1

The NEXT Framework for Logical XQuery Optimization *

Alin Deutsch

Yannis Papakonstantinou

Yu Xu

University of California, San Diego
{deutsch,yannis,yxu@cs.ucsd.edu

Abstract

Classical logical optimization techniques rely on
a logical semantics of the query language. The
adaptation of these techniques to XQuery is pre-
cluded by its definition as a functional language
with operational semantics. We introduce Nested
XML Tableaux which enable a logical foundation
for XQuery semantics and provide the logical plan
optimization framework of our XQuery processor.
As a proof of concept, we develop and evaluate
a minimization algorithm for removing redundant
navigation within and across nested subqueries.
The rich XQuery features create key challenges
that fundamentally extend the prior work on the
problems of minimizing conjunctive and tree pat-
tern queries.

Introduction

The direct applicability of logical optimization technigg ¢
(such as rewriting queries using views, semantic optiased equality [30].

mization and minimization) to XQuery is precluded by
XQuery’s definition as a functional language [30]. The
normalization module of the NEXT XQuery processor en-retyrn (result) { $a,
ables logical optimization of XQueries by reducing them to
NEsted Xml Tableaux (NEXTWhich are based on logical

semantics. NEXT extend tree patterns [3, 21] (which have
been used in XPath minimization and answering XPath

Minimization is particularly valuable in an XQuery con-
text, since redundant XML navigation arises naturally and
unavoidably innestedqueries, where the subqueries per-
form navigation that is redundant relative to the query they
are nested in. A common case is that of queries that
perform grouping in order to restructure or aggregate the
source data. The grouping is typically expressed us-
ing a combination of self-join and nesting, in which the
navigation in the nested, inner subquery completely dupli-
cates the navigation of the outer query (see Examples 1.1
and 1.2). Another typical scenario pertains to media-
tor settings, where queries resulting from unfolding the
views [20, 17, 25] in the original client queries contain
nested and often redundant subqueries (when the naviga-
tion in two view definitions overlaps). Finally query gener-
ation tools tend to generate non-minimal queries [31].

EXAMPLE 1.1 Consider the following query that groups
books by authors (it is a minor variation of query Q9 from
W3C's XMP use case [27]). Thdistinct-values func-
tion eliminates duplicates, comparing elements by value-

let $doc :=document (“input.xml”)

for $ain distinct-values ($doc//book/author)

(X1)
for $bin $doc//book

where some $bain $b/authorsatisfies $baeq $a
return $b}

(/result)

gueries using XPath views) with nested subqueries, joins,
and arbitrary mixing of set and bag semantics.
As a proof-of-concept of NEXT’s applicability to $a loop) hassetsemantics, all others halmg semantics
XQuery logical optimization, but also for its own impor- i.e., duplicates are not removéd.

tance in improving query performance, we developed and The straightforward nested-loop execution of this query
evaluated a query minimization algorithm that removes reis wasteful since the nested loops (#tefor loop and the
dundant navigation within and across nested subquerie$ba some loop) are redundant: th&a loop has already

* Work supported by NSF ITR 313384

Permission to copy without fee all or part of this materiagignted pro-
vided that the copies are not made or distributed for diremtmercial
advantage, the VLDB copyright notice and the title of thelipation and
its date appear, and notice is given that copying is by pesimisof the
Very Large Data Base Endowment. To copy otherwise, or tohlegiy
requires a fee and/or special permission from the Endowment

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

Notice that thdor loop binding$a (from now on called the

navigated to the corresponding book and author elements.
In this case, we say that the redundant navigation appears
acrossnested subqueries, where nesting is w.r.trétern
clause. The NEXT XQuery processor performs a more

1The query can be expressed in a shorter form by replacinghitse
clause with Where $a = $b/author” or by replacing the innefor
with “$doc/ /book[author = $a]". Itis well known [19] how to reduce
such syntactic sugar (use of “=" or use of predicates in pathghe basic
XQuery constructs we use (see Figure 3).

(b; bibliography)

/ \
(b1; book (b2; book
(a11; aluthor) (a12;author) (ty;title) (y1; year) {a21;author) ({asz;author) (ta;title) — (yo;year)
(v11; Elvis) (v12; Tony) {v13; Rock) (v14;1958) {(v21; Elvis) {v22; Tim) (va23; Roll) (v24;1958)
Figure 1: Data of Running Example
efficient execution (inspired by the OQL groupby opera- XQuery 0 OptXQuery }
tor [8]): eliminate the redundant navigation by scanning N CCC Minimization
bool_<s and authors just once and then apply a group-by op- : _Normallzatlon lMimmized NEXT
. . Functional NEXT Optlmlzatlon &
It turns out that, when attempting to perform grouping Translation to Physical Plan

‘Functional-to-LogicaI‘

by more than one variable, the resulting XQueries contain lPhYS‘Ca' Plan

redundant navigation both across and within subqueries. (Logical) NEXT

Plan Execution Engine

EXAMPLE 1.2 The following nested XQuery groups on gigyre 2: The NEXT XQuery Processor Architecture
two variables: book titles are grouped by author and year

of publication. All example XQueries appearing in this paper fall in this
o class. Due to space limitations we only discuss in the full

for $a in distinct-values (8doc//book/author) (X2) " paper [9] the processing of non-OptXQuery XQueries.
8y in distinct-values (8doc//book/year) Section 4 describes a minimization algorithm that, given

where some $bs in $doc//book$as in $b3/author,
$ys in $bs/year
satisfies $a eq $as and $y eq $ys
return (result) {$a, 3y,

a NEXT, fully removes redundant navigation, in a formally
defined sense. The expressiveness of OptXQuery raises the
following novel challenges that fundamentally change the

for $& in $doc//book nature of the minimization problem, such that previous al-
where some $a’ in $'/author, $y' in $b’ /year gorithms for the minimization of conjunctive queries [5, 2]
satisfies $a’eq $a and $y'eq $y and XPath queries [3, 23, 11], do not apply:
return $b'/title}
(/result) 1. OptXQueries are nested (as opposed to conjunctive

gueries and tree patterns).
The$doc variable is defined as in the first line of (X1) and)) o .
its definition will be omitted from now on. Notice the use of 2. OptXQueries perform arbitrary joins (in contrast to
join equality conditions omuthor andyear in the some tree patterns, which correspond to acyclic joins [12]).
of the $b' loop. Once again, the navigation of the outer- 3
most subquery (th8a and$y loops) is duplicated by the
nested subquery. In addition, redundant navigation occurs
also within the outermost subquery: teeme loop bind-
ing $b3 navigates tdook, author andyear elements, all
of whom are also visited by tHn and$y loops. © Section 5 discusses the implementation of the minimiza-

. L _ . . tion algorithm. Though the problem is NP-hard, as is the
The combined effect of the normalization and minimiza- ;ase for minimization of relational queries, the implemen-

tion modules of the NEXT XQuery processor removes theion reduces the exponentiality to an approximation ef th

redundant navigation from the above examples. This ming ery tree width [12] and results in fast minimization even
imization is beneficial regardless of the query executiory,, very large queries, as proven by our experimental re-
model. In many XQuery processors, including our own,g 15 \We summarize the contributions of this work and

the matching of paths and equality conditions is performed,qide future directions in Section 6. Related work is de-
by joins that outperform brute force loops. Minimization g ibed in Section 7.

reduces the number of joins in such cases.
Section 2 describes the system architecture and NEX :
and highlights NEXT's key logical optimization enabling E Framework and Architecture
feature: NEXT consolidate all navigation of the original XML We model an XML documenb as a labeled tree
query in the XTableaux tree pattern structure, regardlesef nodesNx ,rr., edgesEx ., a function : Nxpp —

. OptXQueries freely mix bag and set semantics (as op-
posed to allowing either pure bag or pure set seman-
tics in relational queries, and only set semanticsin tree
patterns).

of whether navigation originally appeared in tivbere Constantghat assigns a label to each node, and a function
clause, within non-path expressions in the clause, or id : Nxa, — IDs that assigns a unique id to each node.
even within subqueries that are withirdestinct-values We ignore node order. The tree of Figure 1 serves as our
and hence follow set semantics. running example.

