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0 Introduction

This paper has three main sections, corresponding to three different kinds
of contribution to Dagstuhl Seminar 04391, called Semantic Interoperabil-
ity and Integration, and held from 20 to 24 September 2004. These sec-
tions respectively concern: (1) a brief sociology of a science lab, exploring
the goals and methods of a particular group of potential users of tech-
nology for integration and interoperability; (2) mathematical foundations
for information integration, based on ideas from category and institution
theories; and (3) tool support for information integration, with an em-
phasis on mapping tools. The final section gives some conclusions, and
the appendix contains some mathematical details for the second topic.

One of the more striking observations a sociologist might make about
this seminar, and the field it addressed, is that a great diversity of disci-
plines are involved. On this occasion, perhaps the most prominent were
artificial intelligence, databases, and semantic theory, all from within com-
puter science, although perspectives from philosophy, mathematics, engi-
neering, and commerce were also represented. This diversity is natural,
given the broad and pervasive nature of the subject addressed, namely the
integration of information. The topic is timely, given the recent explosion
of the world wide web, as well as important, given the ever increasing
dependence of society on information technology, and the ever rising ex-
pectations for what it can accomplish. On the other hand, the systematic
study of the issues involved is in its infancy. The thoughts that follow are
attempts to understand such problems, more explorations of unexpected
connections than final reports. Nevertheless, I hope they may be of value
as orientation for future exploration.
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term ecological research community. Thanks to Grigore Rogu and Rizvan
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1 Sociology of a Science Lab

This section is a digest of my contribution to a panel on light weight versus
heavy weight approaches to information integration. I thought it would
be valuable to see what “light” and “heavy” might mean to a particular
user group, in view of their goals and methods, as a way to address what
technologies we should be trying to develop. An important caveat is that
user goals and methods, as well as the technologies that they currently
use, vary greatly from one group to another; what follows is just one case
study among many that are possible, and different groups are likely to
yield different results.

Despite my reputation as a formalist, I am also very interested in social
aspects of information technology, and my brief panel presentation was
conceived in the spirit of sociology of science and technology. Although I
am not a professional in this area, I have had the benefit of working with
Geoff Bowker and Leigh Star, whose book [6] I highly recommend for its
fascinating treatment of classifications and standards.

I have spent time talking with and observing ecologists in the SEEK
project, with which I am affiliated, and these remarks are based on this
experience. Scientists in general want to control the data they use, to get
it all in one place, clean it, get consistent formats, units, annotations,
etc. Much information (probably most) is in spreadsheets and structured
files, not in XML or relational databases; metadata is informal, it it exists
at all. Processing is done in the simplest possible way to achieve a given
goal, e.g., using Perl scripts, standard statistical tools, and specific models
developed (often in the same lab) for the particular experimental situation
at hand. There is much more interest in workflows than in ontologies, but
only in an informal, quick and dirty, sense. Scientists want to do science,
to establish and publish their results with as quickly as possible, since
they are often in competition with others.

Scientists doing long term ecological research face particularly difficult
problems in data integration, since the horizon for meaningful results is
at least 30 years. My panel presentation described two examples of data
integration, in colorful stories about difficulties arising in reconciling old
data with current data, one about soil samples, and the other about
taxonomic systems. The latter turn out to be much more complex than



I had imagined, subject to debates among specialists that appear both
arcane and intense to outsiders.

A topic alluded to in my presentation that I would have liked more
time to develop, is the nature of information. Computer scientists often
assume that information is stable, objective, and determinate. But stud-
ies of what happens in real science labs suggest a very different view,
of work that might be called “information manufacture,” which is pro-
cess oriented, highly social, and often indeterminate. These points are
well supported in a famous study by Bruno Latour [36] based on field
work from 1975 to 1977 in the Guillemin lab of the Salk Institute. Similar
points about ontologies are raised in [23], drawing on phenomenology, eth-
nomethodology, cognitive linguistics, and psychology, as well as sociology
of science; [18] gives a more theoretical perspective.

