Specification and Verification of Data-driven Web Services

Alin Deutsch

Liying Sui*

Victor Vianu*

University of California San Diego
Computer Science and Engineering
9500 Gilman Drive
La Jolla, CA 92093, U.S.A.

{deutsch, Isui, vianul@cs.ucsd.edu

ABSTRACT

We study data-driven Web services provided by Web sites
interacting with users or applications. The Web site can
access an underlying database, as well as state information
updated as the interaction progresses, and receives user in-
put. The structure and contents of Web pages, as well as the
actions to be taken, are determined dynamically by query-
ing the underlying database as well as the state and inputs.
The properties to be verified concern the sequences of events
(inputs, states, and actions) resulting from the interaction,
and are expressed in linear or branching-time temporal log-
ics. The results establish under what conditions automatic
verification of such properties is possible and provide the
complexity of verification. This brings into play a mix of
techniques from logic and automatic verification.

1. INTRODUCTION

Web services, viewed broadly as interactive Web applica-
tions providing access to information as well as transac-
tions, are typically powered by databases. They have a
strong dynamic component and are governed by protocols
of interaction with users or programs, ranging from the low-
level input-output signatures used in WSDL [31], to high-
level workflow specifications (e.g., see [8, 6, 11, 30, 32, 19]).
One central issue is to develop static analysis techniques
to increase confidence in the robustness and correctness of
complex Web services. This paper presents new verification
techniques for Web services, and investigates the trade-off
between the expressiveness of the Web service specification
language and the feasibility of verification tasks.

In the scenario we consider, a Web service is provided by
an interactive Web site that posts data, takes input from
the user, and responds to the input by posting more data

*Supported in part by the NSF under grant number ITR-
0225676 (SEEK).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

PODS 2004 June 14-16, 2004, Paris, France.

Copyright 2004 ACM 1-58113-858-X/04/06 . . . $5.00.

and/or taking some actions. The Web site can access an un-
derlying database, as well as state information updated as
the interaction progresses. The structure of the Web page
the user sees at any given point is described by a Web page
schema. The contents of a Web page is determined dynam-
ically by querying the underlying database as well as the
state. The actions taken by the Web site, and transitions
from one Web page to another, are determined by the input,
state, and database.

The properties we wish to verify about Web services involve
the sequences of inputs, actions, and states that may result
from interactions with a user. This covers a wide variety
of useful properties. For example, in a Web service sup-
porting an e-commerce application, it may be desirable to
verify that no product is delivered before payment of the
right amount is received. Or, we may wish to verify that
the specification of Web page transitions is unambiguous,
(the next Web page is uniquely defined at each point in a
run), that each Web page is reachable from the home page,
etc. To express such properties, we rely on temporal logic.
Specifically, we consider two kinds of properties. The first
requires that all runs must satisfy some condition on the
sequence of inputs, actions, and states. To describe such
properties we use a variant of linear-time temporal logic.
Other properties involve several runs simultaneously. For
instance, we may wish to check that for every run leading
to some Web page, there exists a way to return to the home
page. To capture such properties, we use variants of the
branching-time logics CTL and CTL*.

Our results identify classes of Web services for which tempo-
ral properties in the above temporal logics can be checked,
and establish their complexity. As justification for the choice
of these classes, we show that even slight relaxations of our
restrictions lead to undecidability of verification. Thus, our
decidability results are quite tight.

Related work Our notion of Web service is a fairly broad
one. It encompasses a large class of data-intensive Web ap-
plications equipped (implicitly or explicitly) with workflows
that regulate the interaction between different partners who
can be users, WSDL-style Web services, Web sites, programs
and databases. We address the verification of properties per-
taining to the runs of these workflows. Our model is related
to WebML [8], a high-level conceptual model for data-driven
Web applications, extended in [7] with workflow concepts to

support process modeling. It is also related to other high-
level workflow models geared towards Web applications (e.g.
[6, 11, 32]), and ultimately to general workflows (see [30,
17, 18, 12, 4, 29]), whose focus is however quite different
from ours. Non-interactive variants of Web page schemas
have been proposed in prior projects such as Strudel [14],
Araneus [23] and Weave [15], which target the automatic
generation of Web sites from an underlying database.

More broadly, our research is related to the general area
of automatic verification, and particularly reactive systems
[22, 21]. Directly relevant to us is Spielmann’s work on
Abstract State Machine (ASM) transducers [26, 28], and
earlier variations of this work [27]. Similarly to the earlier
relational transducers [3] these model database-driven reac-
tive systems that respond to input events by taking some
action, and maintain state information in designated re-
lations. Our model of Web services is considerably more
complex than ASM transducers. The techniques developed
in [26, 28] remain nonetheless relevant, and we build upon
them to obtain our decidability results on the verification of
linear-time properties of Web services (by reducing the ver-
ification problem to finite satisfiability of existential first-
order logic augmented with a transitive closure operator
(denoted E+TC). For the results on branching-time prop-
erties we use a mix of techniques from finite-model theory
and temporal logic (see [13]), as well as automata-theoretic
model-checking techniques developed by Kupferman, Vardi,
and Wolper [20].

Other work on formal verification of Web services was done
by Narayanan and Mcllraith [24]. They consider Web ser-
vices described in a fragment of the DAML-S ontology [11].
DAML-S specifications are formalized using situation cal-
culus [25] and given an operational semantics using 1-safe
Petri nets. The results concern the complexity of verifica-
tion tasks expressed as reachability problems in the Petri
nets. While differences in the models and formalisms render
a comparison difficult, it appears that the approach of [24]
would allow, in our framework, the verification of a fragment
of linear-time temporal logic properties of runs of Web ser-
vices on a firzed database. In contrast, our results do not
assume a fixed database and apply to an orthogonal class of
linear-time temporal properties.

More broadly, note that classical finite-state verification tech-
niques, including model checking, are not directly applicable
to our framework, since Web services are not finite-state sys-
tems. This is due to the fact that we consider runs on arbi-
trary databases, whose domains are not statically bounded.

The verification of e-compositions of collections of individual
web service peers is discussed in [19]. E-compositions are
specified using the standard BPEL4WS [10]. A run of an e-
composition is a sequence of message types passed between
peers during a valid execution. It is observed in [19] that the
set of all runs can be modeled as the language generated by
a Mealy machine. This in turn enables PTIME verifiability
of LTL properties of an e-composition. One of the open
problems listed in [19] is the verification of properties that
pertain not just to the type of the messages but also to the
data, as done in our framework.

The paper is organized as follows. Section 2 introduces our
model and specification language for Web sites. Section 3
considers the verification of linear-time temporal properties,
and Section 4 focuses on branching-time properties. The
main body of the paper is self contained. Due to space lim-
itations, it emphasizes informal presentation of the results
and extensive examples intended to facilitate understanding
of the formal framework. A demo Web site implementing
our running example is available at
http://www.cs.ucsd.edu/~1sui/project/index .html.