Section 3 describes the normalization algorithm that re-OptXQuery The paper focuses on the OptXQuery subset
duces a wide set of XQueries, called OptXQuery, to NEXT.of XQuery, which follows the syntax of Figure 3 and also

| XO1, X0 or Vi in Pathy, ..., V, in Pa

)) (where CList)?
| foi <V">'< S@ + (where CLis? groupby Q(vl'l[vl']) - (ViI[Vi))(into P)?

return return XQ,
| (document (“constant”)|Var) Path ::= (documentc(“C’onstant”)|Var)

(/1 Constany » Gist:= Cond(and Cond)
| Constant Cond:= Vi eq (V|Constany (P6)
| distinct-values (XQ)] _) |

Clist == Cond(and Cond) Figure 4: Functional NEXT Syntax
Cond := \Van eq (Varz|Constanj

of group-by that has enabled us to move all navigation to
the path expressions of tha clauses. Thé&unctional-to-
Figure 3: OptXQuery Logical module performs a straightforward translation of
its input into alogical NEXT, whose syntax extends tree

satisfies the constraints described below. Notice that OpPatterns [21, 3, 23] to capture nesting, cyclic joins, and
tXQuery allows navigation along the childref) @nd de- mixed set and bag semantics. There is an 1-1 correspon-
scendant (/) axes of XPath, existential quantification us- dence between functional and logical NEXT expressions.
ing some, arbitrary conjunctive conditions (as opposed to Group-By The arguments of group-by are a listgybupby
acyclic conditions only [12]), element creation that may in variablesGy, ..., Gy, the name of an optionglartition
clude nested queries (as opposed to tree conditions that reariable P, and the result expression. A group-by inputs
turn a single element or tuples of variable bindings, andhe tuples of variable bindings produced by fioe and
duplicate elimination using thdistinct-values function where clauses and outputs a tuple set that has exactly one
(which allows both bags and sets). The grammar can beuple for every set of tuples that have equal groupby vari-
trivially extended with additional constructs that have anaple bindings. Equality is identity-based if the groupby
obvious reduction to OptXQuery, such as predicates in pathariable appears d§/;] or value-based if the variable ap-
expressions. pears a¥7;. In OQL fashion, a new variable binding is

OptXQuery’s constraints rule out (i) queries that directly created for the variabl@ and binds to a table that has
or indirectly test the equality of constructed sets (i) limip ~ the tuples that belong to this group. However, in order to
disjunctive conditions (aside from the explicit absence ofstay within the XML data model, we emulate the nested
or). The full paper [9] provides sufficient conditions for table with a speciapartition element that containgiple
ruling out (i) and (ii). We limited the syntax and included elements, which in turn contain elements named after the
the first constraint in order to be able to guarantee full min-names of the aggregated variables, excluding

imization, as explained in Section 4, since itis well known oy example, consider the functional NEXT (X3), which
from both relational and object-oriented query processingyroups book titles by author and year (indeed, it is the mini-

that minimization and containment problems become unmjzed form of XQuery (X2), and the corresponding logical
decidable once set equality, negation and universal quUarNEXT will be seen in Figure 8(c)).

tification are allowed. On the contrary, there is no theoret-
ical reason against disjunctions and we can extend NEXT
to incorporate them, but for simplicity we focus on purely
conjunctive queries. Though only OptXQueries are guar
anteed to be fully minimized, the processor may also inpu
arbitrary XQueries and optimize them using minimization (result){ $a, Sys

. i . ' for $b'in $L/tuple/bs groupby [$'] return
as discussed in the full paper [9]. '_I'h_e main body of the for $tin $b'/title groupby [§¢] return $t }
paper assumes that the input query is in OptXQuery. (/result)
Normalization and NEXT The normalization module of
the NEXT processor (see Figure 2) inputs an OptXQuery,
applies a series of rewriting rules, discussed in Section 3, The first table below illustrates the tuples generated by
and produces #&unctional NEXT whose syntax (see Fig- the outermosfor clauses of (X3) when run on the data of
ure 4) extends a subset of OptXQuery with an OQL-Figure 1 and the next table illustrates the output of its first
inspired group-by construct [4]. group-by. For illustration purposes, the bindings of the pa
Functional NEXT The functional NEXT syntax allows tition variable are also shown in nested table format. The
only path expressions in tHfer clause, while OptXQuery notation(z) stands for the tree rooted at the node witkrid
also allowed nested subqueries. Also, NEXT allows onlyNotice that grouping by value results into creating copies
variables in the condition, while OptXQuery also allowed for the bindings of the group-by variables in the result. For
some, which include existential navigation. It is the use example, notice that the first binding

some (V in XQ) + satisfies CList

for $bs in $doc//book$a; in $bs/author,$y; in $bslyear
proupby $a1,$y:1 into $L return (X3)

3 3 38 of $a; is neither(ai1) nor (a21) that are bound at ancestor groupby nodes. The equality
[a1 | Sy [8bs | 1155 a new object(n;) that) i i i
Jecln, $a, eq $a’ belongs toX, despite$a; being free inXs.

b ; . .
(an) | () [(1) | has equal value witlfa:;) and Also, $b' belongs taX, (where it is bound), and it is free
(a12) | (y1) | (b1) icient i i
(a“) (zl) (bl) (ag1). Efficientimplementations i x,.
21 2 2 H H . .
(a22) | (y2) | (b2) of group-by can avoid to physi- - @, and G, are the vectors of groupby-id variables
cally produce copies. and groupby-value variables. For examph, has an
| o | o | - | empty groupby-id list and its groupby-value variable list
(pis pyo__ - “$a1,$y1" specifies that the result expressign will be
{n1; author) (ngjyear) “11;:‘“"“) (t12; tuple) invoked once for each unique pair of values$af;, $y1,
{ngj; Elvis) (n4;1958) (b11;b3) (b1zl;b3)) . . . i
) o) 2 where uniqueness is based on value comparison. The vari
(s autho)) , ‘ff”"}"““f;’ , able list corresponds to the groupby list of the functional
n 55 author n7; year 91 ; tuple -‘ﬂ‘-
(ng;'Tony) (ng;'1958) (521:;b3) NEXT.)]))
P = theresultfunctionf inputs the group-by variables’ bind-
(ng; author) (11, vear <i33'1;:m,,.e) ings and the results of the nested queries and outputs an
(10} Tim) (n12! 1058) <b?1|;;’3) XML tree. The result function may be the identity function
b2