2 Foundations of Information Integration

This section summarizes an effort to provide a rigorous foundation for
information integration that is not tied to any specific representational
or logical formalism, by using category theory to abstract away from par-
ticular representations, and institutions to abstract away from particular
logics. The main reference for this project is [22], from which much of the
material below is taken. The approach is motivated by the multitude of
representation schemes and logics used for computer-based information.
For example, data may be in a spreadsheet, ascii file, relational database,
XML file, etc.; with luck, there may be some “metadata” describing the
structure of the data, e.g., an XML Schema for XML data, but in practice
this is often missing.

Metadata generally consists of syntactic declarations plus axioms over
those declarations, forming what we call a theory. There is a growing
tendency to express metadata in a formal logic, but the variety of different
logics can greatly complicate integration, since we must deal not only with
the structure of representation, assertions about what is represented, and
the data itself, but also with the logics in which the metadata is expressed.
Category theory provides a language that supports the necessary level of
abstraction, and the following assumes some familiarity with its basics;
there are many places to learn such material, such as [42, 30, 16, 17]; also,
the appendix to this paper includes a very condensed summary of some
main definitions.

Unfortunately, there is currently no easy introduction to institutions,
although a brief intuitive introduction is given in Section 2 of [22], and



an exposition without category theory is given in [29]'. Institutions ax-
iomatize the notion of logic, by abstracting and generalizing Tarski’s “se-
mantic definition of truth” [45]. An institution consists of a category of
signatures (for syntax declarations), sets (or categories) of sentences over
those signatures, categories (or sets) of models over those signatures, and
a relation of satisfaction between sentences and models. Parameterization
by signature is functorial, and allows examples where part of a situation
is fixed while another part can vary, e.g., the function symbols used in
equational logic vary, while the logic remains fixed?. The basic reference
for institutions is [25], and the latest version is in [28], which focuses on
variants of the institution morphism notion.

Many logical systems have been shown to be institutions, including
first order logic, many sorted equational logic, Horn clause logic, many
variants of higher order and of modal logic, and much more; it seems
that essentially any logical system has a corresponding institution. An
impressive number of deep model theoretic results have been extended
from first order logic to arbitrary institutions by Diaconescu, e.g., [8].
Till Mossakowski [38] has built a theorem proving system that works
over a variety of institutions, and so can be used for proving properties of
heterogeneous theories, building on Diaconescu’s Grothendieck institution
construction [8], which is also applied to ontologies in [21, 22].

The greater generality of institutions over classifications, local logics,
concept lattices, concept graphs, etc. allows doing information integration
over arbitrary logics. For any institution, a set of sentences over a com-
mon signature is a theory. As discussed in [25, 15], and other publications,
colimits enable powerful methods for structuring and combining theories,
including inheritance, sums over shared subtheories, renaming parts of
theories, and (best of all) parameterizing and instantiating theories. This
goes far beyond the (generalized) Boolean operations of [11] and [44];
moreover, it provided the basis for the powerful module system of the
ML programming language, though ML does not have all the functional-
ity that is defined in [15] and implemented in the OBJ languages under
the name “parameterized programming”; these ideas also influenced the
module systems of C++, Ada, and LOTOS.

! The aim of this paper was to give semantics for a powerful extension of the Ada mod-
ule system; however, the technical work of that paper is significantly more complex
than it would have been if categorical language had been used.

2 This can be considered a instance of the triadic notion of meaning advocated by
Charles Sanders Peirce in his semiotics [41].
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Applications to ontologies, e.g., in [3, 31, 35, 34|, were a major mo-
tivation for [22], which generalizes and extends the information flow and
channel theories of [2] using the language of institutions, and follows [33]
in combining this with formal conceptual analysis [11] and the lattice of
theories approach [44], based on the Galois connection that exists be-
tween theories and models in any institution. In addition, [22] draws on
the categorical general systems theory of [12, 13], and provides several
new formalizations of database systems as institutions.