2. WEB SERVICE SPECIFICATIONS

In this section we provide our model and specification lan-
guage for data-driven Web services. Our model of a Web
service captures the interaction of an external user’ with
the Web site, referred to as a “run”. Informally, a Web

service specification has the following components:

A database that remains fixed throughout each run;
o A set of state relations that change throughout the run
in response to user inputs;
e A set of Web page schemas, of which one is designated
as the “home page”, and another as an “error page”;
e Each Web page schema defines how the set of current
input choices is generated as a query on the database
and states. In addition, it specifies the state transition
in response to the user’s input, the actions to be taken,
as well as the next Web page schema.

Intuitively, a run proceeds as follows. First, the user ac-
cesses the home page, and the state relations are initial-
ized to empty. When accessed, each Web page generates a
choice of inputs for the user, by a query on the database
and states. All input options are generated by the system
except for a fixed set that represents specific user informa-
tion (e.g. name, password, credit card number, etc). These
are represented as constants in the input schema, whose in-
terpretations are provided by the user throughout the run
as requested. The user chooses at most one tuple among the
options provided for each input. In response to this choice, a
state transition occurs, actions are taken, and the next Web
page schema is determined, all according to the rules of the
specification. As customary in verification, we assume that
all runs are infinite (finite runs can be easily represented as
infinite runs by fake loops).

We now formalize the above notion of Web service. We as-
sume fixed an infinite set of elements dom,. A relational
schema is a finite set of relation symbols with associated
arities, together with a finite set of constant symbols. Re-
lation symbols with arity zero are also called propositions.
A relational instance over a relational schema consists of a
finite subset Dom of doms,, and a mapping associating to
each relation symbol of positive arity a finite relation of the
same arity, to each propositional symbol a truth value, and
to each constant symbol an element of Dom. We use sev-
eral kinds of relational schemas, with different roles in the
specification of the Web service.

"We use the term “user” generically to stand for any partner
interacting with the Web site, be it an actual user, program,
another Web service, etc.

We assume familiarity with first-order logic (FO) over rela-
tional vocabularies. We adopt here an active domain seman-
tics for FO formulas, as commonly done in database theory
(e.g., see [2]).

DEFINITION 2.1. A Web service W is a tuple
(D, S, I, A, W, Wy, We), where:

e D, S, I, A are relational schemas called database,
state, input, and action schemas, respectively. The
sets of relation symbols of the schemas are disjoint
(but they may share constant symbols). We refer to
constants in 1 as input constants, and denote them by
const(I).

e W is a finite set of Web page schemas.

e Wy € W is the home page schema, and W & W is
the error page schema.

We also denote by Prevy the relational vocabulary

{prev; | I € I — const(I)}, where prevr has the same arity
as I (intuitively, prevy refers to the input I at the previous
step in the run).

A Web page schema W is a tuple Iw, Aw, Tw, Rw) where
Iw CLLAw CA, Tw C W. Then Rw is a set of rules
containing the following:

e For each input relation I € Iw of arity k > 0, an
input rule Options;(Z) < ¢r,w (&) where Options; is
a relation of arity k, T is a k-tuple of distinct variables,
and o1,w(Z) is an FO formula over schema D U S U
Previ Uconst(I), with free variables .

e For each state relation S € S, one, both, or none of
the following state rules:

— an insertion rule S(T) «— gogw(f),
— a deletion rule =S(Z) — g (T),

where the arity of S is k, T is a k-tuple of distinct
variables, and @5 w(Z) are FO formulas over schema
D US UPrevi Uconst(I) ULy, with free variables T.

e For each action relation A € Aw, an action rule
A(z) «— p(T) where the arity of A is k, T is a k-
tuple of distinct variables, and ¢(Z) is an FO formula
over schema D USUPrevi U const(I) ULy, with free
variables T.

o for each V € Tw, a target rule V «— pvw where
pv,w is an FO sentence over schema DUSUPreviU
const(I) UTIy.

Finally, We = (0,0, {W.}, Rw.) where Rw, consists of the
rule We «— true.

Intuitively, the action rules of a Web page specify the actions
to be taken in response to the input. The state rules specify

the tuples to be inserted or deleted from state relations (with
conflicts given no-op semantics, see below). If no rule is
specified in a Web page schema for a given state relation,
the state remains unchanged. The input rules specify a set
of options to be presented to users, from which they can
pick at most one tuple to input (this feature corresponds to
menus in user interfaces). At every point in time, I contains
the current input tuple, and prev; contains the input to
J in the previous step of the run (if any). The choice of
this semantics for prev; relations is somewhat arbitrary, and
other choices are possible without affecting the results. For
example, another possibility is to have prevs; hold the most
recent input to J occurring anywhere in the run, rather than
in the previous step. Also note that prev, relations are
really state relations with very specific functionality, and
are redundant in the general model. However, they are very
useful when defining tractable restricitons of the model.

Notation For better readability of our examples, we use
the following notation: relation R is displayed as R if it
is a state relation, as R if it is an input relation, as R if
it is a database relation, and as R if it is an action re-
lation. In Example 2.2 below, error € S, user € D and
name, password, button € 1.

Example 2.2 We use as a running example throughout the
paper an e-commerce Web site selling computers online.
New customers can register a name and password, while
returning customers can login, search for computers fulfill-
ing certain criteria, add the results to a shopping cart, and
finally buy the items in the shopping cart. A demo Web site
implementing this example, together with its full specifica-
tion, is provided at
http://www.cs.ucsd.edu/~Isui/project/index.html. We only list
here a subset of the pages in the demo that are used in the
running example:

HP the home page

RP the new user registration page

CP the customer page

AP the administrator page

LSP a laptop search page

PIP displays the products returned
by the search

CC allows the user to view the cart contents
and order items in it

MP an error message page

The following describes the home page HP which contains
two text input boxes for the customer’s user name and pass-
word respectively, and three buttons, allowing customers to
register, login, respectively clear the input.

Page HP

Inputs Iy p : name, password, button(x)

Input Rules:
Optionspiton(z) «— 2 = “login” V x = “register”

Va = “clear”

State Rules:
error(“failed login”) < —user(name, password)

Abutton(“login”)

Target Web Pages Typ: HP, RP, CP, AP, MP
Target Rules:

HP «— button(“clear”)

RP « button(“register”)

CP «— user(name, password) A button(“login”)
Aname # “Admin”’
AP «— user(name, password) A button(“login”)
Aname = “Admin”
MP « —user(name, password) A button(“login”)
End Page HP

Notice how the three buttons are modeled by a single input
relation button, whose argument specifies the clicked button.
The corresponding input rule restricts it to a login, clear or
register button only. As will be seen shortly (Definition 2.3),
each input relation may contain at most one tuple at any
given time, corresponding to the user’s pick from the set of
tuples defined by the associated input rule. This guarantees
that no two buttons may be clicked simultaneously. The
user name and password are modeled as input constants,
as their value is not supposed to change during the session.
If the login button is clicked, the first state rule looks up
the name/password combination in the database table user.
If the lookup fails, the second state rule records the login
failure in the state relation error, and the last target rule
fires a transition to the message page MP. Notice how the
“Admin” user enjoys special treatment: upon login, she is
directed to the admin page AP, whereas all other users
go to the customer page CP. Assume that the CP page
allows users to follow either a link to a desktop search page,
or a laptop search page LSP. We illustrate only the laptop
search functionality of the search page LSP (see the online
demo for the full version, which also allows users to search
for desktops).

