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Abstract Ranked queries return the top objects of a database according to a preference function. We present
and evaluate (experimentally and theoretically) a core algorithm that answers ranked queries in an efficient
pipelined manner using materialized ranked views. We use and extend the core algorithm in the described
PREFER and MERGE systems. PREFER precomputes a set of materialized views that provide guaran-
teed query performance. We present an algorithm that selects a near optimal set of views under space con-
straints. We also describe multiple optimizations and implementation aspects of the downloadable version of
PREFER. Then we discuss MERGE, which operates at a meta-broker and answers ranked queries by retrieving
a minimal number of objects from sources that offer ranked queries. A speculative version of the pipelining
algorithm is described.
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1 Introduction

An increasing number of Web applications allow queries that rank the source objects according to a function
of their attributes [7,6,3]. For example consider a database containing houses available for sale. The properties
have attributes such as price, number of bedrooms, number of bathrooms, square feet, etc. For a user, the price
of a property and the square feet area may be the most important issues, equally weighted in the final choice
of a property, and the property’s number of bathrooms may also be an important issue, but of lesser weight.
The vast majority of e-commerce systems available for such applications do not help users in answering such
queries, as they commonly order according to a single attribute. Manual examination of the query results has
to take place subsequently. In our running example, the user will have to order the properties according to, say,
price and then manually examine the square feet area and the property’s number of bathrooms. One may have
to inspect a lot of houses until the best combination of important attributes is found, since the cheap houses
will most probably be small and have few bathrooms.

The functionality of ranked queries is exposed to the user by interfaces such as the one of the PREFER
system, shown in Figure 1. For each attribute, the interface provides a slider bar that the user adjusts along with
the attribute value specified in the selection. The position of the slider bar expresses the attribute preference ai

that the user assigns to the specific attribute Ai. One can also specify the number of tuples desired in the query
answer. Once the first set of tuples is returned, the user has the ability to receive the next bunch of tuples,
again ordered by weighted preference.

Other Web applications allow their users to rank their source objects according to a few “canned” ranking
functions. For example, many Web-based brokers (e.g., Schwab, E-Trade) allow the user to declare his/her
investment goals and then return to the user a list of mutual funds that is ranked in accordance to the goals.
For example, if the user declares that he/she is an aggressive long-term investor the system ranks the mutual
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Fig. 1 Preference Queries

funds using a function that gives high weight to the growth rate, low weight to the volatility, and very low
weight to the produced income.

The user in the above examples has a preference about the importance (or weight) of the attributes associated
with the entities (houses and mutual funds) searched. The source objects may be relational tables, documents,
images, or other types of data where ranked search makes sense. In this paper we assume that all attributes
of an object are contained in a single relation R(A1, A2, . . . , Ak). In the context of the PREFER system, the
objects reside in a single source. In the context of MERGE they reside in multiple sources, where each source
Si contains exactly one relation Ri, and R is the union of the relations from all sources ([12,4,18] consider the
case where R is “vertically split”, i.e., different attributes of the same object are found in each source). The user
provides a preference function f(A1, . . . , Ak) and a ranked query returns the tuples of R ordered according to
f(A1, . . . , Ak).

Given the current database technology, we have to retrieve the whole relation R in order to find the top
tuples with respect to a preference function f on the attributes of the relation, except if R is already ordered
by f . The key observation behind PREFER and MERGE is that we can efficiently extract the top results for f
from a source that ranks the objects by a preference function f ′, if f ′ is “close” to f . We apply this observation
to solve two problems: (i) to efficiently evaluate ranked queries on a single source and (ii) to efficiently merge
the results from multiple sources with different preference function at a meta-broker.

We present the PipelineResults algorithm that uses a ranked view V to efficiently answer a ranked query
q, which may have different weight values than V . A ranked view, which we also refer to as preference view or
just view, is a relational view that is ordered according to a preference function. PipelineResults traverses V
and outputs the top results of q in a pipelined manner. Hence, the top results of q are output by retrieving only
a prefix of V . The intuition is that when the query’s preference function is “similar” to the view’s preference
function the required prefix is small.

We define the property that the view and the query preference functions must have, in order to be able to
output the top results of the query without retrieving the whole view. We focus on three types of preference
functions: (i) linear combinations of the source attributes, (ii) linear combinations of monotone functions (eg:
logarithmic) of the source attributes, and (iii) cosine functions (in the spirit of cosine functions used in document
retrieval).

The key idea of answering a ranked query using a ranked view has many applications in database and
information retrieval problems. We present two applications, PREFER and MERGE, and the solutions to
additional problems they have posed.
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PREFER. PREFER is a system that lies on top of commercial relational databases and allows the efficient
evaluation of ranked queries. PREFER is available to download at http://www.db.ucsd.edu/PREFER. Currently,
an application that answers ranked queries would have to retrieve the whole database, apply the preference
function to each tuple, and sort accordingly.

The PREFER system provides excellent response time for ranked queries, by using pre-materialized ranked
views. PREFER works as follows: Given a relation and the performance requirements of the system, it decides
which views should be materialized. Then, when a ranked query q arrives, PREFER selects the materialized
view V that answers q most efficiently and runs the PipelineResults algorithm on V to retrieve the top-N
results of q. PREFER’s performance scales gracefully as more views are materialized and the chances that every
query will find a “similar” view increase. Indeed, PREFER can provide guarantees on the maximum score of the
tuples of the view prefix and consequently soft guarantees on the size of the view prefix that has to be accessed,
by materializing a sufficient number of views. We study how the performance of PREFER is improved when
only a prefix of the views is materialized (in contrast to [21]), since the last tuples of the view are usually not
needed in answering a top-N query. We experimentally evaluate this approach.

MERGE. The second application of the PipelineResults algorithm that we present in this paper is the MERGE
system. MERGE is a system that uses the PipelineResults algorithm to merge the ranked results coming from
multiple sources at a meta-broker (also called meta-searcher). A meta-broker ([16,15]) uses multiple underlying
sources to answer to user queries by merging the results that these sources produce (see Figure 2). For example,
a real estate meta-broker allows the user to provide the weights he/she assigns to the price, year, and square
feet of a house. Then the meta-broker contacts multiple real estate sites, obtains house records and merges them
into a single answer list.

An example of such a Web site is mySimon.com, which is a meta-searcher for various products like books,
computers, etc. It sends the user’s query to multiple underlying sources (online retailers) and then merges the
results ordered by an attribute of the products. MERGE is more general in that it allows the objects to be
ordered according to a function of their attributes. Consider for example two online bookstores that rank their
resulting books according to their price and their delivery time, measured in number of days from today. The
first bookstore assigns a weight of 0.8 to price and 0.2 to delivery time and the second 0.9 and 0.1 respectively.
Now suppose a user request from the meta-broker to rank the books assigning weight 0.7 to price and 0.3
to delivery time. The naive algorithm would get all results from both sources, evaluate the user’s preference
function for each book and output the ranked results. On the other hand, MERGE only retrieves a prefix of the
results from each source and combines these books to output the top results at the meta-broker. It then keeps
retrieving, merging and outputting results in a pipelined manner.

The key efficiency problem is how to output the top-N results of the user query by accessing the minimum
prefix of the result list that each source produces. This is a hard problem because the sources typically use
different ranking functions from each other and from the function requested by the user. The meta-broker needs
to efficiently access the sources and merge the results. MERGE uses a merging algorithm that is based on the
principles of the PipelineResults algorithm and runs at the meta-broker.

Notice that the sources usually have different access speeds. Hence the slower sources become the bottleneck
of the query at the meta-broker. For such cases, we use a modification of the merging algorithm, which sacrifices
some accuracy of the results in favor of the execution time. The speculative version of the merging algorithm
retrieves fewer tuples from the slower sources in order to output the top-N results of a ranked query. However,
there is a chance that a tuple from a slower source is mistakenly present or absent from the output results. The
speculation applied to each source is proportional to its response time. We experimentally evaluate the effects
of speculation and show that it considerably boosts the performance of the MERGE system.
In summary, this paper makes the following contributions:

– We present an algorithm that computes the top-N results of a query by using the minimal prefix of a ranked
view. Preference functions that are linear combinations of monotone single-attribute functions and cosine
preference functions are supported. We also provide a probabilistic analysis that shows how the relationship
between the view and the query preference functions influences the performance of the PipelineResults
algorithm.

– We specify the set of queries for which a view can provide a guarantee about the number of view tuples
examined in order to provide the top-N tuples of the query.

– We present an approximation algorithm to the NP-hard problem of selecting the “best views” to build
in PREFER, when there is a limitation on the number of views (and disk space) we can use. We show
experimentally that 10-20 views can provide excellent performance guarantees for most of the possible
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Fig. 2 Meta-broker Architecture

queries. We also show that the performance can be improved by storing only prefixes of views, as opposed
to whole views, and utilize the space to precompute and save more views.

– We present a pipelined algorithm that merges the ranked results from multiple sources by retrieving the
minimum prefix from each of them. We also describe a speculative version of that algorithm to handle slower
sources. These algorithms have been implemented in the MERGE system.

– The performance of PREFER scales with the number of views that are materialized. We experimentally
show that we can provide guaranteed performance to all queries by using a reasonable number of views
(between 10-100 in our experiments).

– We present a detailed experimental evaluation comparing our proposed algorithms with current state of the
art and show that our approach provides good scalability. In particular, we show that PREFER scales well
both in terms of data set size and number of attributes. MERGE, on the other hand, scales well with the
number of sources. We also examine the importance of the distance between the preference functions of the
meta-broker and the sources.

– We have developed PREFER1 on top of a commercial database management system, demonstrating the
practical utility of our overall approach. A user-friendly interface is provided that allows the easy deployment
of PREFER on any database.

The paper is organized as follows: In Section 2 we discuss related efforts and describe how this work is
related to our prior work ([21]). Section 3 describes the definitions and the notation used. Section 4 presents
the PipelineResults algorithm and methods for calculating the watermark value for various preference func-
tion types. It also presents the condition that must hold for a preference function for which a watermark is
computable, and some improving modifications to the PipelineResults algorithm. Section 5 and 6 present the
PREFER and the MERGE systems respectively. A detailed experimental evaluation of the systems is presented
in Section 7. Finally, the details of the implementation of PREFER are presented in Section 8.