A useful notion from category theory is that of a relation in a cate-
gory C: it consists of three objects, say A, B, R, and two morphisms, say
p1: R— Aand ps: R — B. One can think of R as containing pairs (a, b)
with a € A,b € B, and of p1,py as projection maps. The usual calculus
of relations lifts to this very general setting, with modest assumptions
on C, by defining a composition of relations using pullbacks. Then as-
sociativity of composition follows, and converse, union, intersection, etc.
can be defined, and have their usual properties. The join of relations in
database theory is a special case. Binary relations generalize to polyadic
relations, which are families p;: R — A; where ¢ ranges over some set I,
and one can again prove soundness of laws given in various axiom systems
for polyadic relational calculus.

There is a dual notion of co-relation, consisting of three objects
A, B,C and two injection maps, fi: A — C and fo: B — C. These
also generalize to the polyadic case, as families f;: A; — C, giving rise
to a calculus of co-relations that is dual to but less well known than
that for relations. One of the most basic concepts in [2], the channel,
is a co-relation, f;: A; — C for ¢ € I, in the category of classifications
and infomorphisms, with C called its core. Looking at only the tokens, a
channel yields a relation that “connects” each token c in its core to the
tokens f;(c) in its components A;. A “cover” of a diagram is defined in [2]
to be a channel over that diagram such that every triangle formed by an
infomorphism in the diagram and the two injections, from its source and
target, commutes. This is exactly the categorical notion of a co-cone,
for their special case; similarly, the “minimal covers” of [2] are colimits,
although [2] uses the term “limit”, perhaps because the tokens are more
concrete than types3. Category theorists do not use the term “core,” but
often use the term apex for both relations and co-relations.

Co-relations (perhaps with shared subobjects, as discussed below) ap-
pear in local-as-view integration in database theory [7], blending in cogni-

3 The categorical notion of limit is also of interest; for example, joins in relational
databases are limits.



tive linguistics [10], channels in information flow [2], module composition*

in programming [29], user interface composition [20], and merging differ-
ent versions of software. The dual global-as-view approach to database
integration can also be formulated as a co-relation; it is less general, but
more efficient for query answering. In concrete cases, a co-cone gives rise to
a partial map between the input spaces, connecting those elements map-
ping to the same element under the injections; this “emergent” partial
map is what most schema and ontology mapping tools seek to construct,
and it is also an important aspect of the theory of metaphor developed in
cognitive linguistics [10]. Computer scientists have used the terms “align-
ment” and “articulation” for this process, but the relation to more general
notions of integration (for which terms like “fusion,” “merging” and “rec-
onciliation” have been used) has remained somewhat mysterious.
B

RN

Fig. 1. Integration over a Shared Subobject

Many information integration problems have material which is known
to be shared among some objects to be integrated, and which should
therefore not appear more than once in the integrated object; Figure 1
shows a co-relation with a subobject G' of shared material. In cognitive
linguistics, such a diagram (though upside down from Figure 1) is called
a “blend diagrams” and its objects are conceptual spaces, which consist
of individual elements, and instances of binary relations between such
elements [9]. For such a diagram, the special colimit called a pushout
gives a blend that is optimal in a certain precise mathematical sense (for
which see Appendix A). This is consistent with the view that co-relations,
co-cones, and co-limits can integrate any kind of object, as suggested in
[12, 17] and later for databases in [1]. However, in many practical sit-
uations, it is unrealistic to expect this kind of optimality; factors that
complicate real integration problems include incomplete information, in-
consistent information, different levels of certainty and granularity of in-
formation, and different goals for the result of integration. Moreover, the
objects that result from pushouts are unique up to isomorphism, whereas
integration can often be done correctly in more than one way.

4 Especially the instantiation of generic or parameterized modules, the best known
examples of which are the “functors” of the SML language [46].