Page LSP
Inputs Igp : laptopsearch(ram, hdisk, display), button(zx)
Input Rules:
Optionspiron(®) «— = “search” V x = “view cart’
Vz = “logout’
Optionslaptopsearch (r, h,d) «— criteria(“laptop”, “ram”,r)
Acriteria(“laptop”, “hdd’, h) A criteria(“laptop” , “display”, d)
State Rules:
userchoice(r,h,d) < laptopsearch(r, h, d) A button(“search”)
Target Web Pages Tsp: HP, PIP, CC
Target Rules:
HP « button(“logout”)
PIP « 3r3h3d laptopsearch(r, h, d) A button(“search”)
CC « button(“view cart”)
End Page SP

Notice how the second input rule looks up in the database
the valid parameter values for the search criteria pertinent
to laptops. This enables users to pick from a menu of legal
values instead of providing arbitrary ones. O

We next define the notion of “run” of a Web service. Essen-
tially, a run specifies the fixed database and consecutive Web
pages, states, inputs, and actions. Thus, a run over database

instance D is an infinite sequence {(Vi, Si, I;, Pi, Ai) }i>o,
where V; € W,S; is an instance of S, I, is an instance
of Iy,, P; is an instance of prevy, and A; is an instance of
Avy,. In particular, the input constants play a special role.
Their interpretation is not fixed a priori, but is instead pro-
vided by the user as the run progresses. We will need to
make sure this occurs in a sound fashion. For example, a
formula may not use an input constant before its value has
been provided. We will also prevent the Web service from
asking the user repeatedly for the value of the same input
constant. To formalize this, we will use the following nota-
tion. For each ¢ > 0, k; denotes the set of input constants
occurring in some Iy, in the run, j <4, and o; denotes the
mapping associating to each ¢ € k; the unique I;(c) where
Jj<iandcé€ly.

DEFINITION 2.3. Let W = (D,S,I, A, W, Wy, W,) be a
Web service and D a database instance over schema D. A
run of W for database D is an infinite sequence
{{(Vi, S;, Ii, Pi, A;) }iso0 where Vi € W, S; is an instance of
S, I; is an instance of Lv,, P; is an instance of prevy, A; is
an instance of Ay, and:

e Vo = Wo, and So, Ao, Po are empty;
e for eachi >0, Viy1 = We if one of the following holds:

(i) some formula used in a rule of V; involves a con-
stant ¢ € I that is not in Kk;;
(i) v, N ki1 #0;
(i11) there are distinct W,W' € Tv, for which ow,v,
and pwr v, are both true when evaluated on D, S;,

I; and P;, and interpretation o; for the input con-
stants occurring in the formulas;

Otherwise, Vit1 is the unique W € Ty, for which
pw,v; is true when evaluated on D, S;, I;, P; and o; if
such W exists; if not, Viz1 = V.

o for each i > 0, and for each relation R in Iy, of arity
k > 0, I;(R) C {v} for some v € Optionsgr, where
Optionsr is the result of evaluating pr,v, on D, S;,
P; and o;;

e for eachi > 0, and for each proposition R inIv,, I;(R)
is a truth value;

e for each i > 0, and for each constant ¢ in Iv;, I;(c) is
an element in domes;

e for each i > 0, and for each relation prevr in previ,
Pi(prevr) = Li—1(I) if I € Iy, , and P;(prevy) is
empty otherwise.

e for each i > 0, and relation S in S, S;+1(S) is the
result of evaluating

(pd v, (B) A =gy (7))
(S(@) A w5y, (T) Aps v, (2)V
(S(@) A =5y, () A =Sy (7))

on D,S;, I;, P, and o;, where @fg,‘/i(f) is taken to
be false if it is not provided in the Web page schema
(e € {+,—1}). In particular, S remains unchanged if
no insertion or deletion rule is specified for it.

e for each i > 0, and relation A in Av,,,, Air1(A) is
the result of evaluating pa,v, on D,S;, I;, P; and o;.

Note that the state and actions specified at step ¢+ 1 in the
run are those triggered at step i. This choice is convenient
for technical reasons. As discussed above, input constants
are provided an interpretation as a result of user input, and
need not be values already existing in the database. Once
an interpretation is provided for a constant, it can be used
in the formulas determining the run. For example, such con-
stants might include name, password, credit-card, etc.
The error Web page serves an important function, since it
signals behavior that we consider anomalous. Specifically,
the error Web page is reached in the following situations:
(i) the value of an input constant is required by some for-
mula before it was provided by the user; (ii) the user is
asked to provide a value for the same input constant more
than once; and, (iii) the specification of the next Web page
is ambiguous, since it produces more than one Web page.
Once the error page is reached, the run loops forever in that
page. We call a run error free if the error Web page is not
reached, and we call a Web service error-free if it generates
only error-free runs. Clearly, it would be desirable to verify
that a given Web service is error-free. As we will see, this
can be expressed in the temporal logics we consider and can
be checked for restricted classes of Web services.

3. VERIFYINGLINEAR-TIMETEMPORAL
PROPERTIES

In this section we consider the verification of properties that
must be satisfied by all runs of a Web service. Such prop-
erties are expressed using a variant of linear-time temporal
logic, adapted from [13, 1, 28]. We begin by defining this
logic, that we denote LTL-FO (first-order linear temporal
logic).

DEFINITION 3.1. [13, 1, 28] The language LTL-FO (first-
order linear-time temporal logic) is obtained by closing FO
under negation, disjunction, and the following formula for-
mation rule: If ¢ and ¥ are formulas, then Xy and U1
are formulas. Free and bound variables are defined in the
obvious way. The universal closure of an LTL-FO formula
o(Z) with free variables T is the formula VZo(Z). An LTL-
FO sentence is the universal closure of an LTL-FO formula.

Note that quantifiers cannot be applied to formulas con-
taining temporal operators, except by taking the universal
closure of the entire formula, yielding an LTL-FO sentence.

Let W = (D,S,I, AW, Wy, W.) be a Web service. To
express properties of runs of W, we use LTL-FO sentences
over schema DUSUIUPreviUAUW, where each W € W
is used as a propositional variable. The semantics of LTL-
FO formulas is standard, and we describe it informally. Let
VZp(Z) be an LTL-FO sentence over the above schema. The
Web service W satisfies VZp(Z) iff every run of W satisfies
it. Let p = {ai}i>0 be a run of W for database D, and let p;
denote {a;}:>;, for j > 0. Note that p = pg. Let Dom(p) be
the active domain of p, i.e. the set of all elements occurring

in relations or as constants in p. The run p satisfies VZ(T)
iff for each valuation v of Z in Dom(p), po satisfies p(v(Z)).
The latter is defined by structural induction on the formula.
An FO sentence v is satisfied by «; = (V;, Si, Ii, Pi, A;) if
the following hold:

e the set of input constants occurring in v is included in
Ki;

e the structure o} satisfies ¢, where o is the structure
obtained by augmenting «; with interpretation o; for
the input constants. Furthermore, «; assigns true to
Vi and false to all other propositional symbols in W.