2 Related Work

There is a considerable amount of work on the problems of optimizing ranked queries and merging ranks from
multiple sources. First we present related work on the problem of answering a ranked query using a view. Second,
the work relevant to PREFER and MERGE is presented.

Personalization and customization of software components (e.g., myexcite.com) can be thought of as simple
expressions of preferences. Agrawal and Wimmers in their pioneering work [3] put the notion on preferences
into perspective and introduce a framework for their expression and combination. Our work, essentially deals
with the algorithmic issues associated with the implementation of specific features of this framework. We adopt
terminology in alignment with the framework of Agrawal and Wimmers [3]

The problem of answering a ranked query using a ranked view is addressed in [16]. They defined the term
“user query is manageable by source” to indicate that a ranked user query can be answered using only a

1 PREFER is available on the web, at www.db.ucsd.edu/PREFER.
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prefix of the source data. [16] made the same architectural assumptions with our work (known source ranking
function, metabroker retrieves a prefix the source) but did not focus on any specific class of ranking functions.
Consequently, [16] did not provide a prefix computing algorithm. Our work focuses on a specific class of functions
described in Section 3 and fully solves the problem for this class of functions.

A significant amount of work has been published the last years on answering queries using views [19].
The earlier work focused on conjunctive queries and views (e.g., [2]) and subsequent work extended into more
powerful queries, views, and view set descriptions [9,27,25]. Rewriting aggregate queries using views has also
been addressed [26,8]. The nature of those algorithms is logic-based rather than quantitative, as is the case with
our algorithms for using a view to answer a query, since the nature of the queries is very different.

The work closest to PREFER, is the work by Chang et. al., [6]. In this work an indexing technique, called
the Onion Technique was introduced to facilitate the answer of linear optimization queries. Such queries are
similar to preference selection queries since they retrieve tuples maximizing a linear function defined over the
attributes of the tuples of a relation R. The key observation behind Onion is that the points of interest lie in the
convex hull of the tuple space. Thus, the Onion technique in a preprocessing step computes the convex hull of
the tuple space, storing all points of the first hull in a file and proceeds iteratively computing the convex hulls
of the remaining points; it stops when all points in the tuple space have been placed to one of the convex hull
files. Query processing is performed by evaluating the query and scanning each of these files, starting from the
one storing the exterior convex full (since it is guaranteed to contain the first result), stopping when all desired
results have been produced.

The Onion technique suffers from a few major drawbacks. Computing convex hulls is a computationally
intensive task with complexity O(n

d
2 ), where n is the number of tuples in R and d is the number of attributes,

making the technique impractical for large relations with more than two attributes. Moreover the technique is
very sensitive in performance to the granularity of the attribute domains. If an attribute has very small domain,
it is likely that all tuples lie in the same convex hull, thus a linear scan of the entire data set is required to
produce the results. The performance of the technique is highly dependent on the characteristics of the dataset
and no guarantees in performance can be provided. A major advantage of PREFER over the Onion technique
is that the performance scales gracefully as the available space increases. In contrast, Onion does not exploit
the availability of some extra space. We evaluate the performance of Onion in Section 7.

Goldstein and Ramakrishnan [14] provide a framework similar to PREFER for the case of nearest neighbor
(NN) queries. In particular, they propose the P-Sphere tree, which materializes a set of sample NN queries, which
are subsequently used to efficiently evaluate other NN queries. Their approach scales well when the available
space increases, similarly to PREFER. However, their algorithm is less involved, since once the right P-Sphere
p is found, the points in p are searched for the NN. In contrast, in our work, finding the right view V is just
one of the challenges. Next, we execute a pipelining algorithm that retrieves the minimal prefix of V to answer
the ranked query. Another difference is that when a query point in [14] is not contained in any P-Sphere, the
index (P-Sphere tree) is not used in calculating the NN. Instead a traditional linear cost NN algorithm is used.
In contrast, in our work, when a query point is not covered by any view, the most “suitable” view is used to
evaluate the query, which leads to a better performance than the naive algorithm (scan whole database).

The MERGE work assumes that the source ranking functions are known. This is an assumption that does not
generally apply today to Web sources and search engines. Such systems typically do not disclose their ranking
functions. Our work can benefit by a class of works that propose ways to get information about the source
ranking functions by asking training queries as in [28] or by calibrating the document scores of the sources using
statistics as in [5]. We can employ similar training techniques to learn the source ranking functions if they are
not given. Equally important for our work are recent initiatives, such as [15] and [22], that allow search engines
to export their ranking functions.

To the best of out knowledge, no work has been published on the problem that MERGE tackles, i.e., merging
the union of the ranked results from multiple sources. However many papers have been published on answering
ranked queries when the information about each object is distributed across multiple sources. In [12], [18], [17],
[23], algorithms are provided to combine ranked lists of attributes in order to efficiently retrieve the top results
according to an aggregate function of the attributes. In these papers a sorted list is used for each attribute in
order to efficiently retrieve the top-N ranked results from a single source. [4] provides algorithms to retrieve
the top-N results, even when some of the sources only allow random access. MERGE is different because our
sources order different objects according to functions of their attributes, instead of ranking the same objects by
one attribute each time.

Notice the difference between the threshold value, defined in [12] and [4], and the watermark value defined in
this work. In particular, the threshold value is the minimum query score that the N-th result tuple so far must
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have in order to output the top result tuple. On the other hand, the watermark value is a score with respect to
the ranking function of the view and not of the query, and determines how deep in the ranked view we must go
to output the top result tuple.

Multimedia sources have also received significant attention in the context of ranked queries [10,13,11,7,12].
[10] and [7] propose rank merging solutions for such sources, where objects are ranked according to how well
they match the query values. The solutions in [10], [7] and [12] are based on a richer architectural framework
than the one we assume in our work. In particular, our algorithm does not require any random accesses to the
sources, which is a very important property as explained in [12]. Other random access assumptions have been
made in [10] and [7].

3 Notation and Definitions

This section defines queries, views, sources and other relevant notation in the context of PREFER (first) and
MERGE (second). Let R be a relation with k attributes (A1, . . . , Ak) and let [mi, Mi] be the domain of attribute
Ai, 1 ≤ i ≤ k, mi, Mi ∈ R+. The notation Ai(t) refers to the value of attribute Ai in the tuple t.

The preference function fq(t),
∏k

i=1[mi, Mi]→ R+ defines a numeric score for each tuple t ∈ R. Every query
q consists of a preference function fq(.) and a single relation R. The output of the query q is the query result
sequence Rq = [t1q, t

2
q, . . . , t

n
q ] of the tuples of R such that fq(t1q) ≥ fq(t2q) ≥ . . . ≥ fq(tnq ). Note that we use the

notation tiq to denote the tuple in the i-th position in the result sequence of q. Views are identical to queries;
we use the term view when we refer to a query whose result has been materialized in advance in the system and
we use the term ranked query (or query) when we refer to a query that the user submitted and the system has
to reply to. We use the term query space to refer to all possible valid preference queries that can be presented
to a relation.

Notice that the preference functions handled by PREFER need to satisfy the monotonicity property described
in Section 4.2. Some common functions do not satisfy this property. For example, in the houses database, a
preference function that ranks the houses according to their distance from an arbitrarily chosen point cannot
be handled, because the ranking of a house also depends on the chosen point and not only on the house’s X and
Y coordinates.

The algorithms presented in this paper are applicable for a wide class of preference functions, as described
in Section 4.2. In this paper we provide detailed algorithms for three kinds of preference functions:

– linear, fv(t) =
∑k

j=1 vjAj(t)

– linear combination of monotone single-attribute functions, fv(t) =
∑k

j=1 vj · h(Aj(t)), where h(Aj(t)) is
monotone for j = 1, . . . , k. For example, h(.) = log(.).

– cosine, fv(t) = 1
|t||v|

∑k
j=1 vjAj(t), where |t| denotes the Euclidean norm of vector t.

We chose these functions because they are widely used in Web and multimedia applications that require
ranking and they can be efficiently pipelined using the techniques we present in this paper. The vector v =
(v1, . . . , vk) is called the preference vector of the query (view) and each coordinate of the vector is called attribute
preference. We use fv(.) to indicate that fv is a preference function with preference vector v. Without loss of
generality, we assume that attribute preferences are normalized in [0, 1] and that

∑k
j=1 vj = 1. This assumption

is not restrictive, since whatever the range of attribute preferences would be, they can always be normalized
instantly by the system. Moreover, we choose to adopt such a normalization since we believe it is in agreement
with the notion of preference. The total preference of a user is 1 and the preference on individual attributes is
expressed as an additive term towards the total preference.

The following additional definitions are specific to the MERGE system (Section 6). MERGE operates on
top of multiple sources S1, . . . , Sn. Each source Si exports a relation Ri. The exported relations have the
same schema or at least some common attributes. A metabroker [16] M over S1, . . . , Sn exports the relation
R = R1 ∪R2 ∪ . . .∪Rn if all relations have the same schema. If the sources do not have the same schema, R is
defined as follows:

– The set of attributes (A1, . . . , Ak) of R is the union of the sets of attributes of R1, . . . , Rn.
– If the relation Ri(Ai1 , . . . , Aim) has a tuple t ≡ [Ai1 : ai1 , . . . , Aim : aim ] then the relation R has a tuple

t′ ≡ [A1 : a1, . . . , Ak : ak] where aj = ail
, if Aj ≡ Ail

and aj = NULL, if Aj /∈ {Ai1 , . . . , Aim}.
Each source Si, in MERGE, supports a set Qi of preference queries over the exported relation Ri. A metabro-

ker [16] typically has two problems. First, to choose the right ranked query to invoke at each source and second
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to merge the results. We are concerned with the second problem. To simplify the abstraction we assume that
each source outputs a single ranked query. The metabroker supports preference queries over R that have the
same kind of preference function with the underlying sources, which also have the same kind of preference
functions with each other. We need efficient pipelined execution of the queries on R. In particular we want to
be able to derive the top-m tuples [t1q, . . . , tmq ] from relation R according to query q by reading a minimal subset
of each relation Ri.