For this reason, pragmatic optimality criteria like those used in cog-
nitive linguistics [10] may be more appropriate than the so-called univer-
sal properties that characterize colimits. However, the optimality princi-
ples in chapter 16 of [10] are too informal to be implementable, which is
why the poetry generation system developed by Fox Harrell with the au-
thor [27] uses purely structural optimality principles that formalize only
some aspects of those in [10]. In addition, analysis in [27] of poetry of
Pablo Neruda found some particularly creative blends for the generation
of which the conceptual blending algorithm of [27] would need optimal-
ity criteria actually opposite to those of [10]; one such is the phrase “a
water of beginnings and ashes” at the end of the first stanza of Walking
Around, which blends elements having very different types, and thus re-
quired (what in programming language theory is called) “type casting.”
Similarly, the Duino Elegies by Rainer Maria Rilke contains phrases that
blend elements from very distant domains, such as “the cheap winter hats
of fate” in the fifth elegy.

Another problem with [10] is that it does not provide principles for
selecting domains and their conceptual subspaces for blending during the
process of understanding (or generating) some piece of language or ex-
perience. A different approach from that of [10] calls for assembling a
network of spaces such that the network and its blend are as simple as
possible according to some (socially determined but) precise criteria. This
approach has been successfully applied to music in work at UCSD with
David Borgo [4, 5], using a hierarchical minimum complexity information
theory [14] to measure the simplicity of the network of selected spaces
and its blend.

The systems described in [27] use the formalism of algebraic semiotics
[19], which combines ideas from algebraic specification and social semi-
otics, and which generalizes the conceptual spaces of cognitive linguistics
to semiotic spaces, by adding types, functions and axioms. A key idea in
this approach is to formalize the intuitive notion of a representation of
one system of signs by another system of signs as a morphism of semiotic
spaces; combined with the methodological principles of viewing user in-
terfaces as such representations, and viewing design as involving blending,
this gives a powerful set of tools for the design and analysis of user inter-
faces. The algebraic semiotics notion of blending generalizes colimits by
including ordering relations on the semiotic morphisms between two given
spaces, based on their quality as representations [19]; see the appendix of
this paper for formal details, which include %—colimits and %—categories.
This approach supports a great variety of optimality principles, by choos-



ing different ordering relations on morphisms, and it has been applied to
a number of problems in user interface design [19, 20, 24, 26].

3 Tools for Information Integration

A great deal of sophisticated research has been done on integration in
the database community, including semantic theory, tool building, and
experiments with real data and users (see [32] for a survey). The local-as-
view approach is a co-relation in a category of schemas and views, where
the apex is the schema of a global (virtual) database which integrates the
information in the local databases which map to it. Queries are posed
over the global schema and translated into local queries, the results of
which are integrated to form an answer to the original query. Since this
requires views from the global to the local schemas, much effort has been
devoted to schema mapping tools, which help to construct these views
(see [43] for a survey). One such tool, called sciA, has been designed and
built at UCSD [21, 39, 40, 47]. Because fully automatic schema mapping
generation is infeasible, this tool tries to minimize total user effort by
identifying critical points, where a small user input can yield the largest
reduction of future matching effort. A major result is that this approach
can significantly reduce total user effort. Other tools only try to find the
easiest 1-to-1 matches, leaving the most difficult matches for the user to
do by hand.

An unusual but important feature of SCIA is its ability to handle se-
mantic functions and conditions, where “semantic function” refers to op-
erations on basic data types, such as arithmetic operations on numbers, or
operations on lists such as head, tail, and append. For example, mappings
between a schema that has first-name and last-name to one that has full-
name will require such functions to pull apart and put together names.
The term “condition” refers to mappings that must do different things
under different circumstances; for example, if one student database puts
majors and non-majors in the same relation, while another puts them in
different relations, then a condition will be needed to map the first to the
second. Most other systems do not treat functions and conditions at all,
or else leave them for a different tool, e.g., view generation.

4 Conclusions

This Dagstuhl seminar, and papers in the related literature, show that
information integration is an important problem, solutions to which are



being actively pursued from very diverse directions, with considerable
excitement and promise, but with relatively little coordination. It will
surely be interesting to see what happens over the next few years, as fur-
ther connections emerge, perhaps as unexpected as those with institutions
and blending that are suggested in this paper.