The semantics of Boolean operators is the obvious one. The
meaning of the temporal operators X, U is the following
(where |= denotes satisfaction and j > 0):

* pj EXpiff pjr1 =,

e p; = U iff 3k > j such that py = ¢ and p; = ¢ for
j<Il<k.

Observe that the above temporal operators can simulate
all commonly used operators, including B (before), G (al-
ways) and F (eventually). Indeed, ¢B is equivalent to
(~U—), Go = false B ¢, and Fp = true U . We
use the above operators as shorthand in LTL-FO formulas
whenever convenient.

LTL-FO sentences can express many interesting properties
of a Web service. A useful class of properties pertains to the
navigation between pages.

Example 3.2 The following property states that whenever
page P is reached in a run, page Q will be eventually
reached as well:

G(-P)VF(PAF Q) (1)
O

Another important class of properties describes the flow of
the interaction between user and service.

Example 3.3 Assume that the Web service in Example 2.2
allows the user to pick a product and records the pick in a
state relation pick(product_id, price). There is also a pay-
ment page PP, with input relation pay(amount) and
“authorize payment’ button. Clicking this button autho-
rizes the payment of amount for the product with identifier
recorded in state pick, on behalf of the user whose name was
provided by the constant name (recall page HP from Exam-
ple 2.2). Also assume the existence of an order confirmation
page OCP, containing the actions m(user_id, price) and
ship(user_id, product_id). The following property involving
state, action, input and database relations requires that any
shipped product be previously paid for:

Vpid, price [£(pid, price) B
—(conf(name, price) A ship(name, pid))] (2)

where £(pid, price) is the formula

PP A pay(price) A button(“authorize payment”)
Npick(pid, price)
Adpname catalog(pid, price, pname) 3)

We consider the following verification scenario. Given a Web
service, we would first like to verify, as a minimum soundness
check, that it is error free. If it is, we may wish to verify
some additional temporal properties expressed by LTL-FO
sentences.

It is easily seen that it is undecidable if a Web service is
error free, or if it satisfies a LTL-FO formula, using Trakht-
enbrot’s theorem. To obtain decidability, we must restrict
both the Web services and the LTL-FO sentences. We use
a restriction proposed in [26, 28] for ASM transducers, lim-
iting the use of quantification in state, action, and target
rule formulas to “input-bounded” quantification, and limit-
ing formulas of input rules to be existential. The restriction
is formulated in our framework as follows. Let

W = <D7 S7 I7 A7 W7 WO? W€>

be a Web service. The set of input-bounded FO formulas over
the schema DUSUIUAUW UPrevy is obtained by replacing
in the definition of FO the quantification formation rule by
the following:

e if p is a formula, « is a current or previous input atom
using a relational symbol from IUPrevy, T C free(a),
and T N free(B) = 0 for every state or action atom [
in ¢, then 3Z(a A ¢) and VZ(a —) are formulas.

A Web service is input-bounded iff all formulas in state,
action, and target rules are input bounded, and all input
rules use 3*FO formulas in which all state atoms are ground.
An LTL-FO sentence over the schema of W is input-bounded
iff all of its FO subformulas are input-bounded.

Example 3.4 All rules on pages HP,SP in Example 2.2
are input-bounded. Property (1) in Example 3.2 is triv-
ially input-bounded, as it contains no quantifiers. Prop-
erty (2) in Example 3.3, however, is not input-bounded
because pname appears in no input atom. We turn this
into an input-bounded property by modeling the catalog
database relation with two relations prod_prices(pid, price)
and prod_names(pid, pname). We can now rewrite Property
(2) to the input-bounded sentence

Vpid, price [¢' (pid, price) B
—(conf(name, price) A ship(name, pid)) | (4)

where ¢’ (pid, price) is short for

PP A pay(price) A button(“authorize payment”)
Apick(pid, price) A prod_prices(pid, price) (5)

We can now state the main result of this section:

THEOREM 3.5. The following are decidable:

(i) given a Web service W with input-bounded rules, whether
it is error free;

(ii) given an error-free Web service W with input-bounded
rules and an input-bounded LTL-FO sentence ¢ over
the schema of W, whether W satisfies .

Furthermore, both problems are PSPACE-complete for schemas
with fized bound on the arity, and in EXPSPACE for schemas
with no fized bound on the arity.

In the remainder of the section, we outline the main steps
in the proof of Theorem 3.5. We outline the main steps
needed to prove Theorem 3.5. To begin, we note that (i)
can be reduced to (ii).

LEMMA 3.6. For each Web service W with input-bounded
rules there exists an error-free Web service W' with input
bounded rules, of size quadratic in W, such that W is er-
ror free iff W' = @, for some fized input-bounded LTL-FO
sentence .

It follows from Lemma 3.6 that to prove Theorem 3.5 it is
enough to establish PSPACE-hardness for (i), and inclusion in
PSPACE for (ii). The PSPACE-hardness of (i) is shown by an
easy reduction from Quantified Boolean Formula [16]. The
upper bound for (ii) is much more involved, and is based on
a reduction to the satisfiability problem for the logic E+TC
(existential FO augmented with a transitive closure opera-
tor). This requires modifying and extending an analogous
reduction used by Spielmann in [26, 28] for ASM transduc-
ers.

We next briefly review the relevant results from [26, 28].
Like Web services, and similarly to the earlier relational
transducers [3], ASM transducers model database-driven re-
active systems that respond to input events by taking some
action, and maintain state information in designated rela-
tions. In terms of our framework, the ASM relational trans-
ducer can be viewed as a simplified Web service consisting
of a single Web page. Like Web services, ASM transducers
use database and state relations (called memory relations),
as well as action and input relations. At each step, the
transducer receives from the environment inputs consisting
of arbitrary relations over the input vocabulary, whose ele-
ments come from the underlying database. The transducer
reacts to the inputs with a state transition and by producing
output relations. The control of the transducer is defined by
rules similar to ours. The temporal properties to be verified
are expressed by LTL-FO formulas.

In order to achieve decidability of verification, Spielmann
considers several possible restrictions. The one of interest to
us is input-bounded ASM with bounded input flow, denoted

ASM’. This requires the following: (i) each input relation
received in any single step has cardinality bounded by a
constant, and (ii) the rules used in the specification, as well
as the LTL-FO formula to be verified, are input bounded.
The definition of input-bounded rule and formula are the
same as ours, except that ASM rules use no Prevy atoms.