4 Pipelining a ranked query using a ranked view

The algorithm presented next uses a view sequence Rv, which ranks the tuples of a relation R according to a
preference vector v, in order to efficiently pipeline the output sequence Rq of a user query q, which ranks the
tuples of the relation R according to the user’s preference vector q. The key to the algorithm is the computation
of a prefix R1

v of Rv that is sufficient to assure that the first tuple t1q of the sequence Rq is in R1
v. Once the first

tuple of Rq has been retrieved the algorithm proceeds to compute the prefix R2
v, to deliver the second tuple of

Rq, and so on, leading to an efficient pipelined production of the query result.
The algorithm is presented in three steps. First we define the first watermark point, whose definition involves

only fq(.), fv(.) and t1v and provides a bound on the view preference score fv(t1q) of the top result t1q of the
query.2 Then Section 4.1 provides the algorithm that pipelines the query output, given an “oracle” that provides
watermark points. The algorithm is applicable to any function for which one can construct such an “oracle”.
Section 4.2 discusses when such an “oracle” is possible and provides guidelines for the computation of the
watermark for such functions. Detailed computations are presented for linear, linear combination of monotone
single-attribute functions, and cosine functions. Section 4.3 presents an example of using this algorithm. Sec-
tion 4.4 describes a speculative version of the pipelining algorithm. Finally, Section 4.5 provides a probabilistic
analysis of the algorithm.

Definition 1 (First Watermark) Consider

– the view v consisting of the function fv applied on the relation R, and
– the query q consisting of the function fq applied also on the relation R

The first watermark of the user query q in the view Rv is the maximum value T 1
v,q ∈ R+ with the property:

∀t ∈ R, fv(t) < T 1
v,q ⇒ fq(t) < fq(t1v) (1)

The definition leads to an efficient computation of the watermark (see Section 4.2) since it involves only tuple
t1v. According to the definition, if a tuple t in the view Rv is below the first watermark T 1

v,q (that is, fv(t) < T 1
v,q)

then t cannot be the top result t1q of the query, since at least t1v is higher in the query result (according to the
property fq(t) < fq(t1v)). This implies that fv(t1q) ≥ T 1

v,q. Hence, in order to find t1q one has to scan Rv from the
start and retrieve the prefix [t1v, t2v, . . . , t

w−1
v , twv ), where twv is the first tuple in Rv with fv(twv ) < T 1

v,q, i.e., tw−1
v

is the last tuple of Rv that is above the watermark. The top query tuple t1q is the tuple tjv, 1 ≤ j ≤ w − 1 that
maximizes fq(tjv). Furthermore, the prefix [t1v, t

2
v, . . . , tw−1

v ] allows us to potentially locate a few more (besides
t1q) of the top tuples of the query result, as the following theorem shows:

Theorem 1 Let [t1q, t2q , . . . , tw−1
q ] be the ranked order, according to q, of the tuples [t1v, t2v, . . . , tw−1

v ] that are
above the first watermark. Let s be the index of t1v in this order, i.e., t1v ≡ tsq. Then t1q , . . . , t

s
q are the tuples with

the highest rank in the answer of q.

Proof: Clearly fq(t1q) ≥ . . . ≥ fq(tw−1
q ). Moreover due to the watermark property (Equation 1) ∀t, fv(t) <

T 1
v,q ⇒ fq(t) ≤ fq(tsq). The theorem follows, since fq(tsq) ≤ fq(ts−1

q ) ≤ . . . ≤ fq(t1q). 	

The theorem guarantees that the top-s tuples, according to fq(.), in the prefix [t1v, t

2
v, . . . , t

w−1
v ] are also the

top-s tuples in the answer of q. That is, it is impossible for a tuple below the watermark to be one of the top-s
tuples.

2 The first watermark provides the tightest prefix of Rv given knowledge of t1v only. One can produce tighter prefixes
by using more tuples from Rv but this comes at the cost of increased watermark point computation and retrieval of more
tuples of Rv.
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Rank in View % of queries
1 80
2-20 13.3
21-3000 6.7

Fig. 3 Rank of top query tuple in view

4.1 The Core of the Pipelining Algorithm

The algorithm PipelineResults in Figure 4 inputs Rv and computes in a pipelined fashion the N tuples with
the highest score according to q. The algorithm assumes the existence of a function DetermineWatermark()
(see Section 4.2) to efficiently compute the watermark value in Rv. Let s be the number of tuples output after
computing the first watermark. If s ≥ N then our objective has been achieved. Otherwise we output the sequence
of the top-s tuples from WINDOW, which stores the set of tuples that have been retrieved from Rv, but have
not been output yet. We select as ttop

v the tuple in WINDOW that maximizes fq
3, and repeat the process. A

new sequence of tuples having the highest score according to q among the remaining tuples will be determined
and output.

Notice that the number of retrieved tuples could be reduced by re-calculating the watermark value on the
fly for each retrieved tuple, instead of only calculating the watermark once for each tuple that is output. We
call this modified algorithm PipelineResultsOptimal. In particular, the following lines replace lines 4 and 7.

4a. repeat {
4b. Get next tuple twv from Rv

4c. Let T w
v,q = DetermineWatermark(twv )

4d. If T w
v,q > T top

v,q

4e. then{
4f. T top

v,q = T w
v,q

4g. Set ttop
v = twv }

4h. } until (fv(twv ) < T top
v,q )

7a. Let s + 1 be the index of the first tuple in the sorted order whose watermark
is lower than fv(tw−1

v )
/* Notice that s will always be equal or greater than the index of ttop

v */

However, this modification would require calling the DetermineWatermark(.) as many times as the number
of retrieved tuples, instead of the number of output tuples. Furthermore, we have found that this modification
only marginally reduces the number of retrieved tuples. For example, in the case where we have 50000 tuples in
the database, with 3 attributes and 6 materialized views, the number of retrieved tuples is reduced by a factor
between 0.3 and 0.7%, when the number of requested results varies from 1 to 100. The intuition behind this for
the case of top-1 queries is that the top tuple of the view is usually also the top tuple of the query (see Figure 3),
so it produces a maximal watermark value. Hence, we do not use this modification in the experiments.

The correctness of the PipelineResults algorithm is proved as a special case of Theorem 8 of Section 6, which
considers multiple sources as well. The correctness of the PipelineResultsOptimal algorithm is proved in the
same way. The PipelineResultsOptimal algorithm is optimal in the sense described in Theorem 2.

Theorem 2 There is no algorithm that given a prefix of Rv, and the preference functions fv and fq, outputs a
larger prefix of Rq than the PipelineResultsOptimal algorithm.

Proof: Assume that there was such an algorithm A. Assume that A outputs one more tuple t than
PipelinedMergeOptimal by retrieving the same prefix P of Rv. Since t was not output by
PipelinedMergeOptimal it means that its watermark is lower than fv(tw−1

v ), that is, lower than the fv(.)
score of the last tuple of P . Then, by the fact that the watermark is optimally (tightest) calculated, there could
be a tuple t′ not yet retrieved, with fv(tw−1

v ) > fv(t′) > T w−1
v,q and fq(t′) > fq(t). That is, t′ should have been

output before t. 	

3 In [21] we select as ttop

v the next unprocessed tuple of Rv, which is less efficient because it leads to a smaller watermark
value.
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Corollary 1 There is no sequential scan algorithm that retrieves less tuples than PipelinedMergeOptimal to
answer a ranked query.

Algorithm PipelineResults(Rv,q,v, N){
1. Let ttop

v ≡ t1v
2. Let WINDOW= ∅
3. while (less than N tuples in the output) {
4. Let T top

v,q = DetermineWatermark(ttop
v )

5. Scan Rv and determine the first tuple twv with fv(twv ) < T top
v,q

6. Add all tuples t ∈ [t1v, tw−1
v ] to temporary relation WINDOW

/*Notice that t1v denotes the first tuple of Rv that has not been retrieved yet*/
7. Sort WINDOW by fq

8. Let s be the index of ttop
v in the sorted order

9. Output the first s tuples from WINDOW
10. If the size of WINDOW is s then set ttop

v ≡ twv
11. else let ttop

v be the tuple with index s + 1 in WINDOW.
12. Delete the first s tuples from WINDOW.
}
}

Fig. 4 Algorithm to output the first N tuples according to q

4.2 Determining the Watermark

In this section we present a theorem that specifies when the calculation of a useful watermark value is possible
and general directions for calculating the watermark value T top

v,q for two arbitrary preference functions fq, fv.
Then we describe algorithms for the calculation of the watermark value in the case of linear, linear combination
of monotone single-attribute functions, and cosine functions.

A useful watermark value can be calculated for a source preference function fv and a ranked query q with
preference function fq, when there exist instances of the source relation Rv such that the top results of q can be
found before retrieving all the tuples in the source. This property is equivalent to the manageability property
in [16], where a preference function fq is called manageable at a source S if

∃0 ≤ ε < 1, such that ∀t ∈ R, fq(t) ≥ fv(t)− ε (2)

That is, the manageability property, the existence of a useful watermark and Equation 2 are equivalent. Notice
that this definition assumes that 0 ≤ fq(t), fv(t) ≤ 1.

The following theorem is presented in [16].

Theorem 3 Given the source and the query preference functions 0 ≤ fv(t), fq(t) ≤ 1 respectively, a useful
watermark value can be calculated iff Equation 2 is satisfied.

Theorem 4 Given the source and the query preference functions 0 ≤ fv(t), fq(t) ≤ 1 respectively, if there is an
attribute Al such that fv and fq have the same proper monotonicity on Al, then a useful watermark value can
be calculated.

Proof: By Theorem 3, it is enough to prove that Equation 2 is satisfied. We select

ε = max(fv(t)− fq(t)), t ∈ [0, 1]m (3)

We prove that ε < 1. ε can be 1 only when there is a tuple t′, such that fv(t′) = 1 and fq(t′) = 0. Without loss
of generality, assume that both fq and fv are properly increasing with Al. Then fv(t′) = 1 and fq(t′) = 0 imply
that Al(t′) = 1 and Al(t′) = 0 respectively. Hence we come to a contradiction, so ε < 1. 	


The following Corollary, specializes Theorem 4 for linear functions.
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Corollary 2 Given the source and the query linear preference functions
fv(t) =

∑k
j=1 vjAj(t), fq(t) =

∑k
j=1 qjAj(t) respectively, a useful watermark value can be calculated if there

is an index 1 ≤ l ≤ k, such that both vl and ql have the same sign.

