated. If the expression is true, the
return clause is executed for that iteration. The value of
a FLWOR expression is the concatenation of all values re-
turned by each execution of the return clause of the FLWOR
into a single sequence. The optional order by clause may be
used to sort the items in the returned sequence.

FLWOR expressions are useful for computing joins be-
tween two or more documents and for restructuring data.

Data in a well-formed XML document is logically arranged
in a tree specified by the Document Object Model (DOM),
and different nodes in the tree are of different types (e.g.,
element, attribute, text, comment, etc.). XQuery’s path ex-
pression construct allows the selection of nodes in an XML
document based on their position in the document’s DOM
tree, their types, and the names given to the nodes. For
example, using a path expression within a FLWOR, one can
iterate over a sequence of nodes in a particular document,
such that, at every node n in the sequence, all logical chil-
dren of n which are element type nodes that have name
foo are selected. The full syntax of such an expression is
as follows, where we assume that the variable $sequence is
already bound to a sequence of XML nodes:
for $n in $sequence return $n/child::element(foo)

Because the path expression appearing in the above return
clause is a common type of query, XQuery permits a short-
hand version of it. Thus, the following expression is equiv-
alent to the one above:
for $n in $sequence return $n/foo

That is, expressions of the form a/b indicate that all element
children of node a with name b are to be returned.

A related path expression allows queries for all element
nodes which are descendants (on any level in the tree) of a
node. There are many other sorts of path expressions, allow-
ing queries based on different position specifiers within the
DOM tree and different node types. Some of these path ex-
pressions can be expressed using full path expression syntax
as well as specialized shorthand notation.

XML documents on which path expressions queries are
made can be read in from external files, or, alternatively,
XML nodes may be constructed within the XQuery pro-
gram themselves. Direct constructors allow literal XML to
be written verbatim within an XQuery program. Computed
constructors allow XML nodes to be specified using key-
words to identify the type of node to be created.

4.2 Our Variations on XQuery
Because XQuery has many additional features (which we

lack sufficient space to mention here), students in a quarter-
long course can implement only a subset of the actual XQuery
standard language. Here we discuss several variants of XQuery
that include language features which we found to be inter-
esting in our compiler construction course. In some cases,
our variants are not strictly subsets of the official XQuery
language; we do deviate from the official specification some-
what. However, we believe that the flavor of the official
language is retained.

First, we restrict the type system of the language, so that
only approximately 15 types are included. (Note that nine
of these are XML node types or groups of of XML nodes,
and much of the functionality required to implement them
is available in standard Java classes.) We do not allow user-
defined types. We also restrict the number of built-in func-
tions, the different types of path expressions and the types
of constructors allowed. We give detailed instructions about
implicit type conversions used in function calls.

We are experimenting with the idea of treating path ex-
pressions as built-in functions, rather than using their offi-
cial syntax. We also intend to eliminate the shorthand ver-
sions of path expressions, which students found confusing
and which do not provide significant pedagogical interest.

We also found it useful to rework the XQuery grammar
so that, for example, literals are derived in a small number
of steps. This allows testing of parser code to be performed
incrementally, instead of requiring that students have a large
section of the grammar in place before testing can begin.

To combat plagiarism, we modify our project require-
ments from quarter to quarter in an attempt to avoid the
“code migration” problem, where students in the course dur-
ing a previous quarter share their code with students cur-
rently enrolled in the course. Of course, these change in
requirements necessitate the preparation of a new reference
implementation each quarter, but we feel the gains are worth
the additional instructor effort.2

Changing the AST specification from quarter to quarter
is one way to drastically change the code required for the
project. For example, we changed the AST representation
of a FLWOR expression dramatically one quarter. This not
only helped combat plagiarism, it was also a representation
that simplified the interpretation of the expression. In other
quarters, we removed the order by clause from the language
completely, allowing only FLWR expressions instead.

More simple changes include using different subsets of of-
ficial XQuery’s many built-in functions, or specifying new
built-in functions which allow any number of parameters.
Modifications to the error handling requirements are an-
other option. Furthermore, we have incorporated different
language features from the official XQuery specification at
different times, such as the explicit specification of parame-
ter and return types in user-defined functions and quantified
expressions.

5. DISCUSSION
In the past two years, we have offered this course five dif-

ferent times. We now mention some general challenges that
we faced along with the XQuery-specific issues we mentioned
earlier. We close with some summary remarks.