or it may involve concatenation and/or new element cre-
Logical Next The Functional-to-Logical module creates ation. The functiory; creates an element namesult that
the logical NEXT that corresponds to its input. Figure 5 contains$a;, $y: and the result oN, (in this order). The
illustrates the functional and the logical NEXT that corre- function f, returns the result ofi3 and f5 returns$t. The
spond to query (X2). specifics of the function are unimportant for minimization
Logical NEXT reflect the nesting of group-by expres- purposes, since it cannot be minimized; hence in the rest of
sions using agroupby tree(see tree on the left side the paper we refer to the result functionsfasfs,
of the logical NEXT of Figure 5). Each node of the Normalization Benefit Normalization reduces queries into
groupby tree corresponds tafar expression of the func- the NEXT form, where all selections and navigations are
tional NEXT and the immediate nesting of tWor ex- consolidated in the XTableaux, regardless of whether navi-
pressions is represented by an edge between their nodegation initially appeared isome loops, withindistinct-
We label a nodeV with N(X;G;;Go;f) (for example, values functions, or within subqueries nested in tine
N1(X1;;8a1,8y1; f1(8a1, $y1, N2))), where: clause (see following example). This consolidation ergble
= the XTableauX = (F, EQ,q, EQiq) consists of a for- minimization to detect the opportunities for eliminatireg r
est F' of tree patterns, which captures navigation, a setlundant navigation, regardless of the context in which nav-
of value-based equality conditiods0),; (represented by igation originally appeared. Normalization is crucial for
bubble-ended dotted lines) and a set of id-based equalitiedaximizing the minimization opportunities and guarantee-
EQ;q (represented by arrow-ended dotted lines). The thregng full minimization for the queries of OptXQuery. Ex-
shaded sections of the pattern in Figure 5 correspond to th@mple 2.1 below illustrates the need for the consolidation
Xtableaux ofN1, N>, N3. The formal XTableau semantics achieved through normalization. It shows a query that is se-
extend the tree pattern semantics of [21] to account for thenantically equivalent to (X2) but involves a more complex
equality conditions and specify the set of bindings for thejn clause. The combined action of normalization and min-
variables of the tree patteiXi. An alternate (and shorter) imization reduces it to the same minimal form with (X2).
route towards specifying the bindings of the variables of\ve will see how this query is normalized in Section 3.
the XTableaux is based on the 1-1 correspondence between
Iogical and functional NEXT: Each node in the XTableau EXAMPLE 2.1 While apparenﬂy more Comp]icated than
of group-by tree nodéV' corresponds to a variable in the the query (X2), query (X5) below is what an XQuery ex-
for expression that corresponds . Each edge corre- pert would write, since it results in a more efficient execu-
sponds to a navigation step to a child (graphically repretion plan, that avoids redundant navigation within the same
sented by a single edge) or a descendant (represented Bybquery. In fact this is the most efficient way to perform
a double edge). Nodes are labeled with the correspondingrouping by multiple variables in XQuery.
tag name tests, arif no such test is performed. Similarly,
the equality conditions in thehere clause correspondto for $p in distinct-values (

the equalities of the XTableau. The set of variable bind- for $b1 in 8doc//book,
ings delivered by the XTableau is the set of bindings deliv- $ai1 in 8b1/author, $yy in $b: /year
ered for the variables of the correspondfiog expression return (pair)(a){$a1}{/al(y){8y1 }(/y){/pair}),

: : . : $a in $p/a/author, $y in $p/y/year
in the functional NEXT. In addition to prior tree pattern return (result) {$a}{$y}

formalisms, we accommodate free and bound variables: 7%
X h d . f iables bound i { for $b" in $doc//book
since the nested queries may refer to variables bound in where some $a’ in $b /author,

outer queries. For example, variallé is bound inN, and $y' in $b'/year
free in Ns. Tree patterns of a groupby node may be rooted satisfies $a’ eq $a and $y’ eq $y
at variable nodes bound in the tree pattern of an ancestor return $b'/title}

groupby node. Similarly, equalities may involve variables (/result)

(for $b1 in $doc/ [book, $a: in $b1 /author,
$b2 in $doc/ [book, $y1 in $b2 /year,
$b3 in $doc/ /book, $az in $b3/author, $ys in $bs/year Ny (X;; 182, By, if,(8a,,8y,.N,)

where $a1 eq $as and $y1 eq $ys |
groupby $a;, $y1 return
(result){$a1, $y1,

N,(X,; $b'; 5 5($b',Ng))

Ni !¢ for $%' in $doc/ /book, $a’ in $b' /author, ‘ K
$y" in $b' /year (X4) Ny (X581t ; F(81) author year i
, | where Sa; eq $a’ and $y; eq $y' 1,82,8y,N,) = : R
2 groupby [$b’]return <result>{ $a,, $y,, N }</result> !
for $t in $v' /title f80, N9 =Ny fy(8) = $t
3{ groupby [$t] return $t

[}{/result)
Figure 5: Logical and Functional NEXT corresponding to guet2)

The outermosior binds the variabl8p to distinct pairs of that define exactly one variable. The extension to multiple
author andyear subelements dfook elements. For each variables is obvious.

pair, the neste@d’ loop retrieves the corresponding book The normalization process is stratified in two stages.
elements. This loop is the unavoidable redundant navigaFirst, all standard XQuery rewriting rules are applied in

tion across subqueries. o anyorder. Next, thgroupby -specific rules are used. Rule

(RG1) may be applied in both stages. In the extended ver-
Minimization Module Normalization does not solve the sion of this paper [9], we prove:

minimization problem by itself, as we still have to identify .)
whichnavigations are reusable. The CCC algorithm mini- 1 heorem 3.1 The rewriting of any XQuery) with the
mizes the redundant navigation in a given NEXT query andulesin Figure 6 terminates regardless of the orde_r in which
provably finds the minimal equivalent XTableaux of its in- fules are applied, i.e. we reach a quefyfor which no
put NEXT. This requires detecting and eliminating redun-more rewrite rule applies. I€) is an OptXQuery, thef# is
dant navigationvithin andacrossnested XTableaux. guaranteed to be a NEXT query. ©

For example, the NEXT of Figure 8(c) and its corre-
.) L EXAMPLE 3.1 Recall query (X2) from Example 1.2. In
sponding functional NEXT (X3) are the minimized form of the first phase of the normalization of (X2), Rules (R1),

XQueries (X2) and (X5). We navigate to books just once o
and the inner subqueries utilize the navigation of the outeFRll)’ (R12) and (R6) apply, yielding the query (X6).

level. Notice that the minimized NEXT of Figure 8(c) has for $q in distinct-values ((X6)
fewer nodes and edges than the original NEXT of Figure for $b; in $doc//book return for $ai in $b1 /author
5(b). Indeed it is the minimum possible number of nodes return $a;)

and edges. return for $y in distinct-values (

Executing NEXT Finally, the minimized NEXT is reduced for $b2 in $doc//book return

to a physical plan, similar to the algebraic plans of [14, 15] for $y in $by/year return $y,)

and is executed. Our logical optimization steps can behere some $b; in $doc/ /booksatisfies

easily incorporated in other implementations of XQuery some $as in $bs/author satisfies

as well by attaching a groupby clause to FLWR, i.e., by some Sys in 8bs /year

having the ability to execute the groupby of the functional .o ., ??;ISSJ:?)S{&G gg Sas and $y eq $ys

NEXT. One can improve performance by removing trivial for $b in $doc/ /book
groupby s, such as those of the innfar loops of (X3), where some $a’ in $b' /author satisfies
and keeping only the essential ones, such as only the outer- some $y’ in $b’ /yearsatisfies
mostgroupby of (X3). $a’ eq $a and $y’ eq $y

return for $tin $&’/title return $t}
3 Normalization into NEXT {Iresult)

Figure 6 presents a set of rewrite rules which provably nor- The second phase of the normalization applies
malize any OptXQuery to a NEXT query (as shown by groupby rewriting rules to (X6). A rewrite step with
Theorem 3.1 below). Some of these rules are known simRule (G1) applied to the outermogbr replaces the
plification rules of XQuery; they are used extensively bothdistinct-values function with agroupby clause which

in reducing XQuery to its formal core [29] as well as in groups by the value of variabkn. Similarly, Rule (G3)
guery optimization [19]. We focus the presentation on theturns the innerfor expression, which does not involve
rules that are particular tgroupby , such as Rules (G1), distinct-values , into a for expression that involves
(G3), (G4) and (G5) and leave out the trivial standard nor-grouping by identity. By applying Rule (G4) tteome
malization rules. Notice that, for simplicity of presenta- structures are eliminated. Notice that the variables défine
tion, all rules are shown usinfgr andsome expressions in some do not participate in the groupby variable lists.