Next, we present a general formula that calculates the watermark value T top
v,q for a tuple ttop and two arbitrary

preference functions fv, fq, which satisfy Theorem 3. From Equation 1 we get

fq(t) < fq(ttop) ⇔ fv(t) < fq(ttop) + fv(t)− fq(t)

and since fv(t) < T top
v,q , we have the following Theorem:

Theorem 5 The watermark value T top
v,q for a tuple ttop and two arbitrary preference functions fv, fq is

T top
v,q = fq(ttop) + min(fv(t)− fq(t)) (4)

where min(fv(t)− fq(t)) is calculated over all tuples t in the domain of relation R that satisfy the equation 4.

fv(t) ≤ fv(ttop) (5)

We now focus on three types of preference functions: linear, linear combination of monotone single-attribute
functions, and cosine. The inputs of the DetermineWatermark algorithm are the user function fq, the view’s
function fv and a tuple ttop. Consider that the highest possible fv(t) in Equation 1 is achieved for an imaginary
tuple t′. Thus we will determine the maximum T top

v,q = fv(t′) value while satisfying the following equation and
thus the watermark.

fq(t′) < fq(ttop) (6)

4.2.1 Watermark computation for Linear functions Since we know the values of ttop, q and v, we need to
come up with bounds for the values of t ≡ (A1(t), . . . Ak(t)) using the known parameters to maximize fv(t′)
while satisfying the inequality of Equation 1 for all t ∈ R. We will subsequently use these bounds to derive the
watermark. Let us express fq(t) =

∑k
i=1 qiAi(t) as a function of fv(t) =

∑k
i=1 viAi(t). Thus,

fq(t) =
k∑

i=1

qiAi(t) = fv(t) +
k∑

i=1

(qi − vi)Ai(t) (7)

By substituting Equation 7 into Equation 1 we get

∀t ∈ R, fv(t) ≤ T top
v,q ⇒ fv(t) +

k∑
i=1

(qi − vi)Ai(t) ≤ fq(ttop) (8)

Consider that the highest possible fv(t) is achieved for t′. It is:

fv(t′) +
k∑

i=1

(qi − vi)Ai(t′) ≤ fq(ttop) (9)

We will treat Equation 9 as equality; since the left side of Equation 9 is linear on fv(t′), the corresponding
inequality is trivially satisfied. Since our objective is to determine the maximum fv(t′) value that satisfies
Equation 9, which is linear in fv(t′), we will determine bounds for each attribute Ai(t′) in a way that the left
part of Equation 9 is maximized. We determine the bounds for each attribute Ai(t′), by the following case
analysis. Recall also that each attribute Ai has domain [mi, Mi].

– (qi − vi) > 0 and vi <> 0: In this case we have

Ai(t′) =
fv(t′)−

∑k
j<>i vjAj(t′)
vi

≤ fv(t′)−
∑k

j<>i vjmj

vi
(10)

We set Ui =
fv(t′)−

∑
k

j<>i
vjmj

vi
. Since Ai(t′) ≤Mi, we have that Ai(t′) = min(Ui, Mi).

4 This condition allows the calculation of a tighter watermark value.
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Ai(t′) =




min(
fv(t′)−

∑
k

j<>i
vjmj

vi
, Mi) qi > vi <> 0

Mi qi > vi = 0
0 qi = vi

max(
fv(t′)−

∑k

j<>i
vjMj

vi
, mi) qi < vi

(12)

Fig. 5 Bounds for Ai

– (qi − vi) > 0 and vi = 0: then Ai(t′) = Mi

– (qi − vi) = 0: we can ignore this term
– (qi − vi) < 0 and vi <> 0: In this case we have that:

Ai(t′) =
fv(t′)−

∑k
j<>i vjAj(t′)
vi

≥ fv(t′)−
∑k

j<>i vjMj

vi
(11)

We set Li =
fv(t′)−

∑
k

j<>i
vjMj

vi
. Since Ai(t′) ≥ mi, we have that Ai(t′) = max(Li, mi).

Figure 5 summarizes the results of our analysis for each attribute value Ai(t′). Notice that we use the notation
Ai(t′) to denote the bound for the value of attribute Ai. Also notice that when (qi − vi) > 0 we determine an
upper bound for the value of Ai(t′) whereas when (qi− vi) < 0 we determine a lower bound. The main difficulty
in solving Equation 9 directly, lies on the existence of min and max terms, with two operands each, in the
expressions derived for the attribute bounds (Figure 5). Each min (equivalently max) term however, is linear
on fv(t′) thus it is easy to determine for which range of fv(t′) values, each operand of min (equivalently max)
applies, by determining the fv(t′) value that makes both operands equal. Assume the expression for attribute
bound Ai(t′) contains a min or a max term. Let ei be the value for fv(t′) that makes both operands of min or
max equal. As fv(t′) varies, we now know exactly which operand in each min or max term we should use to
determine a bound on the attribute value. Since both Ui and Li terms are linear on fv(t′), we observe whether
fv(t′) lies on the left or right or ei. There are at most k attribute bound expressions and thus 1 ≤ i ≤ k.
Possible values of fv(t′) range between

∑k
i=1 vimi and

∑k
i=1 viMi. If we order the ei’s, we essentially derive a

partitioning of the range of possible values of fv(t′) in k + 1 intervals, Ii, 1 ≤ i ≤ k + 1. For each value of fv(t′)
in these intervals the expressions used to compute each attribute bound are fixed and do not involve min or
max.

We construct a table E having k + 1 columns, denoting the value intervals for fv(t′) and k rows, denoting
the expressions for each attribute bound. For each entry E(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ k + 1 in this table we
record the exact expression that we will use to determine the bound for attribute Ai. If an attribute bound
expression is not a function of fv(t′) we can just record the value in the suitable entry as a constant. Once the
table is populated, for each value of fv(t′) we know the attribute bound formulas that comprise the left hand
side of Equation 9. Thus we have k + 1 possible expressions for the left side of Equation 9. Each expression,
Ej , 1 ≤ j ≤ k + 1 is produced by:

Ej = fv(t′) +
k∑

i=1

(qi − vi)E(i, j) (13)

Theorem 6 Setting Ej = fq(t1v), 1 ≤ j ≤ k + 1 and solving for fv(t′) determines the watermark value.

Proof: For each j two possibilities exist: (a) the fv(t′) value computed does not fall in the j-th interval. In this
case, the expression for Ej cannot yield fq(t1v) since Ej produces an upper bound for fq(t) by construction, (b)
fv(t′) falls in the j-th range. Since Ej = fq(t1v) is a linear function and has a unique solution in range j, fv(t′)
is the watermark T top

v,q . Note that the range of possible values for fv(t′) is the same with the range of possible
values for Ej , thus j will always be identified. �

Algorithm DetermineWatermark is shown in Figure 6. The algorithm assumes that table E has been com-
puted in a preprocessing step. The algorithm uses O(k2) space and determines the watermark solving k equations
in the worst case.
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Algorithm DetermineWatermark(tuple ttop) {
for j from k + 1 downto 1 {
Solve Ej = fq(ttop

v ) and determine watermark
if watermark ∈ Ij return watermark
}

}
Fig. 6 Algorithm DetermineWatermark

h(Ai(t′)) =




min(
fv(t′)−

∑k

j<>i
vj ·h(mj)

vi
, h(Mi)) qi > vi <> 0

h(Mi) qi > vi = 0
0 qi = vi

max(
fv(t′)−

∑
k

j<>i
vj ·h(Mj)

vi
, h(mi)) qi < vi

(15)

Fig. 7 Bounds for h(Ai)

4.2.2 Watermark computation for linear combination of monotone single-attribute functions It is fq(t) =∑k
i=1 qi · h(Ai(t)) and fv(t) =

∑k
i=1 vi · h(Ai(t)). Following a procedure similar to the one for linear functions,

we get

fv(t′) +
k∑

i=1

(qi − vi) · h(Ai(t′)) ≤ fq(ttop) (14)

where the bounds are shown in Figure 7.

4.2.3 Watermark computation for Cosine functions The calculation of the watermark for a cosine function
differs from the case of linear combination of monotone single-attribute functions because we can not have
a separate term in the preference function for each attribute. The reason for this is the |t| term in f(t) =

1
|t||v|

∑k
j=1 vjAj(t). This means that we need to calculate an upper bound for fq(t)− fv(t) as a whole. Equation

1 can be written as:
fv(t′) + (fq(t′)− fv(t′)) ≤ fq(ttop) (16)

where t′ is the tuple that maximizes fv(t′) while satisfying Equation 16 . Now we need to find an upper bound
for fq(t′)− fv(t′) to plug it in Equation 16.

fq(t′)− fv(t′) =
q · t′

|q||t′| −
v · t′

|v||t′| =
t′

|t′| (
q
|q| −

v
|v| ) (17)

Since ( q
|q| − v

|v| ) is fixed for every pair of functions and t
|t| has size 1, the above expression is maximized when t

is parallel to ( q
|q| − v

|v|) and its maximum value is | q
|q| − v

|v| |. This means that the watermark value for a tuple
ttop is fv(t′) = fq(ttop)− | q|q| − v

|v| |.

4.3 An Example

Let us present an example of the algorithm’s operation. Assume q is a query with q = (0.1, 0.6, 0.3) and
Rv a view with v = (0.2, 0.4, 0.4). The preference functions of both the query and the view are linear. Let
m1 = m2 = m3 = 5 and M1 = M2 = M3 = 20. The sequence Rv is shown in Figure 8. To populate table E we
use the equations of Figure 5 to calculate the bounds for each attribute Ai. Thus:

A1(t′) = max(
fv(t′)− 16

0.2
, 5), A2(t′) = min(

fv(t′)− 3
0.4

, 20), A3(t′) = max(
fv(t′)− 12

0.4
, 5)

Next we calculate e′is that make the terms in min or max expressions equal.

e1 = 17, e2 = 11, e3 = 14
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tupleID A1 A2 A3 fv(t) fq(t)
1 10 17 20 16.8 17.2
2 20 20 11 16.4 17.3
3 17 18 12 15.4 16.1
4 15 10 8 10.2 9.9
5 5 10 12 9.8 10.1
6 15 10 5 9 9
7 12 5 5 6.4 5.7

Fig. 8 View Rv and scores of each tuple based on fv and fq

T top
v,q 5..11 11..14 14..17 17..20
A1 5 5 5 fv(t′)−16

0.2

A2
fv(t′)−3

0.4 20 20 20
A3 5 5 fv(t′)−12

0.4
fv(t′)−12

0.4

Fig. 9 Table E

We are now ready to fill table E. The table is presented in Figure 9. Recall that t1v is the first tuple of Rv.
Now we solve Equation 9, with t1v as ttop

v ,for each of the 4 intervals starting with the last one. In interval I4,
solving Equation 9 results in fv(t′) = 8.8 which is not in I4 and it is rejected. In I3 we get fv(t′) = 14.26 , which
is valid. To output the first tuple for fq we scan Rv up to the first tuple with score greater than or equal to
fv(t′) = 14.26. This is tuple t3v with score 15.4. So the minimum prefix of Rv that we have to consider in order
to get the first result for query q consists of all tuples t ∈ [t1v, t3v]. We order these three tuples by fq and output
t2v and t1v. Now in order to get further results we locate the first unprocessed(not yet output) tuple in Rv, which
is t3v and use it as ttop

v in Equation 9. The algorithm continues like this. If we repeat the above steps, we get the
following results. fv(t′) = 13.1, so the prefix now becomes just t3v, which we output. Next we use t4v in Equation
9 and get fv(t′) = 8.26, so the prefix is [t4v, t6v]. We sort these tuples and output t5v and t4v. Next we use t6v in
Equation 9 and get fv(t′) = 7.66, so our fourth prefix is just t6v, which we output. Finally output t7v, which is
the last unprocessed tuple in Rv.

