
Incremental Validation of XML Documents

ANDREY BALMIN∗

IBM Almaden Research Center

and

YANNIS PAPAKONSTANTINOU and VICTOR VIANU

University of California at San Diego

We investigate the incremental validation of XML documents with respect to DTDs, specialized
DTDs and XML Schemas, under updates consisting of element tag renamings, insertions and
deletions. DTDs are modeled as extended context-free grammars. “Specialized DTDs” allow
the decoupling of element types from element tags. XML Schemas are abstracted as specialized
DTDs with limitations on the type assignment. For DTDs and XML Schemas, we exhibit an
O(m log n) incremental validation algorithm using an auxiliary structure of size O(n), where n
is the size of the document and m the number of updates. The algorithm does not handle the
incremental validation of XML Schema wrt renaming of internal nodes, which is handled by
the specialized DTDs incremental validation algorithm. For specialized DTDs, we provide an
O(m log2 n) incremental algorithm, again using an auxiliary structure of size O(n). This is a
significant improvement over brute-force re-validation from scratch.

We exhibit a restricted class of DTDs called “local” that arise commonly in practice and for
which incremental validation can be done in practically constant time by maintaining only a list of
counters. We present implementations of both general incremental validation and local validation
on an XML database built on top of a relational database.

Our experimentation includes a study of the applicability of local validation in practice, results
on the calibration of parameters of the auxiliary data structure, and results on the performance
comparison between the general incremental validation technique, the local validation technique,
and brute-force validation from scratch.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Pro-
cessing ; Relational Databases; Transaction Processing; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval—Information Filtering

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Update, validation, XML

Author’s address: Andrey Balmin, IBM Almaden Research Center, 650 Harry Road, San Jose,
CA 95120. e-mail: abalmin@us.ibm.com. Yannis Papakonstantinou and Victor Vianu, U.C. San
Diego, Computer Science and Engineering Department, La Jolla, CA 92093-0114. e-mail: {yannis,

vianu}@cs.ucsd.edu
Yannis Papakonstantinou was supported in part by the NSF under grants IRI-9734548 and Digital
Government 9983510. Victor Vianu was supported in part by the NSF under grants ITR-0225676
(SEEK) and ITR-0313384.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0100 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 100–140.

Incremental Validation of XML Documents · 101

1. INTRODUCTION

The emergence of XML as a standard representation format for data on the Web
has led to a proliferation of databases that store, query, and update XML data.
Typically, valid XML documents must conform to a specified type that places
structural constraints on the document. When an XML document is updated, it has
to be verified that the new document still satisfies its type. Doing this efficiently is
a challenging problem that is central to many applications. Brute-force validation
from scratch is not practical when the data are large, because it requires reading
and validating the entire database following each update. Instead, it is desirable
to develop algorithms for incremental validation. However, this approach has been
largely unexplored. In this paper we investigate the efficient incremental validation
of updates to XML documents.

An XML document can be viewed abstractly as a tree of nested elements. The
basic mechanism for specifying the type of XML documents is provided by Docu-
ment Type Definitions (DTDs) [W3C 1998]. DTDs can be abstracted as extended
context-free grammars (CFGs). Unlike usual CFGs, the productions of extended
CFGs have regular expressions on their right-hand sides. An XML document sat-
isfies a DTD if its abstraction as a tree is a derivation tree of the extended CFG
corresponding to the DTD. XML Schema [W3C 2001] and, more recently, RELAX
NG [RELAX NG]1 schemas provide XML typing mechanisms that extend DTDs
in several ways. Most notable is the ability to decouple the type of an element
from its label. In this paper we use specialized DTDs [Papakonstantinou and Vianu
2000], that capture the decoupling of element tags from types. Indeed specialized
DTDs allow the type of an element to depend on the full set of node labels (tags)
of the XML tree (as is the case in RELAX NG), while XML Schema is abstracted
as a restriction of specialized DTDs where the type of an element only depends
on its label and the type of its parent. It is a well-known and useful fact that
specialized DTDs define precisely the regular languages of unranked trees, and so
are equivalent to top-down (and bottom-up) non-deterministic tree automata.