Standard XQuery Rewriting Rules

(R1) for $V1in Es,...,8V, in E, return E s for $V; in Eireturn for $V5 in Es return ...for $V,, in E, return E
(R2) for $V in (for $Vi1 in E; return E) return Es +— for $V1 in E; returnfor $V in E; return E3
(R3) for $Vin {e)E1(/e) return E3 s gy s (e (/) (B2) ¢* O30y 5, (E2) substitutesi; for $V in Ex *)
(R4) for $V1in §Vareturn E — gy, sv,(E) (*if $V2 is not defined byet *)
(R5) for §V in (E1, E) return Es3 +— (for $V in E; return E3), (for $V in E; return E3)
(R6) some $Viin Ei,...,$V, in E, satisfies C
— some $V1 in E; satisfies some $V5; in E; satisfies ...some $V,, in E, satisfies C
(R7) some $V in (for $V; in E; return E,) satisfies C +— some §V; in E; satisfies some $V in E; satisfies C
(RS) some $V in (6)E1</6) satisfies C — 9$Vb—>(e)E1(/e) (C)
(R9) some $V1in $V; satisfies C — gy, 5v,(C) (*if $V= is not defined byet *)
(R10) some $V indistinct-values (E) satisfies C — some $V in E satisfies C
(R11) 8V (/|//)C + for $V1in §V (/|//)C return $V1 (*if $V/C does not appear ir§X in $V/C"™)
(R12) 8V (/I//)C1...(/|/])Cn — for $V1in $V (/|//)C1 return ...for §V, in $V,_1(/|//)Cr return $V,, (*forn > 2%
(R13) distinct-values (3V|{e)E:(/e)|distinct-values (E)) — $V|{e)E1{/e}|distinct-values (E)
(*if $V is not defined byet *)
(RG1) (e)En,...,En(/e)/cr> oc(Er),...,00(ER)

ac((c)E(/c)) = () E{/c) oc((a)E(/a)) (xa # cx) = ()
0c(8V) = $V (xif(tagName($V) =c)*) () (xelsex) ac(E(/l/])a) = ()(xa # cx)
oc(for $Vi in Ey return E») — for $V1 in E; return oc(E>) a-(E(/|//)e) = E(/|//])c

0c(E1, E2) = 0.(E1),0.(E2) oc(distinct-values (E)) — distinct-values (o.(E))

Group-By Rewriting Rules
(G1) for Vindistinct-values (E:)return E» + for V in Ei groupby V return E-
(G2) distinct-values (FE;) — for Vin E; groupby V return V
(*for distinct-values (E7) which does not appear ir$X in distinct-values (E1)™)
(G3) for Viin Ep return E, — for Vin E; groupby [V]return E»
(G4) for Vqin Eywhere some Vzin E satisfies C groupby G return E3
— for Viin E1, Vs in E> where C groupby G return Es
(G5) for Vain (for Va1 in E; groupby Gi return E-) groupby Va return Es
— for Vi in Eq,Vain Es groupby Vs return Es
(G6) for X in (X' | {c)E(/c))groupby Greturn E, — Ox (x| (cyE(/c))(Er)
(G7) for Viin By, X in (X' |{(c}E(/c}) groupby G return E. — O0x.\(x' |(cyr(/c)(fOr V1iin E1 groupby Greturn E)
(G8) for Viin Ey,...,V,in E, groupby Gireturnfor Vi in Ei,...,V} in Ej, groupby G, return E,
— for Viin E1,..., V4 in E,,V{in Ei,...,V}{ in Ej, groupby G1,G> return E,
(*if G1 andG2 only contain grouping by value variables*)
(G9) groupby E — groupby strip(E)
strip({tag)E{/tag)) — strip(E) strip(Er, E2) v strip(E1), strip(E-)
strip([E]) — [strip(E)] strip($V,8V) — strip($V) — $V

Figure 6: Rules for rewriting OptXQuery into NEXT

Rule (G5) removes nested subqueries from generator ex- for $tin $H' ftitle groupby [$t] return $t}

pressions. Rule (G6) substitutés; for $a and $y; for (Iresult)

$y. Rule (G8) collapsegroupby ’s. The transformations

reduce the query (X2) to the NEXT (X4). © 4 Minimization of NEXT Queries ©
Example 3.2 illustrates the normalization of (X5), which The minimization algorithm focuses on the Xtableaux,

is the efficient variant of query (X2). which describe the navigation part of NEXT queries, in or-

der to eliminate redundant navigation. The algorithm we

EXAMPLE 3.2 Recall from Section 1 (X5), the expert's present here does not incorporate knowledge about the se-
choice of writing query (X2). Standard XQuery normaliza- mantics of the result functions, treating them as uninter-
tion rules (R1),(R11), (R12), (R6) and (R2) are applied.preted symbolg. It is easy to see that under this assump-
Then groupby -specific rules (G1,G3, G4, G5, G6, G7, tion, two equivalent NEXT queries must have isomorphic
G9) and RG1 are applied and the final result is the NEXTgroup-by trees, where the corresponding (according to the
query shown below. isomorphism) nodes of the two group-by trees have identi-
_) _ cal (up to variable renaming) groupby lists and result func-
gorgfgt);/n gjoéﬂ b?;ﬁ’fr?“n $b1/author, $yrin $b: /year tions. However, this does not constrain the Xtableaux asso-
(fesu|t){}$’a1%y1, ciated with the corresponding group-by nodes in any other

for $ in deOC”bOOk' $’ain $b//author,$y in $f/year 2Which means thaf (x,y) is equal tofs (u, v) iff f1 andf» are the
where $a’ eq $a1and $y' eq $y1 same function symbol and = » andy = v. Exploiting the semantics of
groupby [$b'] return the result functions in minimization is a future work diriect

way than having to deliver the same set of bindings for theilCCC(Q: NEXT query) :=min_query(empty context,
variables.
We say that NEXT querg) is minimal, if for any other ~ min_query (Context group-by tree,

NEXT query @, equivalent toQ, and for any group-by N(X;Gi:Gu3) . oroun-by tree
nodeN of @, the nodeN, of @), corresponding taV via T ... T, group-by)
the isomorphism has at least as many variable nodes in its returns group-by tree

Xtableau. Clearly, minimality rules out redundant naviga- . .
tion: if NEXT queryQ performs redundant navigation, this (X", 6) ¢ min_tableau(Context X, G, G)
can be removed, yielding an equivalent query with strictlylf Contextis empty

less navigation steps, hence strictly less variables) &® NewCtxte— N'(X™";6(G;);0(Gy); 6())

not minimal. else /*Contextis of the formNg(...) — ... = N&(...) */
Context

Theorem 4.1 Any NEXT query with uninterpreted result NewCtxt«— ' |

functions has a unique minimal form (up to variable re- N'(X™": 0(G;);0(Gr); 6(f))

naming)? o return

N'(X™m:0(G;);0(Gy); 0(f))

