
Yoo-Hoo!
Building a Presence Service with XQuery and WSDL

Mary Fernández
AT&T Labs - Research

180 Park Ave
Florham Park, NJ 07932, USA

mff@research.att.com

Nicola Onose
Ensimag

BP 72
38402 Saint Martin d’Hères

Cedex, France

nicola.onose@ensimag.imag.fr

Richard Hull
Jérôme Siméon
Bell Labs, Lucent

Technologies
600 Mountain Avenue

Murray Hill, 07974, NJ, USA�
hull,simeon � @lucent.com

1. INTRODUCTION
XML is at the heart of Web services: It is used as the format for
the messages exchanged between services and applications (using
SOAP [8]), to describe the structure of those messages (using XML
Schema [9, 6]), and to describe Web services interfaces (using
WSDL [10, 11]). Yet current approaches [4] to Web-services de-
velopment hide the XML layer behind Java or C# APIs, preventing
the application to get direct access to the original Web service data
and interface. The goal of the XButler1 project is to support faster
and more reliable Web service development by enabling the use of
XQuery as an integral part of the Web service infrastructure. We
propose to demonstrate XButler by installing a Web service which
integrates presence information from multiple service providers.

The main technical contribution behind the XButler approach is a
binding between WSDL [10], the Web Services Description Lan-
guage, and XQuery [12], the W3C XML query language. In partic-
ular, we extends XQuery with an import service statement,
which provides transparent access to Web services from within
an XQuery program. Conversely, XButler provides a command-
line tool (called xquery2soap) which takes an XQuery module
and deploys it as a SOAP service. The XButler tool-set and the
corresponding XQuery extensions are implemented on top of the
Galax2 [1] XQuery processor. Because of the parallel structure
of WSDL definitions and XQuery modules, implementing XBut-
ler required only minimal changes to Galax. More details about
the underlying WSDL-XQuery binding, and a description of how
to implement the corresponding extensions can be found in [7].

To demonstrate the effectiveness of the XButler approach, we use it
to deploy a user-presence service, called Yoo-Hoo!3. Yoo-Hoo! in-

1http://db.bell-labs.com/xbutler
2http://db.bell-labs.com/galax
3An American colloquialism used to attract attention or as a call to
persons.

tegrates user-presence information from multiple service providers
and can provide Yoo-Hoo! clients with information such as “the
requested subscriber is on-line at Jabber” or “the subscriber’s cell
phone is busy”. As we will see, XButler dramatically simplifies
the implementation and deployment of the Yoo-Hoo! service –
the client and server can manipulate XML messages directly in
XQuery and all low-level handling of SOAP messages is entirely
transparent.

2. THE YOO-HOO! PRESENCE SERVICE
2.1 Architecture
The architecture of the Yoo-Hoo! Web service is shown on Fig-
ure 1. On the right-hand side, instant messaging (IM) services
(such as Jabber, AOL-IM, and MSN) and wireless service providers
make presence information available to subscribed users. Typical
IM services permit their subscribers to announce their availability
(e.g., ready to chat, temporarily away, online but do not disturb) and
check other users’ presence, while telephony providers might indi-
cate whether a subscriber is on their home, cell, or work phone. On
the left-hand side, various instant-messenger clients, cell-phones or
hand-held devices need access to user presence information from
those various providers.

Our goal is to deploy the integrated Yoo-Hoo! service shown in
the middle of Figure 1. The service relies upon a traditional data
integration architecture, but operating here over Web services. On
the one hand, Yoo-Hoo! acts as a service accessible to the instant-
messenger clients or devices, and is described using WSDL (1a).
On the other hand, Yoo-Hoo! acts as a client to access the corre-
sponding provider-specific presence informations, available as Web
services and described using WSDL (1b).

Concretely, all client and services applications must implement a
messaging layer that handles the generation and manipulation of
SOAP messages transfered over the network. In addition, the Yoo-
Hoo! service must implement the application logic that handles the
XML values sent to him by its client, dispatch those requests to the
underlying provider services, compute the results for the requests
and send them back to the clients. In our scenario, XQuery is ideal
for both dealing with the messaging layer and accessing the vari-
ous services. We implement part of the GAIM client in XQuery
(2a) by using the XButler extension to import the Yoo-Hoo! ser-
vice as though it were an XQuery module (i.e., a set of functions
and global variables). From the import statement, XButler
generates all the “stub” code for handling the low-level SOAP mes-

Yoo−Hoo!
Integrated
Presence
Service
(XQuery)