4.4 Using speculation for approximate results

Very often, the applications that rank their objects according to a preference function do not require that the
output sequence is 100% accurate. For example when a user presents a preference query to a database with
houses for sale, then the weights that are given are inherently speculative for two reasons. First some properties
of a house are hard to be quantified, like the criminality of the region or the quality of the schools near the house.
Second, the user has a difficulty to precisely quantify a preference. Hence, many of the applications that we deal
with, have an inherent approximation factor. This fact has motivated us to devise methods that sacrifice some
accuracy of the results in order to boost the performance. Recall that by performance we mean the number of
tuples that we need to retrieve from a view to output the top-N results of a query.

The speculative version of the PipelineResults algorithm has the following modification over the original
algorithm in Figure 4: We use a higher threshold than the watermark value to determine the window W that
contains the top result of q. The threshold value T ′top is:

T ′top = (1 + ε) · T top
v,q (18)

where ε ≥ 0 is the speculation factor. Hence, W is smaller and we determine the top result t1q,spec faster. However,
there is a chance that the actual top tuple t1q is not contained in W . As the value of ε increases, we retrieve the
top results faster, but the accuracy of their ranking decreases. We elaborate more on the speculative version
of PipelineResults in Section 6.1 , where we show how speculation can boost the performance of the MERGE
system.

We define the cost of speculation as the average difference between the indices of the tuples in the specula-
tive results sequence and in the real results sequence. In Section 7, we experimentally evaluate the impact of
speculation.
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4.5 Probabilistic Analysis

The following probabilistic analysis indicates how the expected number Q of tuples retrieved from a view V by
the PipelineResults algorithm in order to output the top tuple t1

q , according to query q, increases as a function
of the distance of fq and fv. We also show how Q is affected by the distribution of the tuples.

We focus on linear functions, although the same analysis applies to any functions satisfying Equation 2. We
assume without loss of generality that mi = 0, Mi = 1, for i = 1, . . . , k. We also assume that the database has
N tuples t1, . . . , tN and each tuple t has density distribution function fd(t). We use the letters f and F for
density distribution functions (ddf) and cumulative distribution functions (cdf) respectively. Also, bold small
letters (eg: t) correspond to vector (tuple) variables and regular letters (eg: x) to number variables.

From Equation 9, the watermark value T 1
v,q of t1

v is:

T 1
v,q = fq(t1

v)−
k∑

i=1

(qi − vi)Ai(t1
v) ≤ fq(t1

v)−
∑

qi>vi

(qi − vi) (19)

The above inequality is an approximation of T 1
v,q and becomes an equality when vi ≤ T 1

v,q for qi > vi and
T 1

v,q ≤ 1− vi for qi < vi. Then

T 1
v,q = fq(t1

v)−
∑k

i=1(|qi − vi|)
2

(20)

Equation 20 shows clearer how T 1
v,q is affected by the distance between fq and fv. However, if one of the

above conditions does not hold we use Equation 19 instead.
Next, we calculate the ddf of fq(t1

v). First we calculate the ddf f1
v (t) of t1

v. Consider the probability P1 that
a random tuple ti is the top tuple t1

v in V and ti is in [t, t + dt], which is the hyperrectangle defined by the
points t and t + dt.

P1 = fd(t)dt ·
N∏

j<>i

P (fv(tj) < fv(ti)) = fd(t)dt · (Ffv (fv(t)))N−1 (21)

where Ffv (x) is the cdf of fv(t). Hence, the probability P2 that t1
v is in [t, t + dt] is

P2 = N · fd(t)dt · (Ffv (fv(t)))N−1 (22)

Hence
f1
v (t) = N · fd(t) · (Ffv (fv(t)))N−1 (23)

The cdf Fv,1
fq

(x) of fq(t1
v) is

Fv,1
fq

(x) =
∫

. . .

fq(t)<x∫
f1
v (t)dt (24)

Let FT be the cdf of T 1
v,q. From Equations 20 and 24, it is

FT (x) = Fv,1
fq

(x−
∑k

i=1(|qi − vi|)
2

) =
∫

. . .

fq(t)<x−
∑k

i=1
(|qi−vi|)
2∫

f1
v (t)dt (25)

Let xQ be the value of T 1
v,q, such that the expected number of tuples retrieved from V to output t1

q is Q.
That is

Q = N ·
1∫

xQ

ffv (x)dx (26)

We show that the probability that T 1
v,q ≥ xQ, i.e., the number of tuples retrieved is less than Q, increases

as fv and fq get closer. It is:

P (T 1
v,q ≥ xQ) = 1− FT (xQ) = 1−

∫
. . .

fq(t)<xQ−
∑

k

i=1
(|qi−vi|)
2∫

f1
v (t)dt (27)
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xQ

f T

Tv,q
1

f T

Tv,q
1 xQ

(a) fq and fv are not close (b) fq and fv are close

Fig. 10 ddf of T 1
v,q

Using Equation 23, we get

P (T 1
v,q ≥ xQ) = 1−

∫
. . .

fq(t)<xQ−
∑

k

i=1
(|qi−vi|)
2∫

fd(t) ·N · (Ffv (fv(t)))N−1dt (28)

Equation 28 shows that when fv(t) and fq(t) are close, P (T 1
v,q ≥ xQ) is maximized, which happens when

the integral is minimized. This happens for two reasons: First, if we ignore the term
∑k

i=1
(|qi−vi|)
2 , the integral

is minimized because it is calculated over all small values of fq(t). If fv(t) and fq(t) are close, then fv(t) is
also small, hence the integral is minimized. Intuitively, this reason holds because fq(t1v) increases as fv(t) and

fq(t) get closer. Second, the term
∑

k

i=1
(|qi−vi|)
2 further minimizes the integral as fv(t) and fq(t) get closer. The

variance of the watermark value with respect to the distance between fv(t) and fq(t) is shown graphically in
Figure 10, where the selected areas are equal to P (T 1

v,q ≥ xQ).

5 Using the PipelineResults algorithm to efficiently answer ranked queries: The PREFER
system

The PREFER system runs at a single source, which contains a relation R, and aims at efficiently answering
ranked queries on R. It materializes in advance multiple views in order to provide short response time to client
queries. Before any query arrives, it builds a set of views that rank R according to several preference functions.
This preprocessing process is carried out by the view selection module (see Figure 11). When a query q arrives,
PREFER selects the “best” view V available, as described in Section 5.3. Then, the PipelineResults algorithm
is executed to answer q using V . In this section we focus on linear preference functions. The conclusions that
we reach can easily be carried to logarithmic and cosine functions.

In its simplest version the view selection module (see Figure 11) inputs from the user the relation R and the
size l of the maximum view prefix that the PipelineResults Algorithm may have to retrieve in order to deliver
the first result of an arbitrary preference query on R. The view selection module materializes a set of view
sequences V such that for every query q there is at least one view Rv ∈ V that “covers” q, i.e., when Rv is used
to answer q, at most l tuples of Rv are needed to deliver the first tuple of q. In Section 7 we show experimentally
that the number of views needed to cover the whole space of possible queries by retrieving at most 1% of
the tuples of Rv is in the order of 10 to 100, when the number of attributes is two to five. In particular, the
number of ranked views grows exponentially with the number of attributes due to the exponential growth of
the query space. However, if space limitations require that we build at most n views, a modified view selection
algorithm is used in order to cover the maximum amount of queries with n views; since the problem of finding
such a maximum coverage, as we will show, is NP-hard, PREFER uses a greedy algorithm that provides an
approximate solution. Furthermore, in Section 5.2.1, we present a novel approach to decrease the required space
with minor performance degradation, by only storing prefixes of the materialized views. The details and the
properties of the view selection algorithm are described in Section 5.2. Note that, in a similar fashion, PREFER
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Fig. 11 PREFER’s Architecture

can select views that guarantee the retrieval of the first m query results by retrieving at most l tuples. We
describe the generalization to top-m tuples in Section 5.1.1.

We present next the definition of “coverage” of a query by a view. Section 5.1 provides algorithms that
decide coverage and compute (precisely and approximately) the space covered by a view. Section 5.2 uses the
coverage algorithms in a view selection algorithm that either (i) produces a set of views that covers the space of
all possible queries (referred to as query space), or (ii) produces the best approximate set of n views that cover
as much query space as possible.

Definition 2 The ranked materialized view Rv covers the query q for its top m results using l tuples, if the
PipelineResults Algorithm generates the top-m result tuples of q by using at most the top-l tuples of Rv. We will
say that q is covered by Rv using l tuples to indicate that the first result tuple of q requires at most l tuples of
Rv to be retrieved.

We will often also say Rv covers q when the number l of tuples needed is obvious from the context.

Definition 3 The space Sl
Rv
⊆ [0, 1]k covered by the view sequence Rv using l tuples is the set of all query

preference vectors q such that the first result of q can be derived using only the top-l tuples of Rv.

5.1 Deciding Coverage and Computing the Space Covered by A View

We describe next two key algorithms of the view selection module:

1. The view cover decision algorithm is given a sequence Rv, a number l, and a query q and decides in O(1)
time5 whether q is covered by Rv using l tuples.6 Notice that the algorithm uses only the l-th tuple of Rv.