We present th€ollapse and Check Containment (CCC) C/
algorithm, which searches for this minimal form and isnin_query(NewCtxt#(T1)) ... min_query(NewCtxt6(T;,))
guaranteed to find it. Note that Theorem 4.1 implies that no
other algorithm can further minimize CCC'’s output with-
out manipulating the result functions. As a matter of fact, Figure 7: The CCC Minimization Algorithm
we conjecture that in the absence of any schema informa-) _
tion, no manipulation of the result function can generate2€ €ither bound or free. Thesollapsingz into y means
additional minimization opportunities. This conjecturala Substitutingy for z in X'. Notice that after a sequence of
Theorem 4.1 imply that the CCC algorithm fully minimizes collapse steps, we may end up with two /-edges between
any NEXT query, regardless of its result function. the same pair of variable nodes. In this case, we remove
The CCC algorithm is shown in Figure 7. It minimizes a On€ /-edge. We also remove any //-edge- (s,) such
NEXT queryQ by invokingmin_query on the empty con- that there exists a path fromto ¢ in X which does not
text andQ. min_query visits the group-by tree off ina includee. Clearly, the removed edges correspond to redun-
top-down fashion. Lef" be a subtree of)’s groupb-by ~ dant navigation steps.

tree and denote Withh the root of T'. T may have free EXAMPLE 4.1 We illustrate the minimization of the

variables whose bindings are provided by tentextC, . . .
: : , C) NEXT of Figure 5. First we applynin_tableau to tableau
where(is the list of N's ancestors irQ’s group-by tree. X; of the rootN; of the groupby tree. Since there is no

min.query(C, T) returns a minimized equivalent df in ancestor context, it collapses only variables bound&’in

contextC' as follows. First, the XtableaX of N is mini- . : .)
mized in contextC' by themin_tableau function (described $by into $bs, b, into $bs, thensys into Sy, and finally$as
into $ay, to obtain the minimized groupby nodg in Fig-

shortly), which returns a minimized Xtableal™"anda o g (a). Using the algorithm described latein_tableau
variable mapping. 6 maps eliminated variables & into yerifies thatX; and X! (the Xtableau ofN!) are equiva-
retained variables — potentially variables provided by anjgnt Coincidentally, the variable mappiflg = [$b; —
cestor groupby nodes. This variable mapping is applied t b3, $bs = $bs,$ys — $yi,8as — $ay] does not affect
the groupby lists and the arguments of the result function of},o groupby lists and result function .

N, yielding a new group-by tree nod¢'. The children of Next, N, is minimized under the context d¥/. Now

N' are set to the result of recursively applyiminquery e can also collapse nodes across Xtableaux: we map

to each child ofV under the appropriate context. Finally, g (from Na) into $b; (from N!) to get the temporary

the new group-by tree rooted t is returned. XtableauX’ shown in Figure 8 (b). We continue collaps-
Tableau Minimization The tableau minimization algo- ing $y/ into $y: and $a’ into $a, to obtain the groupby

rithm min_tableau is based on two key operations: collaps- node N’ shown in Figure 8 (c). Notice thaV? has the

ing variablg nodes, and checking that this rewriting Pr&-empty Xtableaut’, which means that it performs no new
serves equivalence. _ _ _ navigation. Instead, it reuses the navigatioiVihto get the

The collapse step.Consider two variables,y in the in- pinqings of$h,, on whose identity it then groups. It turns
put tableau¥. Assume tha is bound inX, whiley may ¢ that the above collapse steps are equivalence preserv-

S .) " .
3Contrast this with the uniqueness problem for nested OQUiegie N9, '-e-'X?'s_equalem taXy in the context _OWI'
which is open, as a consequence of the open problem of dgaiti@ir The minimization ofN3 results in an identicaN5. The

equivalence [18]. We have developed a decision proceduredoiv- overall effect is that the NEXT query (X4) has been opti-

alence of NEXT queries with arbitrary nesting depth and tempreted ; ; ;
result functions. This procedure is not needed in mininvrgtbut its mized into the NEXT query of Figure 8 (C) °©

existence is crucial for the proof of minimal form uniquenie€hecking . . .
equivalence of NEXT queries is of independent interestifeirtoptimiza- While not needed in the above example, there is one

tion. more case in which we try to collapse pairs of variables

N3 (X35 i8ay, Byp 0 Np(Xp; 8075 Ny(Xgi8t ;£ F5(81) N (X35 5 $ay, Sy, ($a,,8y.,N')) N (X' s B2y, $yqf,($a;,8y,,N",))

)f1($al,$yl,Nz))f2($b Ny . Sdoc sdoe X',

X, /$d°° \xz X, Ny(Xai8 ; F(80) bo"ok N',(X; 85 i (8D | N"z(>:"2§:b§l?,?
ook s . = })3\ \X'Z N(X8t ;1 fa(80) 20K i
A /\ \ title author year author year X'3/ / ’ \ X",

author year author year title st $a, %y, sa gy

$a, By, $.a' $y' $t

,,,,,,,,,,,,,,,,,,,,,,,, title author year
$t $a, $y,
(c)

Figure 8: (a) after minimization af; (b) after collapsingb’, $b3 in Q- (c) the minimal form

z,y, namely when they are both free in the Xtablegu

While the reducibility of equivalence to containment is

Collapsing them inX means adding the id-based equality self-understood for conjunctive queries and tree patterns
z is y to X. The reason we consider such collapse steps oit is a pleasant surprise for NEXT queries, as this is not
free variables is subtle. The fact th&it has a non-empty true in general for nested OQL queries [18].

set of bindings may say something about the structure o€ontainment Mappings. Next we show how to check the
the XML document which in turn may render the bindings containment ofN¢ n in No nv and vice versa. We will

of variablex reusable to obtain those gf However, for show in Proposition 2 below that containment is equiva-

documents wher& has no bindings, the bindings sfand

lent to finding acontainment mappinglefined as follows.

y may be unrelated. Therefore we need a way to say thdtet N, N’ be two groupby nodes with identical result func-
xz andy have related bindingprovided X has bindings. tions, with associated XtableauX, X', groupby-id vari-
The solution is to add the equalityis y to X (see Exam- able listsG;, G, and groupby-value variable lis@,,, G,,.

ple 4.4).
Equivalence of group-by nodes in a context.After

We omit the result functions from the discussion since they
are identical (modulo variable renaming). A containment

a collapse step ofin_tableau has reduced the Xtableau mapping from/N to N’ is a mappingh from the pattern
X of a groupby nodeV (X; G;; G,; f) into an Xtableau nodes and constants &f to those ofX’ such that

X' by deriving a mappind, it checks the equivalence
of N(X;Gi;Gu; f) to N'(X';0(Gi);0(Go); 6(f)) in the

1. his the identity on constant values.

contextC' provided by the ancestors 8f. This means ver- . for any noden in X, n’s tag is the same as that of
ifying that X and X' produce the same sets of bindings for h(n). _ _
the variables of the groupby lists when the bindings of their 3. for any /-edge» — m in X, there is a /-edge — v

free variables are provided by the contéxt The func-

in X' such that the conditions iX’ imply the value-

tion min_tableau reduces the problem to checking contain- based equality ofi(n) with « and ofh(m) with v (by
ment of nodes without free variables (i.e., to equivalence reflexivity, symmetry, transitivity, and the fact that id-
of nodes in the absence of any context) and then solves the equality implies value-equality?.

latter.

The reduction proceeds as follows: Let the contéxte

4. for any //-edgen — m in X, there are edges (regard-
less of their typey; — t1, ..., s, = t, in X', such

the list N, ..., N2 of N's ancestors. LelN¢ y be a new that the conditions iX’ imply the value-based equal-
groupby node. Its groupby-id and groupby-value variables ity of ¢; with s;;; (forall 1 < < n — 1), of s; with

are the list of all group-by variables &f,..., N% N. Its h(n), and oft,, with h(m).

result function is the same &€'s. Its Xtableau is obtained 5. for each equality conditioneq y in X (z,y are vari-
by merging the Xtableaux a¥y, ..., Ny, N (put together ables or constants)(z) eq h(y) is implied by the
all nodes and edges). Analogously, defiie y-. Then the conditions ofX'. Analogously forz is y.

following holds: 6. the value-based equality of vectdr&s,) and G, is
Proposition 1 Group-by nodesV and N’ are equivalent implied by the conditions iX".

in contextC if and only if the sets of bindings of the 7. the id-based equality of vectok$G;) and G}, is im-
groupby variables ofN¢,y and N¢ n+ are contained in plied by the conditions i

one another.