Yoo−Hoo! Service

AB&B
Server

AB&B Wireless
Service Provider

XML
messages

Jabber
Server

Instant Messanger
Service Provider

WSDL /
SOAP transport

Yoo−Hoo! Users

GAIM

Yoo−Hoo!
Client
(XQuery)

Telephony
Application

XML
messages

WSDL /
SOAP transport

SOAP
client
(XQuery)

SOAP
client
(XQuery)

1a 1b

SOAP
client
(XQuery)

2a

2b

2b

SOAP
Server
(XQuery)

SOAP
server

SOAP
server

4 3

Figure 1: Yoo-Hoo! Integrated Presence Web Service

sages required by the Yoo-Hoo! server using XQuery itself. Then,
the client application can invoke the Yoo-Hoo! service by simply
calling XQuery functions – all of the low-level messaging code is
entirely transparent.

As for the client, using XQuery can greatly simplify the server im-
plementation. The Yoo-Hoo! service itself is implemented as an
XQuery module (3). From this module definition, XButler gener-
ates the “stub” code for handling the low-level SOAP messages and
dispatching incoming messages to the appropriate XQuery func-
tions (4). For this application, XQuery is powerful enough to im-
plement all of the Yoo-Hoo! service logic as well, although a more
complex service might require the additional support of a general-
purpose programming language.

Finally, the Yoo-Hoo! service can use XButler’s import-service
feature to transparently access the operations of multiple service
providers (2b by simply calling the corresponding XQuery func-
tions.

We now illustrate in detail how to build the Yoo-Hoo! presence
service using XQuery and WSDL. We assume some knowledge of
XML, XQuery and Web services and refer the reader to introduc-
tions on these subjects [3, 5, 10].

2.2 Describing the Yoo-Hoo! service
Figure 2 contains (a small part of) the WSDL 1.1 definition for the
Yoo-Hoo! presence service. For our purpose, the most important
component in the WSDL description is the portType, which de-
scribes operations supported by the service. Each operation is
described by an input and and output message, whose parameters
can be specified using XML Schema types.

In our example, the Yoo-Hoo! service provides one operation, pres-
ence, which takes as input a user’s Yoo-Hoo! identifier (a string)
and returns their presence information in an yh:presence ele-
ment, which contains the user’s status and location.

2.3 Importing WSDL Services in XQuery
XButler extends XQuery with an import service statement
which allows to access Web services from within an XQuery pro-

gram. Importing a service is very simple: one just needs to identify
the WSDL resource, the name of the service, and the port which
must be accessed. The WSDL target namespace may be bound to
a prefix for use within the rest of the query. For instance, the fol-
lowing statement imports the Yoo-Hoo! service, and can be used to
implement part of the GAIM client ((2a) on Figure 1).

import service namespace yh = "http://YooHoo.net/"
name "YooHoo"

let $b := //buddies[name = "Elena Buchsbaum"]
for $s in yh:presence(b/@yhid)/service return
return

let $presence :=
if ($s[online|chat]) then "Available :)"
else "Unavailable :("

return
fn:concat($presence, " on: ",$s/location)

Once the service is imported, the operations from that service are
available to the query as standard XQuery functions. In our exam-
ple, the imported Web service operation is used to retrieve the pres-
ence information for the user "Elena Buchsbaum". Under the
hood, calling the XQuery function yh:presence triggers a SOAP
call to the Yoo-Hoo! service through the SOAP client stub. The in-
put parameters from the function call are passed to the correspond-
ing Web service operation. Once the service returns a result for that
call, this result is passed back to the XQuery function and the query
evaluation may proceed.

Because the values manipulated by XQuery and the SOAP mes-
sages are both in XML, the user does not need to perform any con-
version of the input parameters (resp. of the result) before (resp.
after) calling the service. Note also that the approach also imports
the type for the operations as XQuery function signature, enabling
the use of XQuery’s static typing feature. See [7] for more details.

2.4 Implementing the service logic
The import service statement makes access to multiple Web ser-
vices and their composition easy. As a result, we can easily use it
to access the various service providers, as required to implement

<definitions
targetNamespace="http://YooHoo.net"
xmlns:yh="http://YooHoo.net" ...>
<types>
<xs:schema targetNamespace="http://YooHoo.net">
<xs:element name="presence">
<xs:complexType>
<xs:sequence>
<xs:element name="service">
<xs:complexType>
<xs:sequence>
<xs:element name="location" type="xs:string"/>
<xs:choice>

<xs:element name="online" type="xs:string"/>
<xs:element name="offline" type="xs:string"/>
<xs:element name="chat" type="xs:string"/>

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>
</types>

<message name="User">
<part name="user" type="xs:string"/>

</message>

<message name="Presence">
<part name="result" element="yh:presence"/>

</message>

<portType name="PresencePort">
<operation name="presence">
<input message="yh:User"/>
<output message="yh:Presence"/>

</operation>
</portType>

<binding name="PresenceSOAP" type="yh:PresencePort">
...