2. The view cover algorithm inputs a view sequence Rv and a number l and returns the k-dimensional space
Sl

Rv
.

For both algorithms the key point is the following: Since we want to guarantee that at most l tuples from Rv

will be read whenever a query q uses Rv we have to place the first watermark at tlv or higher. By the watermark
properties and a mathematical manipulation similar to the one of Section 4.2 we derive the inequality

fv(tlv) +
k∑

i=1

(qi − vi)Ai(tlv) ≤ fq(t1v) (29)

In Equation 29 the unknowns are the components of the vector (q1, . . . , qk), for which
∑k

i=1 qi = 1. Hence the
view cover decision algorithm requires that we simply plug the vector (q1, . . . , qk) in Equation 29. The view

5 for a fixed number of attributes k.
6 Obviously the PipelineResults Algorithm could be used as the view cover decision algorithm but its complexity is

O(l).

16



(v1,v2)

q1

q2

quadrant

(q'1,q'2)

covered query

(v1,v2,v3)

q2

q1

q3

(a) 2D query space (b) 3D query space

Fig. 12 Coverage area of a view

cover problem requires solving Equation 29, which is a linear function. Its solution Sl
Rv

is in general a convex
polytope [24] and, in particular, it is a convex diamond-like shape (i.e., a polyhedron) where all corners lie on
the axes centered at (v1, . . . , vk) and there is exactly one corner on each semi-axis. The coverage areas for two
and three attributes are shown in Figure 12. We solve Equation 29 in each specific k-dimensional “quadrant”.
We define as quadrant the space of q where the relationship between each qi and vi pair is constant, i.e., for
any two points q[q1, . . . , qk] and q′[q′1, . . . , q

′
k] in a quadrant, it is (qi − vi) · (q′i − vi) > 0 for i = 1, . . . , k. Thus

in a specific quadrant we always use the same case from the cases shown in Figure 5 for the bounds Ai(tlv).
Furthermore we can pick the right argument of the min and max terms , since all the terms of their arguments
are known values. Hence in a specific quadrant Equation 29 is of the form

∑k
i=1 ci · qi ≤ C, where ci’s and C

are constants, which describes a halfspace. This halfspace contains the point (v1, . . . , vk) since fv(tlv) ≤ fq(t1v).
The intersection of these halfspaces for all 2k quadrants is a diamond that is centered at the point (v1, . . . , vk).
Notice that the size and shape of the diamonds for two different views is different.

Notice that if a query point does not satisfy Equation 29 it may still be covered by the view Rv, if the
PipelineResultsOptimal algorithm is used, that is, on-the-fly watermark calculation is performed for each
retrieved tuple. However this is not possible when a watermark is calculated only for t1v as in Figure 4. PREFER
only uses the view cover decision algorithm to avoid this complexity.

5.1.1 Guarantees For Multiple Results Providing guarantees for multiple results from Rv can take place in a
similar fashion. One can repeat the above process for the second desired watermark position. The queries falling
inside the intersection of the corresponding convex polytopes satisfy both guarantees. Let �i, 1 ≤ i ≤ N be the
positions of watermark T i

v,q we wish to guarantee. Repeating the procedure above for each �i, will provide a
sequence of coverage areas S1, . . . , SN . The queries falling in

⋂N
i=1 Si satisfy all guarantees.

5.2 Selecting Views To Materialize

The simplest version of the view selection algorithm covers every possible query with at least one view Rv.
That is, the view selection algorithm generates a set of views V such that the union of the query spaces covered
by the views covers the whole space [0, 1]k, i.e., ∪Rv∈VSl

Rv
= [0, 1]k. In practice, the algorithm considers a

discretization of the [0, 1]k space by using a user-provided discretization parameter d. This generates the set of
points {(x1, . . . , xk)|xi = rid, ri ∈ Z, xi ∈ [0, 1],

∑k
i=1 xi = 1} and the view selection algorithm keeps introducing

views until no point is left uncovered. The O(1) view cover decision algorithm is used to check whether a given
view Rv covers a query q. Notice that if the query workload is known a priori and the whole query space cannot
be covered due to space limitations, there is an opportunity to cover more queries by placing the views close to
the queries. However, we assume that no such information is available and that all queries are equally possible.

There are environments where only a finite number of views, C can be actually materialized. This can be
due either to space constraints or to maintenance issues related to updates of the database. Thus, the choice
of a “good” set of ranked views to materialize is an important issue. This gives rise to the following constraint
optimization problem.
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Algorithm ViewSelection(){
while (not all preference vectors in [0, 1]k covered)
{ Randomly pick v ∈ [0, 1]k and add it to the list

of views, L
}
GREEDY ← 0
for l = 1 to C {
select v ∈ L that covers the maximum uncovered
vectors in [0, 1]k

GREEDY ← GREEDY
⋃

Sv

}
}

Fig. 13 Ranked View Selection Under Space Constraint

Problem 1 (View Selection Under Space Constraint) Given a set of views R1
v, . . . , Rs

v that covers the
space [0, 1]k select C views that maximize the number of points in [0, 1]k covered.

Problem 1 is an instance of the maximum coverage problem [20], as the following reduction shows: The space
of all possible preference vectors, [0, 1]k, can be considered as the reference set. Each of the views is a “subset”
of [0, 1]k containing a number of preference vectors. We wish to select C “subsets” to maximize the number of
elements of the reference set that are covered. The maximum coverage problem is NP-Hard as set cover can be
easily reduced to it. However, it can be approximated efficiently as the following theorem shows:

Theorem 7 (Greedy Approximation) The Greedy Heuristic is an 1 − 1
e approximation for maximum cov-

erage.

Proof: See [20].
The Greedy heuristic works iteratively by picking the next view from the collection R1

v, . . . , Rs
v that covers

the maximum number of uncovered elements of [0, 1]k. Figure 13 summarizes our approach.

5.2.1 Decreasing the Depth of the Views In environments with space constraints, updates of the database and
efficient view maintenance considerations, building a large number of materialized views becomes expensive.
The obvious solution would be to materialize a small number of views. This would mean that only a portion of
the query space would be covered. Furthermore, when the query space is adequately covered by views then only
the top prefix of the views is used in answering the queries when the number of requested tuples is relatively
small. These observations led us to experiment with materializing only a prefix of each view. We add an extra
step to the views selection and creation process. We select the views that will be materialized as described in
Section 5.2 and then we materialize only a prefix of them of size D, which we call depth of the views. Then
when a query q is presented to PREFER, the best view V is selected using the algorithm in Section 5.3 and the
PipelineResults algorithm is executed. If we need to retrieve more than D tuples from V in order to output
the top-N results that the user requested then this view V may not contain the top-N results according to q.
In this case, we use the original relation R in order to answer the query. Alternatively, we could also try using
other views “close” to q and if these also fail use R. Fortunately this is very rarely the case when the number
of views and their depth are adequetely big and the user only cares about the top results. We further elaborate
on the optimal view depth in Section 7.

5.3 Selecting A Ranked View for a Preference Query

Query processing, once C views have been materialized proceeds as follows. The description of the coverage
areas of the views (Equation 29) are stored in a main memory data structure. When a query q arrives, we
find the view that minimizes the expression fv(tlv) +

∑k
i=1(qi − vi)Ai(tlv) − fq(t1v). That is, the inequality of

Equation 29 is more “strongly” satisfied.
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When the overall number of views that we materialized is bounded, it is likely that not all points of [0, 1]k

are covered. Thus it is possible to generate preference vectors that are not covered by any of the stored views.
For such queries, we cannot provide performance guarantees based on our construction. The same heuristic as
for the covered queries is used. That is, the inequality of Equation 29 is not satisfied but Rv is “closer” to
satisfaction than the other views.

6 Using the PipelineResults algorithm to efficiently answer ranked queries at a meta-broker:
The MERGE system

The PipelinedMerge algorithm presented next efficiently queries the underlying sources S1, . . . , Sn and merges
their results, when a query q is presented to the metabroker, as shown in Figure 2. It outputs the results in a
pipelined manner, i.e., without retrieving the complete result sequences from the sources. We assume that each
source Si exports exactly one query vi. The key to the algorithm is the computation of a prefix R1

vi
of the result

sequence Rvi of source Si that is sufficient to assure that if the first tuple t1q of R = R1∪R2∪ . . .∪Rn according
to fq is in Ri, then t1q is in R1

vi
. In each step, a watermark value is calculated for each of the sources.

The algorithm PipelinedMerge is described in Figure 14. It inputs: (a) the preference function fv1 , . . . , fvn

for each source, (b) the result sequences Rv1 , . . . , Rvn that the sources produce for these functions, (c) the user’s
preference function fq and (d) the number N of desired results.

Algorithm PipelinedMerge(Rv1, . . . , Rvn,fq,fv1 , . . . , fvn, N){
for i = 1 to n do {

Retrieve first tuple ttop
vi

from Rvi and compute fq(ttop
vi

)
}

Let ttop be the tuple ttop
vi

that has the maximum fq(ttop
vi

)
while (less than N tuples in the output) {

for i = 1 to n do {
T top

vi,q = DetermineWatermark(ttop, vi)
Scan Rvi and determine the first tuple tw with fvi(tw) < T top

vi,q

Add all non-processed tuples up to tw to temporary relation WINDOW
}
Sort WINDOW by fq and let s be the index of ttop in WINDOW
Output and delete the first s tuples from WINDOW
if WINDOW is empty then
Add to WINDOW the first unprocessed tuple from each source
Sort WINDOW by fq

Let ttop be the first tuple in WINDOW.
}

}
Fig. 14 Algorithm to output the first N tuples according to q

Theorem 8 proves the correctness of the PipelinedMerge algorithm.

Theorem 8 (Correctness) Algorithm PipelinedMerge outputs the correct ranked results.

Proof: First we prove that the top tuple according to fq of a single source Si is contained in the window of
tuples from Ri ending at the last tuple that has a smaller or equal fvi value to the watermark value T top

vi,q. From
the definition of the watermark vector we see that all tuples t below the watermark value have fq(t) < fq(ttop).
That is, none of these tuples could be the top one according to fq. Hence the top tuple according to fq is in the
retrieved window.