It is not coincidental that this paper is highly interdisciplinary. Expe-
rience shows that purely technical solutions, based on what it is feasible
and/or fun to do, rarely deliver what users really need. Similarly, ex-
plorations based on mathematical aesthetics often fail to connect closely
with applications; for mathematics to be useful, it should address practi-
cal questions that need to be answered, and for technology to reach real
users, the results of social analyses and mathematical foundations should
be embedded in tools. Such an approach can ignite cycles of improvements
to a technology, its tools, its scientific basis, and the understanding of its
social context; if done sensitively, it can also improve the life quality of
the individuals involved.

A Some Mathematical Details

This appendix gives details of some mathematics mentioned in the paper,
following Appendix B of [19], which was developed with Grigore Rogu and
Rézvan Diaconescu; the proofs in [19], due to Rosu, are omitted here.
Although self-contained, this material may be difficult for readers not
already familiar with category theory. The main intuition is that cate-
gories capture mathematical structures; for example, sets, groups, vector
spaces, and automata, along with their structure preserving morphisms,
each form a category, with the morphisms playing the central role. For
example, theories and their morphisms over any institution form a cat-
egory [25], as do the sign systems and semiotic morphisms of [19, 20];
theory morphisms are translations of conceptual systems, and semiotic
morphisms are representations of signs by other signs.

Definition 1. A category C consists of: a collection, denoted |C|, of
objects; for each pair A, B of objects, a set C(A, B) of morphisms (also
called arrows or maps) from A to B; for each object A, a morphism 14
from A to A called the identity at A; and for each three objects A, B,C,
an operation called composition, C(A4, B) x C(B,C) — C(A, C) denoted
“7 such that f;(g;h) = (f;9);h and f;14 = f and 1459 = g whenever
these compositions are defined. We write f: A — B when f € C(A, B),
and call A the source and B the target of f. O



The following reviews the notions of pushout, cone and colimit, re-
lates them to information integration and blending, and then generalizes
this setup to %-categories, which capture more of the phenomenology of
blending and other complex information integration problems. The intu-
ition for colimits is that they integrate components, identifying as little as
possible, with nothing left over, and with nothing essentially new added
[17]. Thus colimits are a kind of optimal blend; although this kind of op-
timality is not appropriate for conceptual blending, it is nevertheless a
good place to begin our journey.

Definition 2. Given a category C, a V in C is a pair a;: G — I; (i =
1,2) of morphisms, and a cone with apex B over a V ai,ay is a pair
b;: I; —» B (i = 1,2) of morphisms; then a1, a2 and by, be together are said
to form a diamond (or square). The cone (or its diamond) commutes
iff a1;01 = ao;be, and is a pushout iff given any other commutative
cone ¢;: I; — C over ayi,as, there is a unique arrow u: B — C such that
bi;u=c¢; fori=1,2.

A diagram D in a category C is a directed graph with its nodes labeled
by objects from C and its edges labeled by arrows from C, such that if an
arrow f: D; — Dj labels an edge e: i — j, then the source node i of e
is labeled by D; and the target node j of e is labeled by D;. A cone over
D is an object B, called its apex, together with an arrow b;: D; — B
for each node i, called an injection, from each object of D to B, and
is commutative iff for each f: D; — Dj in D, we have® b; = f3b;j.
A colimit of D is a commutative cone b;: D; — B over D such that if
ci: Dy — C is any other commutative cone over D, then there is a unique
u: B — C such that® b;;u = ¢; for all nodes i of D. O

Pushouts are the special case of colimits where the diagram is a V, as
in Figure 1. (There might seem to be a discrepancy in the definitions,
in that pushouts are not required to have an arrow G — B. But when
the diagram is a V, this missing arrow is automatically provided by the
morphism a3;b; = ag;by.) The following discussion temporarily uses the
term blend for commutative diamonds, in order to test its adequacy as
an hypothesis.