In summary, the main differences between our input-bounded
Web services and ASM! transducers are:

e Web services use multiple Web pages and specify tran-
sitions among them,

e Web service inputs are restricted by input options de-
fined by certain 3*FO formulas,

e The input vocabulary of Web services may contain in-
put constants whose values are progressively supplied
by users and need not come from the database, and

e Input-bounded Web services allow the use of Previ
atoms, treated the same as input atoms.

Spielmann’s proof of decidability of input-bounded LTL-FO
properties of ASM! transducers makes use of several logics
for which finite satisfiability is decidable:

e FO", the witness-bounded fragment of FO;

e FO"™ + posTC, the extension of FOW with the positive
occurrences of the transitive closure operator, and

e E+TC, the existential fragment of FO4+TC.

The main idea of the proof is to reduce the problem of check-
ing the existence of a run of the transducer violating the
desired property to that of checking finite satisfiability of a
formula in one of the above logics. Specifically, this is done
by an ingenious polynomial reduction to the finite satisfia-
bility problem for FO" 4 posTC. Next, it is shown in [26]
that finite satisfiability of FO" + posTC is polynomially re-
ducible to the finite satisfiability of E4+TC, and the latter
is in PSPACE for fixed database arity and in EXPSPACE for
arbitrary arity.

Our proof of containment in PSPACE (for fixed schema arity)
requires adapting the proof of Spielmann’s analogous result
for ASM? transducers. This is done in three steps:

1. We first extend the standard ASM model to allow
for input option rules and the use of prevr atoms in
all rules. We denote the resulting model, further re-
stricted to be input-bounded with bounded input flow,
by ASMTE. We then show decidability of verification
of input-bounded LTL-FO properties of ASM® trans-
ducers, via a direct reduction to finite satisfiability of
E+TC (the reduction to FO™ +TC in [28] is no longer
possible here).

2. Next, we define a special type of Web service, called
“simple”, that corresponds directly to ASM!E. Simple
Web services have a single Web page schema and are
error free.

3. Finally, we reduce the general verification problem to
verification of simple Web services.

REMARK 3.7. (Sessions and Database Updates) Re-
call that our model prohibits database updates within a run.
Howewver, in practice it is very useful to update the database
at various points in the interaction with users. In our run-
ning example, it makes sense to do so when a user logs out.
In fact, the Web site implementing the full example specifies
database update rules triggered at logout. This implicitly as-
sumes that the runs to be verified consist of interactions of a
single user between login and logout. Indeed, these are natu-
ral boundaries of sessions to be verified, and can be specified
implicitly within the temporal formula to be verified. How-
ever, other definitions of sessions are possible (see also the
discussion in the Conclusions).

Boundaries of decidability One may wonder whether our
restrictions can be relaxed without affecting decidability of
verification. Unfortunately, even small relaxations of these
restrictions can lead to undecidability. Specifically, we con-
sider the following: (i) relaxing the requirement that state
atoms be ground in formulas defining input options, by al-
lowing state atoms with variables, (ii) relaxing the input-
bounded restriction by allowing a very limited form of non
input-bounded quantification in the form of state projec-
tions, (iii) allowing prev; relations to record all previous
inputs to I rather than just the most recent one, and (iv)
extending LTL-FO formulas with path quantification.

We begin with extension (i) and show undecidability even
for a fixed LTL-FO formula and input options defined by
quantifier-free FO formulas using just database and state
relations.

THEOREM 3.8. There exists a fixed input-bounded LTL-
FO formula ¢ for which it is undecidable, given an input-

bounded Web service W with input options defined by quantifier-

free FO formulas over database and state relations, whether

WE .

Proof: The proof is by reduction of the question of whether
a Turing Machine (TM) M halts on input e. Let M be a
deterministic TM with a left-bounded, right-infinite tape.
We construct a Web service with a single page (excepting
the error page). The idea is to represent configurations of
M using a 4-ary state relation T. The first two coordinates
of T represent a successor relation on a subset of the active
domain of the database. A tuple T'(z,y,u,v) says that the
content of the z-th cell is u, the next cell is y, and v is a state
p iff M is in state p and the head is on cell . Otherwise,
v is some special symbol #. The moves of M are simulated
by modifying T accordingly. M halts on input € iff there
exists a run of W on some database such that some halting
state h is reached. Thus, M does not accept ¢ iff for every
run, T'(z,y, u, h) does not hold for any z,y,u, that is, W |
VaVyVuG (=T (z,y, u, h)).

We now outline the construction of W in more detail. The
database schema of W consists of a unary relation D and a
constant min. The state relations are the following:

e T a 4-ary relation;
e Cell, Max, and Head, unary relations;

e propositional states used to control the computation:
inatialized, simul

The input relations are I and H, both unary.

The first phase of the simulation constructs the initial con-
figuration of M on input €, and the tape that the current run
will make available for the computation. This phase makes
use of the unary input relation I. Intuitively, the role of I is
to pick a new value from the active domain, that has not yet
been used to identify a cell, and use it to identify a new cell
of the tape. The state relation Cell keeps track of the values
previously chosen, to prevent them from being chosen again.
The state relation Maz keeps track of the most recently in-
serted value. The rules implementing the initialization are
the following (the symbol b denotes the blank symbol of M
and qo is the start state):

Optionsi(y) — D(y), y # min, =Cell(y), —simul
T(min,y,b,q0) <« I(y), —initialized

Cell(min) «— —indtialized

Head(min) — —initialized

initialized — —unitialized

T(z,y,0,4#) « I(y), Max(z)

Cell(y) — I(y)

“Mazx(z) — Maz(x)

Max(y) = I(y)

simul — VYy-I(y)

The state simul signals the transition to the simulation phase.

Notice that this happens either if the input options for I be-
come empty (because we have used the entire active domain)
or because the input is empty at any point. In the simula-
tion phase, T is updated to reflect the consecutive moves of
M. The simulation is aborted if T runs out of tape. We
illustrate the simulation with an example move. Suppose M
is in state p, the head is at cell x, the content of the cell is
0, and the move of M in this configuration consists of over-
writing 0 with 1, changing states from p to ¢, and moving
right. The rules simulating this move are the following:

Optionsu(x,y,0,p) <« simul, Head(z),T(x,y,0,p)

_|T(x7 y7 O7p) — Simul, H($7 y7 07p)
T(x7 y7 1’ #) — SZmUZ7H(x7 y7 07p)
_‘T(y7 27 u7 #) — Simul’H(.’B’ y7 O?p)7T(y7 Z7 u7 #)
T(y,z,u,q) «— simul, H(z,y,0,p),T(y, 2, u, #)
—Head(z) — simul, H(z,y,0,p)
Head(y) — simul, H(z,y,0,p)

Such rules are included for every move of M. It is easy to see
that this correctly simulates the moves of M. Note that if the
input H is empty, T' does not change. Finally, if the head
reaches the last value provided in T, the transducer goes into
an infinite loop in which, again, T stays unchanged. Thus,
T(z,y,u,h) holds in some run iff the computation of M on
€ is halting. Equivalently, M does not halt on € iff the trans-
ducer satisfies the formula ¢ = VaVyVuG(—T(z,y,u,h)).
O O

We next consider extension (ii): we relax input-boundedness
of rules by allowing projections of state relations. We call
a Web service input-bounded with state projections if all its
formulas are input-bounded, excepting state rules that allow
insertions of the form:

S(z) — 3y S'(z,7)

where S and S’ are state relations. We can show the follow-
ing.