</binding>

<service name="YooHoo">...</service>
</definitions>

Figure 2: (A part of) the Yoo-Hoo! WSDL definition

the service logic ((3) on Figure 1). The following XQuery program
imports operations from both service providers and composes those
operations to retrieve the presence information for the requested
user.

module namespace yh = "http://YooHoo.net/YooHoo"

import service namespace im = "..." port "IM"
import service namespace jabber=".." port "Jabber"

define function yh:presence($user as xs:string)
as element(yh:presence) {

<presence>
<service>
<location>IM</location>
{ im:status($user) }
</service>
<service>
<location>Jabber</location>
{ jabber:onlineinfo($user) }
</service>

</presence>
}

Note that this code implements the function yh:presencewhich
was described in the WSDL for the Yoo-Hoo! service on Figure 2.

2.5 Deploying an XQuery module as a service

Finally, we need to install the Yoo-Hoo! Web service. XButler
provides a command-line tool called xquery2soap which can per-
forms the necessary system installation on a SOAP-Apache server4.
The Yoo-Hoo! service can be deploying from the previous XQuery
module as follows.

xquery2soap
-installdir "/var/www/services"
-interfacedir "/var/www/services/wsdl"
-address "http://YooHoo.net/YooHoo.xqs"
YooHoo.xq

As a result of this call, a WSDL file similar to that in Figure 2 is
generated. From that WSDL file, an XQuery SOAP server is built
and copied along with YooHoo.xq to the location of the Apache
service directory (here “ /var/www/services”). In addition, the
tool generates the appropriate stub (denoted ‘ YooHoo.xqs’) be-
tween the Apache server and the XQuery module. Compared to the
stub generated in the import service case, this one plays the
inverse role: it extracts the parameters from the SOAP messages
and passes them to the appropriate XQuery function in the XQuery
module. The result of the XQuery call is then wrapped back again
as a SOAP message, which is sent back as a result to the calling
application.

3. THE DEMONSTRATION
We intend to present the following at the conference.

� We will demonstrate a complete running YooHoo! service
integrating two different Jabber [2] servers, one represent-
ing an IM service, and one simulating a wireless service
provider.

� We will demonstrate both the import service extension
to XQuery and the xquery2soap command-line tool. We
will also demonstrate the use of static typing over XQuery
program including Web service calls.

� We will show all of the user-defined, as well as XButler-
generated XQuery code used to implement the service and
deploy the service from scratch in real time.

� As a comparison point, we propose also to show a similar
service implemented using standard Java and C# Web service
development tools.

4. REFERENCES
[1] M. Fernandez, J. Siméon, B. Choi, A. Marian, and G. Sur.

Implementing XQuery 1.0: The Galax experience. In
Proceedings of International Conference on Very Large
Databases (VLDB), pages 1077–1080, Berlin, Germany,
Sept. 2003.

[2] Jabber. http://www.jabber.org/.

[3] P. B. James McGovern, K. Cagle, J. Linn, and V. Nagarajan.
XQuery Kick Start. SAMS, 2003.

[4] Java architecture for XML binding (JAXB).
http://java.sun.com/xml/jaxb/.

[5] H. Katz, editor. XQuery from the Experts: A Guide to the
W3C XML Query Language. Addison-Wesley, 2003.

4We decided to support apache first, but the approach should easily
extend to other http servers.

[6] M. Maloney and A. Malhotra. XML schema part 2:
Datatypes. W3C Recommendation, May 2001.

[7] N. Onose and J. Siméon. XQuery at your Web service.
Unpublished manuscript, Aug. 2003.
http://db.bell-labs.com/galax/xbutler.ps.

[8] SOAP version 1.2 part 0: Messaging framework. W3C
Recommendation, June 2003.

[9] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML schema part 1: Structures. W3C
Recommendation, May 2001.

[10] Web services description language (wsdl) 1.1. W3C Note,
Mar. 2001.

[11] Web services description language (WSDL) version 2.0 part
1: Core. W3C Working Draft, Mar. 2003.

[12] XQuery 1.0: An XML query language. W3C Working Draft,
Nov. 2003.