There is a short proof that any two colimits of a diagram D are iso-
morphic. Let the cones be b;: D; — B and b,: D; — B'. Then there
are unique arrows u: B — B’ and v: B’ — B satisfying the appropriate

® These equations are called triangles below, after the corresponding three node

commutative diagrams.
6 These equations may also be called “triangles” below.
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triangles, and there are also unique arrows B — B and B’ — B’ satis-
fying their appropriate triangles, namely the respective identities 15 and
1p; but u;v and v;u also satisfy the same triangles; so by uniqueness,
u;v = 1p and v;u = 1pr.

But conceptual blends are not unique up to isomorphism; for example,
the conceptual spaces for “house” and “boat” have 48 blends [27], two of
the more familiar being “houseboat” and “boathouse” [19]. It is shown
in [19] that the “houseboat” blend is actually a colimit, but “boathouse”
is not. Another problem with defining blends to be commutative cones
is that the cones of many blends do not fully commute; for example, the
“boathouse” blend has only one triangle commutative. The following is
one solution this problem: Let the auxiliary morphisms of a diagram
D be a subset the triangles over which need not commute. Removing these
morphisms from D yields another diagram D’ having the same nodes as
D, such that commutative cones over D' are cones over D that commute
except possibly over auxiliary morphisms; moreover, a colimit of D’ is
an optimal such cone over D. This suggests defining a blend to be a
commutative cone over a diagram with its auxiliary morphisms removed;
however, this notion still has the uniqueness property.

L)
7N
L] L]

b3
al bo
[ ] L)
N
[ ]
Fig. 2. Composing Pushouts

An advantage of formalization is that it makes possible stating and
proving general laws, such as that “the composition of blends is a blends.”
The meaning of this compositionality result may be clarified by reference
to Figure 2, in which we assume by, b3 is a blend of a9, a3, and cy,c3 is
a blend of aq, bo, i.e., that as;bs = a3;bs and aq;ca = bo;c3; then the
claim is that co, bs;c3 is a blend of ao;a1, ag, which follows because
ag;a1;ce = ag;bz;cz. Using the notation ag & ag for an arbitrary blend
of a9, a3, we can write this result rather elegantly as

a1 < (az ¢ a3) = (az;a1) < a3z,

11



using the convention that a; < (a2 < a3) indicates blending a; over the
left injection of (ae < a3) (the top left edge of its diamond).

A pushout composition result (proved e.g. in [30, 37]) states that if
b, b3 is a pushout of as, a3, and ¢, c3 is a pushout of a1, by, then ¢y, bs;c3
is a pushout of as; a1, az. If we write as 1 a3 for the pushout of as, as,
then this can also be written elegantly, as

ai < (a2 > a3) = (ag;a1) > a3 .
We can also place a second blend (or pushout) on top of b3 instead of by;
corresponding results then follow by symmetry, and after some renaming
of arrows can be written as follows:

(a1 © ag) © ag =a; < (ag;a3) .

(a1 > ag) X azg=a X (az;ag) .
We can further generalize to any pattern of diamonds: if they all commute,
then so does the outside figure; and if they are all pushouts, then so is the
outside figure”. A related general result from category theory says that
the colimit of any connected diagram can be built from pushouts of its
parts. Taken all together, these results give a good deal of calculational
power for the cone and colimit notions of integration.

We now broaden our framework, motivated by the category of sign
systems with semiotic morphisms [19], which has additional structure over
that of a category: it is an ordered category, because algebraic semiotics
provides orderings on its morphisms by their quality as representations.
This provides a richer framework for considering information integration
in general, and conceptual blending in particular, in which optimality
principles, analoguous to those of [10] but precisely formalized as the
ordering on morphisms, play a central role. Moreover, categorical com-
positionality results about pushouts and colimits extend to %-categories.

Definition 3. 4 g—category8 is a category C such that each set C(A, B)
is partially ordered, composition preserves the orderings, and identities are
mazimal. O

In this context, a somewhat different notion of pushout is appropriate,
and for this notion, the uniqueness property is (fortunately!) lost:

T A special case of this (or more precisely, of its dual) is that the most general unifier
of any finite set of terms can be computed by taking most general unifiers pairwise,
in any order.