THEOREM 3.9. It is undecidable, given a simple, input-
bounded Web service W with state projections and input-
bounded LTL-FO sentence @, whether W = ¢.

Proof: Reduction of the implication problem for functional
and inclusion dependencies, known to be undecidable [9]. O

We now deal with extension (iii). We say that a Web service
has lossless input if the prev; relations record all previous
inputs to I in the current run.

THEOREM 3.10. [t is undecidable, given an input-bounded
Web service W with lossless input and an input-bounded
LTL-FO formula ¢, whether W = ¢.

Proof: Straightforward reduction of the undecidability of
finite validity of FO formulas. O

The undecidability of extension (iv) is shown in the next
section, after the notation on branching-time logics is intro-
duced.

4. BRANCHING-TIME PROPERTIES

In this section we consider the verification of temporal prop-
erties of Web services involving quantification over runs.
This allows expressing properties involving multiple runs of
a Web service rather than just individual ones, such as “at
any point in a run there is a way to return to the home
page”. To specify such properties, we use variants of the
logics CTL and CTL* [13] extending the logic LTL-FO used
in the previous section. These variants, denoted CTL-FO
and CTL*-FO, extend LTL-FO with path quantifiers E and
A, subject to certain syntactic restrictions. Informally, Ep
stands for “there exists a continuation of the current run
that satisfies ¢” and Ay means “every continuation of the

current run satisfies ¢”. We refer the reader to [1, 28] for fur-
ther details. Satisfaction of a CTL®*)-FO sentence by a Web
service W is defined using the tree corresponding to the runs
of W on a given database D. The nodes of the tree consist of
all prefixes of runs of W on D (the empty prefix is denoted
root and is the root of the tree). A prefix 7 is a child of a pre-
fix 7’ iff m extends 7’ with a single configuration. We denote
the resulting infinite tree by 7w, p. Note that 7y, p has only
infinite branches (so no leafs) and each such infinite branch
corresponds to a run of W on database D. Satisfaction of
an CTL®*-FO sentence by 7w,p is the natural extension
of the classical notion of satisfaction of CTL®™ formulas by
infinite trees labeled with propositional variables (e.g., see
[13]). The main difference is that propositional variables
are not explicitly provided; instead, the relevant FO formu-
las have to be evaluated on the current configuration (last of
the prefix defining the node). We say that a Web service W
satisfies ¢, denoted W = ¢, iff 7w p | ¢ for every database
D.

The above notion of satisfaction of a CTL®*)-FO formula by
an infinite tree is closely related to the classical semantics of
CTL™ based on Kripke structures. Informally, a Kripke
structure K is a finite graph labeled by sets of proposi-
tions from a finite set X, with a designated root vertex.
The Kripke structure K satisfies a CTL™) formula ¢ using
propositions in ¥ iff the infinite labeled tree obtained by
unfolding K starting from the root satisfies ¢. The com-
plexity of checking whether a CTL™) formula is satisfied by
a Kripke structure (model checking) is in PTIME for CTL
and PSPACE-complete for CTL*. The satisfiability problem
for CTL™ formulas is EXPTIME-complete for CTL and 2-
EXPTIME complete for CTL*. See [13] for a concise survey
on temporal logics, and further references.

Example 4.1 The following CTL*-FO sentence expresses
the fact that in every run, whenever a product pid is bought
by a user, it will eventually ship, but until that happens,
the user can still cancel the order for pid.

Vpidvprice AG (¢ (pid, price) —
A((EFcancel(name, pid)) U (ship(name, pid)))
where ¢’ is the formula defined in Example 3.4 (5). O

As noted earlier, the decidability results of the previous sec-
tion do not extend to CTL™)-FO sentences, even if they are
restricted to be input bounded (by requiring every FO sub-
formula to be input bounded). Indeed, the following can be
shown.

THEOREM 4.2. It is undecidable, given a simple, input-
bounded Web service W and input-bounded CTL-FO sen-
tence o, whether W = .

The proof further shows that a single alternation of path
quantifiers is sufficient to yield undecidability, since one al-
ternation is enough to express validity of FO sentences in
the prefix class 3*V*FO, known to be undecidable [5].

We next consider several restrictions leading to decidability
of the verification problem for CTL®*)-FO sentences.

Propositional input-bounded Web services The first
restriction further limits input-bounded Web services by re-
quiring all states and actions to be propositional. Further-
more, no rules can use Prevy atoms. We call such Web
services propositional. In a propositional Web service, in-
puts can still be parameterized in the Web service specifica-
tion. The CTL* formulas we consider are propositional and
use input, action, state, and Web page symbols, viewed as
propositions. Satisfaction of such a CTL* formula by a Web
service is defined as for CTL*-FO, where truth of proposi-
tional symbols in a given configuration (V, S, I, A) is defined
as follows: a Web page symbol is true iff it equals V', a state
symbol s is true iff s € S, an input symbol [is true iff
I € Iy, and an action symbol a is true iff a € A.

Example 4.3 CTL™-FO is particularly useful for speci-
fying navigational properties of Web services. Note that
these services do not necessarily have to be propositional,
we could abstract their predicates to propositional symbols,
thus concentrating only on reachability properties.? For our
running example, abstracting all non-input atoms to propo-
sitions, we could ask whether from any page it is possible
to navigate to the home page HP using the following CTL
sentence:

AGEF(HP)

The following CTL property states that, after login, the
user can reach a page where he can authorize payment for
a product:>

AG((HP A button(“login”)) —
EF (button(“authorize payment”)))

where button(“login”), button(“authorize payment’) denote
the corresponding propositions. In the specification of the
abstracted service, we can still allow in the home page HP
a state rule that checks successful login:

logged_in < users(name, password) A button(“login”).

For a given Web service W = (D, S, I, A, W, Wy, W,), we
denote by ¥y the propositional vocabulary consisting in all
symbols in SUIU A UW. By abuse of notation, we use the
same symbol for a relation R in the vocabulary of W and
for the corresponding propositional symbol in Xyy. We first
show the following.

THEOREM 4.4. Given a propositional, input-bounded Web
service W and a CTL* formula ¢ over Xy, it is decidable
whether W |= ¢. The complexity of the decision procedure
is CO-NEXPTIME if ¢ is in CTL, and EXPSPACE if ¢ is in
CTL*.

2This is in the spirit of program verification, where program
variables are first abstracted to booleans, in order to check
CTL* properties such as liveness.