So in each iteration of the PipelinedMerge algorithm (each iteration of the while loop) the top tuple
according to q from each source is contained in the tuples that are added to WINDOW. Hence the top tuple
according to fq over the union of all relations will be in WINDOW and will be output. 	
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tuple A1 A2 A3 fv1(t) fq(t)
t2 10 17 20 16.8 17.2
t1 20 20 11 16.4 17.3
t6 15 10 5 9 9
t7 12 5 5 6.4 5.7

tuple A1 A2 A3 fv2(t) fq(t)
t3 17 18 12 15 16.1
t4 5 10 12 11 10.1
t5 15 10 8 9 9.9

(a) Rv1 (b) Rv2

Fig. 15 Sources S1, S2 and scores of each tuple based on fv1 , fv2 and fq

Example Let us present an example of the algorithm’s operation. Assume q is a query with q = (0.1, 0.6, 0.3)
and there are two sources S1 and S2 that produce the result sequences Rv1 and Rv2 respectively. Their prefer-
ence vectors are v1 = (0.2, 0.4, 0.4) and v2 = (0, 0.5, 0.5) respectively. The query and the sources have linear
preference functions. Let m1 = m2 = m3 = 5 and M1 = M2 = M3 = 20. The sequences Rv1 and Rv2 are shown
in Figure 15.

First we retrieve the first tuple from each sequence and find the one that has the maximum fq value. It is
fq(t2) > fq(t3), so ttop ≡ t2. We calculate the watermark vector (T top

v1,q = T top
v2,q) = (14.26, 15.33). The calculation

of the watermark is described in Section 4.2. Hence t2 and t1 are added to WINDOW because fv1(t1) > T top
v1,q.

We sort the WINDOW by fq and output t1 and t2, which have bigger or equal fq values than ttop. Next we
add two fresh tuples t6 and t3, because WINDOW is empty, and t3 becomes ttop. We calculate the watermark
vector (T top

v1,q = T top
v2,q) = (13.1, 13.5). So no tuples are added to WINDOW and t3 is output. Now ttop ≡ t6. The

algorithm continues and outputs t4, t5, t6 and t7.

6.1 Speculative version of MERGE

As we explain in Section 4.4, many of the applications that we deal with, have an inherent approximation
factor. For these applications, it makes sense to sacrifice some of the accuracy of the resulting sequence, in
order to improve the performance in terms of the response time. In the case of MERGE, where multiple sources
are queried, there is an additional reason why speculation is useful. Suppose that a source Sj is considerably
slower than the other sources. Then, Sj becomes the bottleneck in the PipelinedMerge algorithm. To tackle
this problem, we assign to each source Si a speculation factor εi proportional to its response time. Hence the
sources with longer response times have a higher threshold value T ′top

i , where

T ′top
i = (1 + εi) · T top

vi,q (30)

The speculative PipelinedMerge algorithm differs from PipelinedMerge in that it uses T ′top
i instead of T top

vi,q.
We evaluate the impact of speculation to MERGE in Section 7.

7 Experimental Results

To evaluate PREFER’s and MERGE’s algorithms for the efficient execution of preference queries, we carried
a detailed performance evaluation. First we compare PREFER’s execution time with the time required by a
commercial database management system to complete the same task. Then we measure the running time of
PREFER’s preprocessing step, where the materialized view selection is performed. Then we evaluate PREFER’s
query performance as different parameters vary. A key query performance metric is the fraction of queries that
satisfy the user-provided guarantee on the size of the view prefix that PREFER has to retrieve from the view
in order to retrieve a user-provided number of top query results. We present a comparison of PREFER with
other proposed state-of-the-art solutions. We also measure the performance boost we get when we decrease the
depth of the materialized views. Notice that all accesses to the materialized views in PREFER are sequential,
which makes it superior to any index-based system which performs random accesses.

For the MERGE system, we measured the average prefix of the source relations that we need to retrieve
as the number of sources and the distance between the sources’ and the query’s functions varies. Finally we
evaluated the application of speculation to MERGE.

The experiments use two synthetic datasets; the relation attributes of the first dataset are independent while
the attributes in the second dataset are correlated. The database consists of a relation houses with six attributes,
namely: HOUSEID, PRICE, BEDROOMS, BATHROOMS, SQ FT and YEAR. We performed experiments that
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used three, four or five of the attributes (HOUSEID is not a preference attribute). The cardinality of the five
preference attributes is 1000000 , 10 , 8 , 3500 and 50 respectively for the random dataset and 1 , 500000
, 5 , 5 , 1500 and 50 respectively for the correlated dataset. PRICE, BEDROOMS and SQ FT were used for
experiments involving three attributes; BATHROOMS was added as the fourth attribute and YEAR as the fifth.
For the random dataset, the attribute values are chosen with a uniform distribution over their domain. In the
correlated dataset, we used correlation patterns that we discovered in real datasets containing house information
[1] (we did not use these datasets because they were relatively small in size). The correlation coefficient between
BEDROOMS and the rest of the attributes (except for YEAR), is between 0.35 and 0.73, and the correlation
of the other attribute pairs is at similar levels.

We use a discretization of 0.1 for the domain from which we draw view and query preference vectors (0
through 1, in increments of 0.1), except for when the experiment involves only three attributes in which case we
use a granularity of 0.05 in order to have a significant (> 200) number of possible preference vectors and stress
the view selection algorithm. Linear functions were used in all experiments.

The computing environment consisted of a dual Pentium II with 512MB RAM running Windows NT Work-
station 4.0, where all experiments were executed, and a PII 256MB RAM Windows NT Server 4.0, where the
datasets were stored in an Oracle DBMS. Both PREFER and MERGE are implemented in Java. The two
computers were connected through a 10Mbps LAN.

PREFER’s query running time comparison to a commercial DBMS. We present results of an experi-
ment that compares the average time that PREFER needs to output the top results of a query, as the number of
results varies, to the time that a commercial DBMS requires for the same task. We use a 50000 tuples correlated
dataset with four attributes for this experiment. To measure the time of the DBMS, we issue a SQL query
containing the preference function in the ORDER BY clause (required to order the result by the score of the
preference function) and measure the time to output the top results. We use the top-N hint available in Oracle,
although we found that it does not considerably improve the performance. For example, we measured that an
order by query with the top-100 hint, executes just 3% faster than the same query with no hint. PREFER
contains 34 materialized views, that are chosen using algorithm View Selection for a guarantee of 500 tuples, in
a pre-processing step. This set of views covers the whole preference vector space for that guarantee. The results
of the experiment are shown in Figure 16.

One can observe that the performance benefits are very large. Even for 500 results requested, PREFER still
requires half the time of a straightforward SQL based approach. Notice, that the time required by the DBMS is
almost the same for all results as the entire relation has to be ranked before a single result is output. Also notice
that alternative straightforward algorithms could be included in the comparison, which however are clearly
inferior to PREFER, since they have to scan the whole relation. One such example is to scan the relation and
keep a priority queue with the top-N results so far.

PREFER’s View Selection Running Time. Our first experiment assesses the running time that the view
selection algorithm takes to cover the space of all queries. Figure 17 presents the running time of the algorithm
for various parameters of interest, namely the number of attributes in the underlying dataset, the discretization
of the domain of preference vectors and the number of result tuples (1 or 10) that we require guarantees for,
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attributes Top-1 tuple
Discretization 0.1 Discretization 0.05

3 39sec — 6views 40sec — 6views
4 136.5sec — 21views 149.5sec —23views
5 377sec — 58views 396.5sec —61vews

attributes Top-10 tuples
Discretization 0.1 Discretization 0.05

3 43sec —6views 44sec — 6views
4 141sec — 22views 155sec — 25views
5 384sec — 60views 404sec — 64views

Fig. 17 View Selection Algorithm Running Time

on a 50K tuple database. The guarantee provided is that the size of the view prefix is less than 500 tuples. The
times in the figure include the time to build the selected materialized views7, plus the time to solve the view
cover decision problem, as described earlier.

The running time increases with the number of attributes in the dataset as the preference vector space
increases in size; more effort is required to cover the entire space. It also increases with the granularity of
the preference vectors as the space becomes denser in candidate query points that the algorithm has to cover.
Finally, the running time increases with the number of result tuples we wish to provide guarantees for, as the
algorithm has to solve the view cover decision problem for each result tuple we wish to have a guarantee for.

PREFER’s Query Performance as function of the Dataset size. Figure 18 presents the results of an
experiment assessing the query performance of PREFER with respect to the dataset size. In this experiment we
used datasets with four attributes. We target a guarantee that the first result of a random query is identified
by retrieving at most 500 tuples from the database. We vary the number of views allowed to be materialized
and we measure the fraction of the queries that satisfy the guarantee we wish to provide. The fraction of the
queries is measured by exhaustively executing all possible queries (whose vectors’ components fall on the 0.1
discretization) on the views that have been materialized and counting the number of them that satisfy the
guarantee. We observe that PREFER scales gracefully with the dataset size. For the case of correlated data
(Figure 18(a)) increasing the number of tuples in the database by five times, requires only doubling the number
of materialized views to cover 100% of the possible queries. Increasing the number of tuples fifty times, requires
almost tripling the number of materialized views to cover 100% of the queries. Notice that only ten views are
enough to cover 90% of the query space for a dataset with 10,000 correlated tuples (Figure 18(a)).

The smaller slopes of the curves for increasing number of tuples is due to the skew. In particular, since the
distribution of tuple values is skewed, the distribution of scores in each view is skewed as well. For this dataset,
as the number of tuples increases, the sizes of the generated covered spaces are smaller, since the number of
tuples greater than a specific watermark value decreases, due to skew. Consequently, for a fixed number of views,
a smaller fraction of the query space is covered when the number of tuples of the database increases.

Figure 18(b) presents the results of the same experiment on the random dataset. In the case of random
data (uniformly distributed attribute values) the number of additional views required to assure that all queries
provide guarantees appears to grow very slowly with database size.

The difference in the fraction of space covered with the same number of views does not vary a lot as the
number of tuples increases. This happens because we are dealing with uniform data which means that the values
of a preference function fq are sparse in the region where fq takes its maximum values. Hence, the fraction of
tuples greater than a specific watermark value essentially remains constant (for a truly uniform distribution).

In Figure 18 for a fixed number of views, we often miss the guarantee, because a portion of the query space
remains uncovered as a consequence of the imposed constraint on the number of views.