8 In the literature, similar structures have been called “one and a half” categories,
because they are half way between ordinary (“one dimensional”) categories and the
more general “two (dimensional)” categories.
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Definition 4. Given a;: G — I; (i = 1,2) and a V in a 3-category C,
then a cone b;: I; — B (i =1,2) over a1, a9 is consistent zﬁ there ezists
some d: G — B such that a1;b1 < d and ao;bs < d, and is a 3 pushout
iff for every consistent cone ¢;: I; — C over a1, aq, the subset

{h: B—C | bl;h <c and bz;h < C2}
of C(B,C) has a mazimum element. O
Notice that if each set C(A, B) is finite (as is usual in computer science
applications) and linearly ordered (which is not unusual), then any non-
empty subset has a maximum element. Figure 2 again may be helpful for
the following:
Proposition 1. The composition of two %—pushouts is a %—pushout. O
However, unlike the situation for ordinary pushouts, the composition of
consistent diamonds need not be consistent, and two different —-pushouts
need not be isomorphic; this means that ambiguity is natural in this
setting. The following is another typical compositionality result:

Proposition 2. If the four small squares in Figure 3 are %—pushouts,
then so is the large outside square. O

d1 do

Ve AN
N A

NN
NJNUA

a1 a2

Fig. 3. Composing Four £-Pushouts

Passing from V’s to arbitrary diagrams of morphisms generalizes %—
pushouts to %-colimits, and provides a natural way to integrate complexly
interconnected information. The notion of consistent diamond extends to
arbitrary diagrams as follows:

Definition 5. Let D be a diagram. Then a family {b;}ic|p| of morphisms
is D-consistent iff a;b; < b; whenever there is a morphism a : i — j
in D. Also given J C |D|, we say a family of morphisms {b;}ics is D-
consistent iff {b;}ic; extends to a D-consistent family {b;}ic|p|- O

13



Fact 1: A diamond ai,ag,b1,be is consistent if and only if {b1,b} is
{a1,as}-consistent. O

Definition 6. Let D be a diagram. Then a family {b; };c p) is a 3 _colimit
of D iff it is a cone and for any D-consistent family {Ci}z'e\D\: the set
{h | bi;h < ¢, foreach i € |D|} has a mazimum element. O

The following is another generalization from ordinary colimits:

Theorem 1. Let a W diagram consist of two V’s connected at the mid-
dle top. If D is a W diagram, then a %—colz’mit of D is obtained by taking
a %—pushout of each V, and then taking a pushout those two pushouts, as
shown in Figure 3 (but without a1, a2). O

Extending our pushout notation > to %—categories, the above result can
be elegantly written as

(b1 <1 bg) < (b3 > by) = Colim(W)

A generalization of the above result implies that %-pushouts can be used
to compute the %—colimit of any connected diagram. It is also worth noting
that the notion of auxiliary morphism carries over to the framework of
%—categories without any change.

In the theory of semiotic spaces [19], morphisms that preserve more
structure are considered better; in particular, they should be as defined as
possible, should preserve as many axioms as possible, and should identify
as few elements as possible. These three conditions define an ordering:
given morphisms f,g: A — B between conceptual spaces A, B, define
f < g iff g preserves as much content as f, preserves all axioms that f
does, and is as inclusive as f (see [19] for details). Applying this ordering
to the house and boat example, the best blends are %—pushouts, and those
that fail to preserve as much structure of their input spaces as they could
are not %-pushouts. We can now connect with the optimality principles of
[10] through the observation that an ordering on morphisms induces an
ordering on potential blends b by measuring how close they are to being
a %-colimit under the given ordering on morphisms, e.g., by comparing
how many maximal morphisms are in each Coney (b, c), where Coney is
the category of all cones in C over V, a fixed V in C; for a fixed b, each
Conev (b, ¢) has exactly one maximal element iff b is a 3-colimit of V.
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