3The most important property in electronic commerce <

Proof: The proof has two stages. First, we show that there
is a bound on the size of databases that need to be consid-
ered when checking for violations of ¢ (or equivalently, sat-
isfaction of —¢). Second, we prove that for a given database
D there exists a Kripke structure Ky, p over alphabet Xyy,
of size exponential in ¥y, such that 7w p E - it Kw,p E
—. This allows us to use known model-checking tech-
niques for CTL™ on Kripke structures to verify whether
TW,D ': . O

The complexity of the decision problem of Theorem 4.4 can
be decreased under additional assumptions. The following
result focuses on verification of navigational properties of
Web sites, expressed by CTL* formulas over alphabet W.

COROLLARY 4.5. Let S be a fixed set of state proposi-
tions and D a fixed database schema. Given a propositional,
input-bounded, error-free Web service W with states S and
database schema D, and a CTL* formula ¢ over W, it is
decidable in PSPACE whether W = ¢.

Proof: The decision procedure is similar to that for Theo-
rem 4.4. Since S is fixed and ¢ refers only to W, it is enough
to retain, in labels of 7yy,p only the states and Web page
names. Since W is error free, there is exactly one Web page
name per label. With some work, this yields the PSPACE
upper bound. a

Another special case of interest involves Web services that
are entirely propositional. Thus, the database plays no role
in the specification: inputs, states, and actions are all propo-
sitional, and the rules do not use the database. Let us call
such a Web service fully propositional. We can show the
following.

THEOREM 4.6. Given a fully propositional Web service
W and a CTL* formula @ over 3y, it is decidable in PSPACE
whether W = .

Proof: In the case of a fully propositional Web service W,
the Kripke structure Ky, p is independent of D (let us de-
note it by Kyv). However, unlike the Kripke structure used
in the proof of Corollary 4.5, Ky is exponential wrt W so
cannot be constructed in PSPACE. We therefore need a more
subtle approach, that circumvents the explicit construction
of Kw. To do so, we adopt techniques developed in the
context of model checking for concurrent programs (mod-
eled by propositional transition systems). Specifically, the
model checking algorithm developed by Kupferman, Vardi
and Wolper in [20] can be adapted to fully propositional
Web services. The algorithm uses a special kind of tree au-
tomaton, called hesitant alternating tree automaton (HAA)
(see [20] for the definition). As shown in [20], for each CTL"
formula ¢ one can construct an HAA A, accepting precisely
the trees (with degrees in a specified finite set) that satisfy
. In particular, for a given Kripke structure K, one can con-
struct a product HAA K x A, that is nonempty iff K = .

The nonemptiness test can be rendered efficient using the
crucial observation that nonemptiness of IC x A, can be re-
duced to the nonemptiness of a corresponding word HAA
over a l-letter alphabet, which is shown to be decidable in
linear time, unlike the general nonemptiness problem for al-
ternating tree automata. Finally, it is shown that K x A,
need not be constructed explicitly. Instead, its transitions
can be generated on-the-fly from K and ¢, as needed in the
nonemptiness test for the 1-letter word HAA corresponding
to K x A,. This yields a model checking algorithm of space
complexity polynomial in ¢ and polylogarithmic in K.

In our case, K is Ky, and the input consists of ¢ and W
instead of ¢ and KCyv. The previous approach can be adapted
by pushing further the on-the-fly generation of Kyy x A, by
also generating on-the-fly the relevant edges of Kyy from
W when needed. This yields a polynomial space algorithm
for checking whether W [= ¢, similar to the algorithm with
the same complexity obtained in [20] for model checking of
concurrent programs. O

One may wonder if the restrictions of Theorem 4.4 can be re-
laxed without compromising the decidability of verification.
In particular, it would be of interest if one could lift some
of the restrictions on the propositional nature of states and
actions. Unfortunately, we have shown that allowing param-
eterized actions leads to undecidability of verification, even
for CTL formulas whose only use of action predicates is to
check emptiness. The proof is by reduction of the implica-
tion problem for functional and inclusion dependencies. We
omit the details.

‘Web services with input-driven search The restrictions
considered so far require states of a Web service to be propo-
sitional, and do not allow the use of Prevy atoms. Although
adequate for some verification tasks, this is a serious limi-
tation in many situations, since no values can be passed on
from one Web page to another. We next alleviate some of
this limitation by considering Web services that allow lim-
ited use of Prevy atoms. This can model commonly arising
applications involving a user-driven search, going through
consecutive stages of refinement. More formally:

DEFINITION 4.7. A Web service with input-driven search
is an input-bounded Web service

W = (D,S, I, A, W, Wy, W,)

where:

I consists of a single unary relation I

S consists of propositional states including not-start

e A is propositional

D includes a constant io and a designated binary rela-
tion Ry

the state rule for not-start is not-start < —mnot-start

products

>

new used

K

desktops laptops

Figure 1: Fragment of R; for Example 4.8

e the input option rule for I is in all Web pages of the
form

Options(y) < (—not-start N y = io)
V(not-start A Jx(previ(z) A Ri(z,y)) N ¢(y))

where o(y) is a quantifier-free formula over D U S
with free variable y.

Note that not-start is false at the start of the computation
and true thereafter. To initialize the search, the first input
option is the constant ig. Subsequently (when not-start is
true), if was the previously chosen input, the allowed next
inputs are the y’s for which Rr(z,y) A ¢(y) holds, where
Ry is the special input search relation and ¢ places some
additional condition on y involving the database and the
propositional states.

Example 4.8 Consider a variation of a computer-selling
Web site which doesn’t just partition its products into desk-
tops and laptops, but rather uses the more complex classifi-
cation depicted in Figure 1. The user can search the hierar-
chy of categories, and will only see a certain category if it is
currently in stock, as reflected by the database. The propo-
sitional state new is set on the page which offers the choice
between new and used products. The page schemas for new
and old computers are reused, so when generating the op-
tions, the Web site must consult state new to distinguish
among new and old products. We can abstract this Web site
as a Web service with input-driven search, in which the bi-
nary database relation Ry is a graph which contains as a sub-
graph the one in Figure 1, and in which the unary database
relations such as newDesktop,usedDesktop,usedLaptop con-
tain the in-stock products. Here is the input rule corre-
sponding to the desktop search page:

Optionsi(y) « (—not-start Ay =ig) V
not-start A 3x(previ(z) A Ri(z,y)) A
(new A newDesktop(y) V —new (6)
AusedDesktop(y))

We can show the following.

THEOREM 4.9. Given a Web service with input-driven search

W and a CTL® formula ¢, it is decidable whether W = ¢
in EXPTIME if ¢ is in CTL, and 2-EXPTIME if ¢ is in CTL".

Proof: We reduce the problem of checking whether W = ¢
to the satisfiability problem for CTL®) formulas, known to

be EXPTIME-complete for CTL and 2-EXPTIME complete for
CTL* [13]. |

5. CONCLUSIONS

We have identified a practically appealing and fairly tight
class of Web services and linear-time temporal formulas for
which verification is decidable. The complexity of verifica-
tion is PSPACE-complete (for fixed database arity). This is
quite reasonable as static analysis goes®. For branching-time
properties, we identified decidable restrictions for which the
complexity of verification ranges from PSPACE to 2-EXPTIME.
To obtain these results, we used a mix of techniques from
logic and automatic verification.