4[18] does show however that equivalence reduces to conéainfor

EXAMPLE 4.2 By Proposition 1, the correct- nested OQL queries whose output is a VERSO relation [1]. rfistout

ness of the collapse step b’ into $b3 in Ex-

that there is a close relationship between VERSO relatioms NEXT
queries: If we neglect the result functions of the groupbglesoand sim-

ample 4.1 reduces to the equivalence of groupbyy output tuples of bindings, the resulting nested refaima VERSO

nodes Nt vy (N1#No; $6'; $a1, $y1; f2($0', N3))

and Nyt n; (N1 #Ny; 8b3; $a1, $y1; f2(8bs, N3)). Here

relation.
5Checking that a certain equality is implied by the condiion X’
can be done in PTIME. It simply involves checking the membigrsf the

Ni, Ns, Ny refer to Figure 8, andX#Y denotes the equality in the reflexive, transitive closure of the eqimsditin X’ (which

Xtableau obtained by merging XtableadxandY . o

is PTIME-computable).

The difference between the tree pattern containmenby collapsing$s; into $b, in both versions ofVj. Since
mappings from [21] and the ones defined in this work isin both versions these variables are fre\ify this means
that the latter were designed to help reasoning about equakdding the id-based equalifip; is $b, to Nj. This step
ity conditions, which are not allowed in tree patterns. Forin turn enables the collapse of all remaining nodes from
example, the intuition behind clauses 3. and 4. is thatV} into nodes fromV,, leading in both cases to the same
whenever two XML nodes are equal (by value or id), sominimal NEXT query having a nod&} with an empty
are the subtrees;, T rooted at them, so any path Xtableau. o

has a correspondent 3. 2. The CCC minimization algorithm applies directly

EXAMPLE 4.3 Continuing Example 4.2, the mapping also to querie§) containingx-labeled pattern nodes or id-
defined ash — ($bs > SV, Sar S Sy based equality conditions. However, Theorem 4.2 fails in

$y',8a' — $a’,%y' — 8y'} is a containment map- itgisggaee’ i}g.sitdhjaalllgeo(;:tlwrgargf)rqg\?it];utlilt})/nmigumt- sol?/\{/j}\lll-an
ping from Ny n;(N]#Nj; 8bs; $as, $y1; f2(8bs, N3)) 9) » 9 : X y
: P D ; other NP algorithm, unlesBY = NP, for the following
into N n, (N1#N2; 8b'; 8aq, 8y1; f2($b', N3)). Here the reason. The complexi . .

; ,) f o . plexity of checking for the containment
equalityh($a1) eq h($a’) becomessa’ eq $a', which is

vially imolied by the reflexivity of i mapping is NP-complete in the number of variable nodes
trivially implied by the reflexivity of equality. ° in the Xtableau. [10] shows that even for XQueries with-

out nesting, but allowing either navigation to descendants
and children of unspecified tag name, or id-based equality
checks, equivalence B5-complete. It follows that even

By Propositions 1 and 2, all the CCC algorithm has to doif Nc,a, Nc,g' are equivalent, the existence of the con-
to check the equivalence of noddsand N’ in contextC tainment mapping is not necessary, i.e. tmdy if part
is to find containment mappings in both directions betweerPf Proposition 2 fails. Consequently, the CCC algorithm
Ne,n and Ng nv. In fact, the nature of the collapse op- might wrongly conclude that the collapse step leading to
eration guarantees the existence of a containment mappi@' is not equivalence preserving, and discard it.

from N¢,y to No n:. Hence only the opposite mapping ~1om Logical NEXT to Functional NEXT. Notice that
must be checked. the translation of the logical NEXT output by the minimiza-

In the extended version [9], we prove: tion algorithm into a functional NEXT must deal with a
subtlety that minimization may have introduced: the trans-
Theorem 4.2 Let Q be a NEXT query. Then (a) the CCC lation of a groupby nodéV with a free variablesr. Two
algorithm finds the minimal fori/, and (b)) is reached cases may arise. Firsy may be among the groupby vari-
regardless of the order of collapse steps. o ables of some ancestor groupby ndde&(e.g. in the NEXT
query from Figure 8 (c)$b3 appears in the groupby list
Remarks. 1. Note that collapse steps are quite dif- of N/, and free inN}). Then in the translation oV we
ferent and more complex than the basic step used in tresimply refer to$r, using it as a free variable. Secorid,
pattern minimization, namely simply removing a variable may not be in any groupby variable list (e.g. variabbg
node. This complexity is unavoidable: see Example 4.4s free in N4’ and not in any groupby list for the query in
for a non-minimal NEXT query for which, if instead of Figure 8 (c)). Then denote withV® the groupby node in
collapsing nodes we only try removing them, no removalwhich $r is bound (V} for $bs in our example). The indi-
is equivalence preserving and we cannot modify the origvidual bindings for$r are collected in the nested relations
inal query at all. Moreover, for the same query, if we do created byN?’s groupby operation. To access these bind-
not collapse variables that are both free in a groupby nodengs, we add to the groupby construct in the translation of
confining ourselves to pairs with at most one free variable N@ the clausénto $L, with $L a fresh variable binding to
we cannot reach the minimal form, and for two distinctthe list of bindings offr. Now in the translation oV we
sequences of collapse steps, we obtain two distinct, noradd the loogor $r in $L/tuple/r. The query in Figure 8
minimal queries. (c) translates to (X3).

EXAMPLE 4.4 Considerthe NEXT query in Figure 9 (a), R .
where N, is a child of N7 in the groupby tree. The navi- 5 Minimization Implementation Issues

gation in N, binding variable$bs can reuse fromiV; ei- The implementation of the minimization module sheds
ther the navigation fo$b, or that for$b,. We thus have a light on the cost of applying minimization and on the ben-
choice of collapsingbs into $b, and therfys into $y, and efits of minimization in XQuery processing. The former
$ps3 into $p,, obtaining the NEXT in Figure 9(b). Alterna- was not a priori clear, since the CCC algorithm is based on
tively, we can collapséb; into $b; and ther$as into $a; repeatedly finding containment mappings, a step thatis NP-
and$ys into $y1, obtaining the NEXT query in Figure 9(c). complete in the general case. Notice that, in special cases
In both cases, there are no more equivalence preserving calkthen there are no equality conditions and no wildcard child
lapse steps that involve at least one free variable, and tve gaavigation is allowed, the pattern of a NEXT query degen-
“stuck” with either of the NEXT queries, depending on the erates to the simple tree patterns of [3] for which contain-
initial collapse choice. However, note that we can continuament is in PTIME.