Varying the number of attributes in PREFER. Figure 19 presents the results of an experiment assessing
the scalability of the view selection algorithm with respect to the number of attributes in the underlying dataset,

7 We store the 500-th tuple of every view that we build and build the views directly from a native database interface
and not through JDBC. Hence the overall performance is better than [21].
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Fig. 18 Varying the dataset size in PREFER
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Fig. 19 Varying the number of attributes

which has 500,000 tuples. Figure 19(a) presents the results of the experiment for the correlated dataset. The
number of tuples in the datasets is the same, so as the number of attributes increases the distribution of
distances between the tuples is expected to increase as well. This explains the different slopes of the curves
as the number of attributes increases. The distribution of score values in each view becomes increasingly more
skewed as the dimensionality increases, for the types of preference functions we consider in this paper. The
number of tuples with scores larger than a specific watermark value decreases for this dataset as the number of
attributes increases, yielding smaller coverage areas. Contrasting with figure 19(b) which presents the results of
the same experiment for random data, we observe that the overall trends are the same, the curves however for
random data, especially as the number of attributes increase, are steeper (have higher slope). This is expected,
since the distribution is not as skewed and as a result, a larger fraction of the preference attribute space is
covered for the same number of materialized views.

PREFER’s query performance as a function of required guarantees. Figure 20 presents the results of
an experiment assessing the query performance of PREFER as a function of the guarantees requested. We use
four-attribute datasets in this experiment. We vary the guarantees provided by the queries, by increasing the
maximum number of view tuples read to report the first result of queries. Figures 20(a)(b) show the results for
the correlated dataset for two dataset sizes, and Figures 20(c)(d) show the results for the random datasets.

In each figure we report two curves each for different number of materialized views. We observe that in all
cases, with twenty views, the majority of queries satisfy a guarantee as small as 500 tuples. A similar phenomenon
with the impact of skew exists in this case. For random data (Figure 20(c)(d)) for the same dataset size the
fraction of queries providing a specific guarantee is higher than in the case of correlated data.
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Fig. 21 Comparison with the Onion Technique

Comparison of PREFER with the Onion technique. Figure 21 presents an experimental comparison or
PREFER against the Onion technique, which was briefly described in Section 2. The Onion technique retrieves
in the worst case (which is the average case as well in our experiments) z convex hulls to answer a top-z query.
We implemented the Onion technique and we report on the number of tuples retrieved from the database,
for a database with 50K tuples and 3 attributes, increasing the number of query results requested. We vary
the number of results requested and the number of views materialized in our technique. The Onion technique
requires approximately 2.5 hours to construct the index for such a relation(50K tuples and 3 attributes). The
time is exponential to the number of attributes. This was the maximum experiment we could run with the
Onion technique that would require a reasonable amount of time for preprocessing.
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Fig. 22 Varying the number of views and the depth

For this experiment we construct materialized views by imposing a guarantee of 500 tuples only for the first
query result (the guarantee is not that important in this case, since we don’t cover the whole query space.) Thus
the views are constructed in a way that no guarantees are provided for additional results with our technique
and, so, we level the query performance playground in order to fairly compare with Onion, which is focused on
the first result. Figure 21(a) presents the results for the correlated dataset. The proposed technique is superior
to the Onion technique even with a single view available, for all requested results. We also observe that the
performance of our technique deteriorates slightly as the number of requested tuples increases. This is not the
case for the Onion technique. The performance deteriorates rapidly and when more than 20 results are requested
it has to scan the entire dataset. This is because this dataset is decomposed into 20 convex hulls by the Onion
technique. The number of convex hulls decreases when the dataset has attributes with small cardinalities. It is
interesting to notice that in this experiment the views are constructed with a guarantee of 500 tuples only for
the first result. Even in this case, the proposed technique is capable of outperforming the Onion technique for
all requested results. Figure 21(b) presents the results for the random dataset. We observe that when only one
view is available, the Onion technique is better for the first result, but its performance deteriorates rapidly for
additional results. Moreover as the number of views increases, our technique becomes much better for all results
retrieved, even though the views were constructed without guarantees for additional results. For more than 10
results, the Onion technique essentially performs a scan of the entire dataset, because there are only 10 convex
hulls in the Onion index.

Decreasing the depth of the materialized views in PREFER. We performed a series of experiments
to evaluate what impact the decrease of the depth of the views has on the performance of PREFER. We used
two synthetic datasets of 50,000 tuples each, the one with independent and the other with correlated attribute
values. Four attributes were used and the views and queries discretization was 0.05. We assumed that the space
that is available is 10 times the size of the relation. That is, if we construct m views, each of them will have
depth 10·50,000

m . We increased the number of views and measured the average number of tuples that we need to
retrieve from the database to output the top-1, top-10 and top-100 results. The average was calculated over all
possible queries with discretization 0.05.

The resulting graphs for the two datasets are shown in Figure 22. These graphs show the trade-off between
having a big number of views and having deep views. We observe that for the top-1 result the average number
of tuples retrieved is decreasing as the number of views increases and reaches 2, which is the absolute minimum,
at 260 to 270 views. This happens because the number of tuples that we need to retrieve to get the first result is
generally very small so the depth of the views does not matter so much and when the number of views increases
there is always a view very close to the query. The absolute minimum number of tuples that we need to retrieve
in order to output the top result is 2, because we always have to read the top tuple of Rv to calculate the
watermark and the second tuple of Rv to check if its fv score is smaller than the watermark value.

On the other hand, notice that for the top-10 and the top-100 results the average number of tuples retrieved
is initially decreasing with the number of views until we reach 85 views, where the minimum number of tuples
are retrieved and then it increases again. This happens because when the number of views increases beyond
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Fig. 23 Performance of MERGE

a certain point (85 for this dataset) the depth decreases so much that a significant number of queries need to
query the original relation R in order to retrieve the top-N results. Thus they retrieve all 50,000 tuples and
affect the average significantly.

Evaluation of MERGE. The performance of the MERGE system depends on the number of sources and on
the similarity of the function fq, which is used by the user query, to the functions fv1 , . . . , fvn supported by
the sources. Every source’s relation has 50,000 tuples and is generated synthetically as described above. The
attribute values are independent from each other. We use a discretization of 0.05 for the domain from which we
draw source and query preference vectors (0 through 1, in increments of 0.05).
Prefix size for varying distance between metabroker’s and sources’ queries in MERGE. Our first
experiment on MERGE assesses the average prefix size that we need to retrieve from each of the underlying
sources in order to present to the user of the metabroker the top 1, 10 and 100 results, as a function of the
Manhattan distance MD between the preference vectors of the user query and the source queries (MD =∑k

j=1 |qj−vj |). For simplicity in the report, we assumed the distance of the query from each source is the same.
Notice that the Manhattan distance between any two source queries can be at most two times the distance
between the metabroker and the source queries. Given the discretization and the fact that we work with four
attributes, the maximum Manhattan distance of the query’s preference vector from each source’s preference
vector is 2. We use four sources for this experiment and the resulting graph is shown in Figure 23 (a). We see
a slightly superlinear performance deterioration due to the fact that the preference scores have a concentration
towards the “average” score.

Prefix size for varying number of sources in MERGE. This experiment measures the average prefix size
that we need to retrieve from each of the underlying sources in order to present to the user of the metabroker
the top 1, 10 and 100 results, as a function of the number of sources that are used. The Manhattan distance
between the metabroker query and the source queries is fixed to 0.2. The result is shown in Figure 23 (b). The
average number of tuples retrieved from each source decreases as more sources are used.

Speculative version of MERGE. In this experiment we apply a speculation factor ε to one of the four
sources and measure the cost of speculation and the speedup that we get. Recall that the cost of speculation is
the average difference between the indices of tuples in the speculative results sequence and in the real results
sequence. The speedup is the average ratio of the decrease in the number of tuples that we need to retrieve from
each source to output the top-N results. In Figure 24 we show how the average cost and speedup vary with the
speculative factor, to present to the user of the metabroker the top 1, 10 and 100 results.

8 Implementation of PREFER

The overall system architecture is shown in Figure 11. Using algorithm V iewSelection we select a number of
views and we materialize them. A relational DBMS is used for storing the views.
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Fig. 24 Speculation in MERGE

We have developed a Java API to allow programmers to use PREFER’s functionality in applications. We
have also implemented PREFER as a stand alone application that runs on Microsoft Windows and connects to
Oracle database servers via JDBC. PREFER provides to the end users an easy to use interface that automates
the process of selecting and materializing the views and querying the database using these views. The application
can be divided into two parts. The first part automates the selection and materialization of the views. The user
inputs (see Figures 25(a) and 25(b)): (a) the name of a relation R, (b) the list of attributes of R that will
be used in the preference functions, (c) the maximum number S of views that will be created, (d) the depth
D of the views, (e) a constraint C, that denotes the maximum number of tuples that are retrieved to output
the first result, (f) the granularity gv (discretization) of the views’ attribute weights and (g) the granularity gq

(discretization) of the queries’ attribute weights.
The construction part of the application:

– Creates at most S non-overlapping views whose weights are multiples of gv. By non-overlapping we mean
that none of the views should be contained in the query space covered by the other views. Notice that the
constraint C is needed at this point to define the covered space for each view as described in Section 5.1.
Only the top-D tuples of each view are stored. One should give a large S value if covering the whole space
with respect to the constraint C and the granularity gv is important.

– Stores the name and the weights of each view in a new table called INFO table.
– Tests all queries whose weights have granularity gq and find the view that covers each of them. We create a

table called PAIRS and we insert the weights of the query and the “best” view that we found for each tested
query.

The second part of the application uses the views that were created to efficiently answer to user queries. The
user inputs (see Figure 25(c)): (a) the name of a relation R, (b) The preference vector q, which contains the
requested weights for each attribute and (c) the number N of results to be output.
The querying part of the application (see Figure 25(d)):

– Looks up the PAIRS table to find the “best” view V for the query. If q is not in PAIRS table then we select
the view from INFO table that is closer to q with respect to the Manhattan distance.8

– Retrieves the preference vector v for V by looking up INFO table.
– Uses PipelineResults algorithm to output the top-N results according to q.

The specification of the PREFER API and the PREFER application are available at
http://www.db.ucsd.edu/PREFER.

8 Recall that in Section 5.3 we have proposed a heuristic for the case where none of the views covers a query. We pick
the view that minimizes the expression fv(tl

v) +
∑k

i=1
(qi − vi)Ai(t

l
v) − fq(t

1
v). We approximate this idea by picking the

view that has the smallest Manhattan distance to the query.
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Fig. 25 Screenshots of the Application
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