Other interesting aspects of Web service verification could
not be addressed in this paper and are left for future work.
We mention a few of them.

Specifying and verifying sessions As discussed in Sec-
tion 3, in practical Web service applications it is not always
realistic to assume that verification applies to all possible
runs of the service. This may be due to various reasons:
there may be a need to verify properties of complex services
in a modular fashion, the restrictions needed for decidabil-
ity may only hold for certain portions of runs, etc. Let us
call portions of runs to be verified sessions. Some sessions
can be specified implicitly within the temporal formula to be
verified, while others may require explicit definition by other
means. It is of interest to understand what types of sessions
can be verified by our approach. For instance, in our run-
ning example, the default assumption is that sessions consist
of single-user runs beginning at login and ending at logout.
However, other types of sessions can be fit to our restric-
tions, including multi-user sessions (as long as no database
updates occur within the session and only a bounded num-
ber of new users register).

Interacting Web services An important aspect of Web
services is the interaction of multiple services and their com-
position into more complex services (as in e-service compo-
sition, see [19]). On the face of it, our model concerns the
behavior of a single Web service interacting with its envi-
ronment. However, it can also capture to some extent the
interaction and composition of multiple Web services. For
example, external calls to a service viewed as a black box
can be modeled simply by an extra database relation with
a limited access pattern. In terms of verification, certain
properties of the sequence of messages exchanged by Web
services (called conversations in the framework of WSDL
[31]) can be specified using our temporal formulas. We plan
to further explore to what extent interacting Web services
can be modeled in our framework and their properties veri-
fied by our techniques.

Algorithms and heuristics for verification While our
positive results provide complexity-theoretic upper bounds
on Web service verification, significant work is still needed in
order to obtain practical algorithms and heuristics. We plan

4Recall that even testing inclusion of two conjunctive queries
is NP-complete!

to explore this issue, including the use of theorem-proving
techniques in conjunction with the logic and automata-based
approaches suggested in the paper.

Acknowledgement
We wish to thank Caroline Cruz and Dayou Zhou for their
help in implementing the demo Web site for our running ex-
ample, and Ioana Manolescu and Marc Spielmann for useful
comments on the paper.

6.
1]

2

3

[4]

6

[7]

8]

REFERENCES

S. Abiteboul, L. Herr, and J. V. den Bussche.
Temporal versus first-order logic to query temporal
databases. In Proc. ACM PODS, pages 49-57, 1996.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. JCSS,
61(2):236-269, 2000. Extended abstract in PODS 98.

A. J. Bonner and M. Kifer. An overview of transaction
logic. Theor. Comput. Sci., 133(2):205-265, 1994.

E. Borger, E. Gradel, and Y. Gurevich. The Classical
Decision Problem. Springer, 1997.

BPML.org. Business process modeling language.
http://www.bpmi.org.

M. Brambilla, S. Ceri, S. Comai, P. Fraternali, and
I. Manolescu. Specification and design of
workflow-driven hypertexts. Journal of Web
Engineering, 1(1), 2002.

S. Ceri, P. Fraternali, A. Bongio, M. Brambilla,
S. Comai, and M. Matera. Designing data-intensive
Web applications. Morgan-Kaufmann, 2002.

A. K. Chandra and M. Vardi. The implication
problem for functional and inclusion dependencies is
undecidable. SIAM J. Comp., 14(3):671-677, 1985.

F. Curbera, Y. Goland, J. Klein, F. Leymann,

D. Roller, S. Thatte, and S. Weerawarana. Business
process execution language for Web services.
http://dev2dev.bea.com/techtrack/BPEL4WS.jsp.

DAML-S Coalition (A. Ankolekar et al).DAML-S:
Web service description for the semantic Web. In The
Semantic Web - ISWC, pages 348-363, 2002.

H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V.
Ramakrishnan. Logic based modeling and analysis of
workflows. In Proc. ACM PODS, pages 25-33, 1998.

E. A. Emerson. Temporal and modal logic. In J. V.
Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics,
pages 995-1072. North-Holland Pub. Co./MIT Press,
1990.

M. F. Fernandez, D. Florescu, A. Y. Levy, and
D. Suciu. Declarative specification of web sites with
Strudel. VLDB Journal, 9(1):38-55, 2000.

(15]

(24]

(25]

[26]

D. Florescu, K. Yagoub, P. Valduriez, and V. Issarny.
WEAVE: A data-intensive web site management
system(software demonstration). In Proc. of the Conf.
on Eztending Database Technology (EDBT), 2000.

M. R. Garey and D. S. Johnson. Computers and
Intractability. Freeman, 1979.

D. Georgakopoulos, M. F. Hornick, and A. P. Sheth.
An overview of workflow management: From process
modeling to workflow automation infrastructure.
Distributed and Parallel Databases, 3(2):119-153,
1995.

D. Harel. On the formal semantics of statecharts. In
Proc. LICS, pages 5464, 1987.

R. Hull, M. Benedikt, V. Christophides, and J. Su.
E-Services: a look behind the curtain. In Proc. ACM
PODS, pages 1-14, 2003.

O. Kupferman, M. Vardi, and P. Wolper. An
automata-theoretic approach to branching-time model
checking. J. of ACM, 47(2):312-360, 2000.

7. Manna and A. Pnueli. The Temporal Logic of
Reactive and Concurrent Systems. Springer Verlag,
1991.

Z. Manna and A. Pnueli. Temporal Verification of
Reactive Systems: Safety. Springer Verlag, 1995.

G. Mecca, P. Merialdo, and P. Atzeni. Araneus in the
era of XML. IEEE Data Engineering Bulletin,
22(3):19-26, 1999.

S. Narayanan and S. A. Mcllraith. Simulation,
verification and automated composition of Web
services. In Proc. WWW, pages 77-88, 2002.

R. Reiter. Knowledge in action: logical foundations for
specifying and implementing dynamical systems. MIT
Press, 2001.

M. Spielmann. Abstract State Machines: Verification
problems and complexity. Ph.D. thesis, RWTH
Aachen, 2000.

M. Spielmann. Automatic verification of Abstract
State Machines. In Proc. CAV, pages 431-442; 1999.

M. Spielmann. Verification of relational transducers
for electronic commerce. JCSS., 66(1):40-65, 2003.
Extended abstract in PODS 2000.

D. Wodtke and G. Weikum. A formal foundation for
distributed workflow execution based on state charts.
In Proc. ICDT, pages 231-246, 1997.

Workflow management coalition, 2001.
http://www.wfmc.org.

Web Services Description Language(WSDL 1.1), 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

Web Services Flow Language(WSFL 1.0), 2001.
http://www-3.ibm.com/ software/ solutions
/webservices/pdf/WSFL.pdf.