Proposition 2 N¢, n is contained inN¢, - if and only if
there is a containment mapping fraNy -+ to No v

Ny(X,; 1$a,, $p,if,) N,(Xi$b5; if) Ny(X;; ;$a,, $p,if,) N'o(X'5;8b,; 3 5)
Xl

N'p(X'58by; if5) Ny(Xy; i8ay, $p,ify)

% $doc X,
book book book
$b, $b, $b,
author year year price author year year price
$a, By, oo 3y, $p, $a, Sy, e——o%y, $p, (S | | $p, Sa, Sy, e

(@) (b) (€)
Figure 9: Query with two distinct partial minimized forms

Most importantly, the join ordering and pushing of projec-

$doc $doc tiqns are chosen acco_rding to Yannakak_is’ al_gorithm ap-
book bollok plied to the acyclic conjunctive query obtained if we ignore
tﬁb% $b, equality conditions inV; [12]. This approach results in a
author year [running time ofO(|Na|? x |Ny|) if there are no equality
$az Sy» mét;fr conditions inN; (where|N| denotes the number of pattern

nodes in the Xtableau d¥)®. Moreover, it performs very
; . g ; . @ well in practice in the general case. Our experimental eval-
Figure 10:No(Xai; 80z f2) Figure 11N (Xu; 5 8as; f1) uation shows that queries with up to 15 nesting levels and
We came up with an algorithm that behaves optimally271 path (_expressions are minimized in less than 100ms.
on every input. The a|gorithm is based on the key Obserour eXperlmental evaluation shows that such added opti-
vation that finding a containment mapping from groupbymization cost is clearly less than the benefit we obtain in
node N; to groupby nodeV, can be reduced to evaluat- query execution. _
ing a booleamelationalquery obtained fronV; on a small Note that in the CCC algorithm, the roles 8, N,
database computed fraiVy. This allows us to exploit stan- are played by the querieSc, v, respectivelyNc, n+ from
dard relational optimization techniques. In particulae t Proposition 1 , which change at every iteration, Bg,
relational query corresponding to a simple tree pattern i&nd My, must be repeatedly recomputed. The most ex-
acyclic This class of queries can be evaluated in PTIMEPensive operations are those of recomputing the equiva-
in the size of bothV; and N, according to Yannakakis’ lence classes of variables, and the transitive cloBU&y, .
algorithm [12]. We illustrate the reduction on an example. Fortunately, this does not have to be done from scratch if

) _ we recall that at every iteration, the Xtableau is changed
EXAMPLE 5.1 Consider two NEXT queriesQi, @2

; by a simple collapse operation. We chose the following
whose groupby trees consist of one node eaGhrespec- gata structures which are easy to incrementally maintain

tively N> shown in Figures 11 and 10. We do not specify yjih respect to collapse operations. For every Xtableau,
the result functiongs, f; as they are ignored when check- keep the equivalence classes of variables in a union-
ing for containment mappings. We represitinternally finq data structure, so whenever nadés collapsed into
as the relational “frozen” databagky, below, constructed m, we simply union the class of with that ofm in con-

in the spirit of [26]: we create a special constaniepre- giant time.RTCy is represented as an adjacency matrix in
senting the equivalence class of variablewith respectto \yhich RTCy/[z][y] = 1 if and only if y is a descendant of

the \gl_ulea-based equ,\?li;y condi}\ilogsga. - = in the tree pattern oN. Whenn is collapsed intan,
| 1dw, | sourceNode) targethNodeTag, targetiode we setRTCy[n][m] =RTCy[m][n] = 1 and recompute the

ba author az - VL o .
i year Z% transitive closure by multiplyin@TCy with itself until we
Desc x, SourceNode| targeiNodeTag] targetNode reach a fixpoint (guaranteed to occur in at mogt| V| it-

doc book b erations, but much earlier in practice because of the small

We also add relatioRTCy, containing the reflexive, tran- incremental change).
sitive closure of the union athi | d, andDescn,. We .
translateN; to the query 6 Conclusions and Future Work

We described the NEXT generalization of tree patterns,
which enables logical optimization of XQuery and demon-
strated its value by developing an effective technique for
minimization of nested XQueries, which removes redun-
dancy across and within subqueries. A key ingredient of
We emphasize thatly, in the above example is shown NEXT is the groupby operation, which reduces mixed

for brevity in conjunctive qL.jery s_yntax bu.t It is Imple? 6\We make the standard assumptiorQyfl) for indexing into the hash
mented as an operator tree, in which selections and projegspie when joining. Otherwise, an additioriaks |No| factor must be
tions are pushed and joins are implemented as hash joinsounted for sort-merge join.

My, () « RTCp, ($doc, book, $b1), Child y, (8b1, author,az)

Clearly, there is a containment mapping fravi into NV,
if and only if My, returns a non-empty answer @y, . ¢

(bag and set) semantics to pure set semantics that providéen algorithm (e.g., extra minimization can be achieved
the typical framework for logical optimization such as min- by algorithms that understand the semantics of aggrega-
imization. Furthermore, it enables consolidation of altna tion functions.) Nevertheless, the minimization algarith
igation in the XTableaux. The provided rewriting rules re- can be applied to the NEXT subexpressions of NEXT+
duce any query from the OptXQuery subset of XQuery intoqueries and guarantee their full minimization (which, as
a NEXT. said, does not imply the full minimization of the NEXT+
The minimization algorithm also capitalizes on the query). Space constraints relegate this discussion to the
groupby of NEXT, which allows the navigation per- full paper [9]. o
formed on a nesting level to reuse the navigation performed Looking beyond minimization, we plan to employ the
on higher levels. In addition, our minimization algorithm NEXT notation to address , in the context of our media-
went fundamentally beyond prior minimization algorithms tor efforts (which include the Local-As-View approach), an
for tree patterns and conjunctive queries by introducing @nswering-queries-using-views algorithm for XQuery.
new type of minimization step, callenbllapsing The col-
lapse steaddsto a subquery identity-based equality con-7 Related Work
ditions between its variables to state that their bindings a))
the same. Prior algorithms ontgmovevariables [3, 23]. There is an extensive body of work on nested query
The removal step alone turns out to be insufficient foroPtimization, for relational (SQL) and object-oriented (
nested XQueries, as removal-based techniques not only f&@QL [4]) queries. See [6], respectively [8] and the ref-
to find a minimal form, but depending on the application or-erences within. For both OQL and SQL, the main ef-
der, they yield several distinct queries, each non-minimalfort is that of unnesting nested queries (merging query
Indeed, we prove the existence of a unique minimal formPlocks), not their minimization. The group-by operation
for any NEXT query and show that our algorithm is guar- 1S crucially exploited to this end, by evaluating a nested

anteed to find it regardless of the order in which it appliesduery using an outerjoin followed by a group-by operation.
collapse steps (Theorem 4.2). See [16, 13] for the relational query evaluation, [8] for the

object-oriented case, and [20, 24] for XML query evalua-
tion. Such rewrites have only limited applicability when

E?T(pQIEger’ Vs\lhr:(;rs]t:fl noa?gi:'?:rse ((S:'n(;i)eyoeiﬂsmvbm?cﬁbsrfgcgag and set semantics are mixed [22] or the nesting occurs
y 9: y cy J ' in the sel ect clause. Our techniques succeed in these

can write using XPath predlcates, increase the Corm:)lexs'ituations. One of our rewrite rules introduces group-by
ity of minimizing XPath expressions described by tree pat- . : o
terns from PTIME [3, 23] to NP-hard [10]. Our minimiza- operations with everfor loop, exploiting the well-known

tion algorithm behaves optimally on every input: it runs in fact that thedistinct-values operation is a special case of
PTIME if the tree patterns have no cyclic joins and in NP in group-by [6]. Another common fact we exploit was recog-

the presence of cyclic joins. As shown by our experimen-mzed in [22], namely that quantifiers are not affected by du-

tal evaluation, even in the NP-complete case optimizatiorPlicates' There is an interesting duality between our tech-
time is low (below 100ms for queries with up to 15 nestingnlque and the generalization of predicate pushdown [26]

levels and up to 271 path expressions, as explained in thtO nested (SQL) queries in [17]. The latter pushes con-