5.1 Challenges
One of the goals of our compilers course is to expose stu-

dents to large-scale programming projects. Since this is a
new experience for a majority of the enrolled students, they
have initial difficulties in grasping the big picture of the as-
signment and budgeting their time.3 (These problems are
typical of capstone courses, regardless of topic.) We address

2Because we use a different language each quarter, students
sometimes find bugs in the project specifications. For some,
this may be a good learning experience, but other students
understandably find this frustrating.
3As last-minute desperation engenders plagiarism, we also

5

these challenges as follows. In order to encourage students
to begin working on the phases of the project as soon as
they are assigned, we have instituted voluntary checkpoints
midway through the longer phases. In the future, these may
include students turning in part of the assignment for feed-
back. This checkpoint would not be counted in their grade
for the course, but might help them determine what areas
need attention before the final project is handed in. Al-
though it increases our administrative burden, we hope that
this potential boost to their final score will motivate stu-
dents to work steadily on the project from the beginning,
increasing their chances for success. Adding software engi-
neering topics [12] to the course may also be helpful, though
there is not much time to spare during a ten-week quarter.
On a departmental level, we would like to increase the ef-
fectiveness of prerequisite courses at preparing students to
handle assignments of this size, so the long-term nature of
the interpreter project does not come as a shock.

Because students work in pairs on the projects, we face
the usual team-related issues. For example, is each partner
is pulling his or her own weight? As mentioned above, we
try to address this problem by including project-related ma-
terial on the individual exams. When assigning final letter
grades, students who have high project scores but low exam
grades raise a red flag. Another minor problem arises when
one student from a team withdraws during the quarter. We
try to assist the remaining partner by finding another indi-
vidual in the same situation, and in our large classes, we are
usually successful. Another team-related challenge is that
students become accustomed to asking a peer for assistance.
We wonder if working in teams increases the likelihood of
different pairs working together, which is not allowed.

Finally, we find that some topics covered in lectures and
exams seem disconnected from the interpreter project. For
example, the textbook and lectures include descriptions of
top-down and bottom-up parsing algorithms, but students
do not feel this knowledge is helpful, since CUP automates
the parser generation process. Throughout the quarter, stu-
dent interest level during lecture seems fairly low except
when we are discussing project details. Students have re-
peatedly expressed their feelings that the book is “useless
until it is time to study for the exams”.

5.2 Conclusions
We conclude with some observations about using XQuery

as the focus language in our compiler construction course.
First, we note that none of the major challenges we faced
were introduced when we began using XQuery. These chal-
lenges could arise during any team-based large project.

Compared with prior offerings of the course, we now spend
more time discussing the base language and XML, as well
as interpreter design. These come at the expense of some
parsing theory, and add to the list of new ideas that students
must juggle. An argument can be made that reducing the
time spent on parsing theory is warranted, and we feel that
the exposure to languages and tools which are more “real-
world relevant” is useful for the students.

Looking toward the future, we can imagine several other

run student submissions through MOSS[5, 13], a tool which
checks software similarity. MOSS is most useful on the se-
mantic engine portion of the assignment, because it does
not work on the JFlex and CUP files which constitute the
majority of the earlier assigments.

versions of this course which use XQuery as a focus language.
The XML-based modular design of the system allows stu-
dents to concentrate on any particular part of the compiler.
For example, we could provide students who write a lexer
and parser with a web interface to an existing semantic en-
gine, so that they could more easily verify the correctness
of the AST output by their parser. (A similar approach
where a parser is provided would allow students to verify
the correctness of the token stream output by their lexer.)
Alternatively, we may want to design a course emphasizing
software design that would concentrate more on database
issues, and less on lexing and parsing. To acheive this, we
could provide a web interface to a parser that would gen-
erate an appropriate AST. Interpreters written by students
would then take the generated AST as input, freeing them
from the burden of writing the lexer and parser. Further-
more, the Java DOM implementation could be used as the
AST representation, providing a simple interface. The con-
venience of the XML-based architecture of an XQuery in-
terpreter makes other variations possible as well.

6. REFERENCES
[1] CUP Parser Generator For Java.

http://www.cs.princeton.edu/appel/modern/ja-

va/CUP/, August
2004.

[2] Document Object Model (DOM).
http://www.w3.org/DOM/, August 2004.

[3] JFlex - The Fast Scanner Generator For Java.
http://jflex.de/, August 2004.

[4] Logilab’s xmldiff.
http://www.logilab.org/projects/xmldiff/,
August 2004.

[5] MOSS: A System for Detecting Software Plagiarism.
http://www.cs.berkeley.edu/aiken/moss.html,
August 2004.

[6] W3C World Wide Web Consortium.
http://www.w3.org/, August 2004.

[7] XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, August 2004.

[8] XML Syntax for XQuery 1.0 (XQueryX).
http://www.w3.org/TR/2001/WD-xqueryx-20010607,
August 2004.

[9] XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, August 2004.

[10] D. Baldwin. A compiler for teaching about compilers.
In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, pages
220–223. ACM SIGCSE, February 2003.

[11] S. Debray. Making compiler design relevant for
students who will (most likely) never design a
compiler. In Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education,
pages 341–345. ACM SIGCSE, February 2002.

[12] W. G. Griswold. Teaching software engineering in a
compiler project course. ACM Journal of Educational
Resources in Computing, 2(4):1–18, December 2002.

[13] S. Schleimer, D. S. Wilkerson, and A. Aiken.
Winnowing: Local algorithms for document
fingerprinting. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 76–85. ACM SIGMOD, June 2003.

6