; : : ditions from thewhere clause of a query into its nested
duices e exponentialto an approximation ofthe ree wiarFLDIUeres: OUr techigue puly 100ps up from nested
of the query [12] (small in practice), as opposed to the num. ueries. EX|_st|ng aIgont_hms for th(_a minimization of tree
ber of navigation steps (may by ve’ry large in practice) Wepatterns consider no nesting, no arbitrary joins, and agtly s
) AP ' __“semantics [3, 23]. Group-by detection is particularly im-
incorporated minimization in our NEXT XQuery processor

and provided experimental data points that prove the bengortantgn XQuery, wgtzre surfatl:e sgnt_ax doe_s_ noft mcl:de a
eficial effect of minimization on the total execution time. 3 ooP- y construct. [24] uses algebraic rewriting for adst

Due to space constraints, the experimental evaluation is relenes that perform grouping. Our algorithm solves this

; . . . problem as a special case of minimization. [7] is the first
Fg\/rifv?/é?’;hcec)zi/l:aﬂipnecréand included in Appendix 5 for theWork that introduce&eneralized Tree Patterns (GTRBat

o o ~ model nested queries and reduce the problem of evaluat-
NEXT normalization and minimization can be used in ing a nested query into one of finding matches for its GTP.
any XQuery processor, regardless of its underlying execum addition, [7] shows a translation of GTPs to a physical
tion model, as long as it supports an OQL-stgleupby plan algebra, which we have adopted, with minor modi-
operator. fications. There is an interesting correspondence as well
An extension of NEXT, called NEXT+, allows the nor- as subtle differences between GTPs and NEXTs and the
malization of arbitrary XQueries, which may be outside thecorresponding modules, stemming from NEXT’s orienta-
OptXQuery set, into NEXT+ queries. Guaranteeing full tion towards problems such as minimization and answering
minimization for NEXT+ is either impossible (e.g., it is queries using views. First, we make a distinction between
straightforward to show that no algorithm can guaranteeoptXQuery/NEXT and full XQuery/NEXT+. OptXQuery
the full minimization of XQueries involving negation) or scopes the area where minimization (and, we conjecture,
requires various extensions to NEXT and the minimiza-answering queries using views) is guaranteed to find opti-

Minimization of queries from our XQuery subset is NP-

mal plans. OptXQuery/NEXT omits XQuery features that[12] J. Flum, M. Frick, and M. Grohe. Query evaluation vietre
make minimization undecidable (e.g., negation and univer-
sal quantification) or too complex (e.g., aggregate func-

tions). Such features are allowed in NEXT+, where we dg13]

not guarantee optimality of the resulting plan. Finallyteno

we have introduced a distinction between grouping—by—id{14]

and grouping-by-value since we find multiple aggregation
examples in mediation. (A similar extension for [7] is pos-
sible.)

[25] addresses minimization of nested XQueries in thes)
context of Peer-to-Peer systems, where scalability is an
acute problem. They develop a PTIME algorithm, trad-
ing completeness of minimization for scalability. The algo

rithm is incomparable to ours: on one hand, it changes the)) L
17] A.Y. Levy, I. S. Mumick, and Y. Sagiv. Query optimizatio

structure of the group-by tree, which we do not do, as w
treat result functions as uninterpreted. On the other hiand,

only minimizes the nested subqueries in the context of theit18]
ancestor subqueries, but it does not attempt to reuse the
navigation of the ancestors. No grouping is used, and th§l9]
only step considered is removal of variables, which leaves
even the simple XQuery from Example 1.1 unchanged. The
key to our technique’s success is precisely the sophisticat [20]
collapse step which goes beyond node removal, as well as

the essential use of grouping.

References

[16]

[21]

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases Addison-Wesley, 1995.

[2] A.V.Aho, Y. Sagiv, and J. D. Ullman. Efficient optimizati
of a class of relational expressions (abstract)SIBMOD,
1978.

(3]
vastava. Minimization of tree pattern queries.SIGMOD,
2001.

R. G. G. Cattell, editor. The Object Database Standard:
ODMG-93 Morgan Kaufmann, San Mateo, California
1996.

[5] Ashok Chandra and Philip Merlin. Optimal implementatio
of conjunctive queries in relational data bases. SIHOC
1977.

(4]

(6]
tional systems. 1fPODS 1998.

[7] Z. Chen, H. V. Jagadish, L.Lakshmanan, and S. Papariz

[22]

(23]

S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Sri- [24]

+ [29]
[26]

[27]

S. Chaudhuri. An overview of query optimization in rela-

0428]

From Tree Patterns to Generalized Tree Patterns: On Effi-

cient Evaluation of XQuery. IWLDB, 2003.

(8]
In DBPL, 1993.

S. Cluet and G. Moerkotte. Nested queries in object bases[29]

[9] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT

Framework for Logical Query Optimization (Extended Ver- [30]
In http://www.db.ucsd.edu/People/alin/papers/vidb-

sion).
2004-full.ps

A. Deutsch and V. Tannen. Containment and integrity-co
straints for xpath fragments. KRDB, 2001.

[10]

[11] S. Flesca, F. Furfaro, and E. Masciari. On the mininizat

of XPath queries. IWLDB, 2003.

decompositions. In Jan Van den Bussche and Victor Vianu,
editors,ICDT, 2001.

R. A. Ganski and H. K. T. Wong. Optimization of nested
SQL queries revisited. IBIGMOD, 1987.

H.V.Jagadish, S.Al-Khalifa, A.Chapman,
L.V.S.Lakshmanan, A.Nierman, S.Paparizos, J.Patel,
D.Srivastava, N.Wiwatwattana, Y.Wu, and C.Yu. Timber:a
native xml database/LDB Journal 11(4), 2002.

H. V. Jagadish, Laks V. S. Lakshmanan, D. Srivastavd, an
k. Thompson. Tax: A tree algebra for XML. DBPL, 2001.

W. Kim. On optimizing an sql-like nested querffTODS
7(3):443-469, 1982.

by predicate move-around. WLDB, 1994.

A.Y. Levy and D. Suciu. Deciding containment for querie
with complex objects. 1fPODS 1997.

I. Manolescu, D. Florescu, and D. Kossman. Answering
XML Queries on Heterogeneous Data Sources.VLIDB,
2001.

M.Carey, J. Kiernan, J. Shanmugasundaram, E. Shekith,
S. Subramanian. XPERANTO: Middleware For Publish-
ing Object-Relational Data as XML Documents. \hDB,
2000.

G. Miklau and D. Suciu. Containment and equivalence for
an xpath fragment. IRODS 2002.

H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensi-
ble/rule based query rewrite optimization in starburst. In
SIGMOD, 1992.

P. Ramanan. Efficient algorithms for minimizing treétpen
queries. INSIGMOD, 2002.

S.Paparizos, S. Al-Khalifa, H.V. Jagadish, L. Laksimaya,
A. Nierman, D.Srivastava, and Y. Wu. Grouping in XML. In
EDBT Workshop on XML Data Management (XMLDM’02)
2002.

I. Tatarinov and A. Y. Halevy. Efficient query reformtilan
in peer-data management systemsSIGMOD, 2004.

J. D. Ullman. Principles of Database and Knowledge-Base
Systemsvolume 2. Computer Science Press, 1989.

W3C. XML Query Use Cases W3C Work-
ing Draft 15 November 2002. Available from
http://ww. w3. or g/ TR/ xm quer y- use- cases/ .

W3C. XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C Working Draft 12 November 2003. Available from
http://ww. w3. or g/ TR/ xpat h-f uncti ons.

W3C. XQuery 1.0 Formal Semantics. W3C
Working Draft 07 June 2001. Available from
http://ww. w3. org/ TR/ query-senantics/.

0] W3C. XQuery: A Query Language for XML.

o (31

W3C Working Draft 12 November 2003. Available from
http://ww. w3. or g/ TR/ xquery.

Y.Papakonstantinou, M. Petropoulos, and V.Vassalos.
QURSED: querying and reporting semistructured data. In
SIGMOD, 2002.