Verifying that a word satisfies a regular expression2 is the starting point in check-
ing that an XML document satisfies a DTD. An obvious way to do this following
an update is to verify it from scratch, i.e. run the updated sequence of labels
through the non-deterministic finite automaton (NFA) corresponding to the reg-
ular expression. However, this requires O(n) steps, under any reasonable set of
unit operations, where n is the length of the sequence (note that, in complexity-
theoretic terms, membership of a word in a regular language is complete in NC1

under dlogtime reductions [Vollmer 1999].) We can do better by using incremental
validation, relying on an appropriate auxiliary data structure. Indeed, we provide
such a structure and corresponding incremental validation algorithm that, given a
regular expression r, a string s of length n that satisfies r, and a sequence of m
updates (inserts, deletes, label renamings) on s, checks3 in O(m log n) whether the

1RELAX NG is a schema language for XML, designed within OASIS. It is currently at the final
stage of ISO standardization.
2A word satisfies a regular expression if it belongs to the corresponding language.
3For readability, we provide here the complexity with respect to the string and update sequence,
for fixed (specialized) DTD or regular expression. The combined complexity is spelled out in the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

102 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

updated string satisfies r. The auxiliary structure we use materializes in advance
relations that describe state transitions resulting from traversing certain substrings
in s. These are placed in a balanced tree structure that is maintained similarly to
B-trees and is well-behaved under insertions and deletions. The size of the auxiliary
structure is O(n). In addition, we provide an O(m log n) time algorithm that main-
tains the auxiliary structure, so that subsequent updates can also be incrementally
validated.

Our approach to incremental validation of trees with respect to DTDs, specialized
DTDs and XML Schemas builds upon the incremental validation algorithm for
strings. DTDs turn out to be easier to validate than specialized DTDs, whereas
XML Schemas fall between specialized DTDs and DTDs in difficulty. Indeed, based
on the algorithm for string validation, incremental validation of m updates to a
tree T with respect to a DTD can be done in time O(m log |T |) using an auxiliary
structure of size O(|T |) which can also be maintained in time O(m log |T |). The
same complexity results apply to XML Schemas for all update operations, except
internal node renamings, which are handled using the algorithm for the incremental
validation of specialized DTDs.

We then consider a restricted class of DTDs called “local”, that arises very fre-
quently in practice. Although we did not pursue this, we expect that “local” XML
Schemas are equally frequent and their incremental validation can benefit in the
same way. Intuitively, these are DTDs using regular expressions for which mem-
bership after an update can be determined locally, by examining only substrings
within bounded distance from the update position. This allows for a very efficient
incremental validation algorithm. Although the theoretical worst-case data com-
plexity of validating m updates is still O(m log |T |), and the auxiliary structure has
size O(i log(|T |/i)), where i is the number of internal nodes of T , the algorithm can
be implemented very efficiently. Furthermore, if no internal nodes may be renamed,
there is no need for an auxiliary data structure. In practice, the technique provides
constant time validation, with space overhead of O(i) counters that are represented
very efficiently by usual 32-bit integers, which are sufficient when the maximum
size of element lists in the database is 232. In addition to its simple implementation
and efficiency, local validation is very frequent. We tested 60 DTDs from OASIS
(see [Choi 2002]) and only 10 DTDs were not local.

We proceed with the incremental validation of specialized DTDs, which is also our
method for the incremental validation of XML Schema wrt internal node renamings.
Specialization introduces another degree of complexity. Intuitively, this is due to the
fact that an update to a single node may have global repercussions for the typing of
the tree. This stands in contrast with DTDs without specialization, where a single
update to a node needs to be validated only with respect to the type of its parent
and the sequence of its children, so has local impact on type checking. In XML
Schemas a single update to a node has impact only on the types of its descendants.

We first attempt a rather straightforward extension of the incremental validation
for DTDs and obtain an algorithm of time complexity O(m depth(T) log |T |) using
an auxiliary structure of size O(|T |). However, this is not satisfactory when the
tree is narrow and deep. In the worst case, depth(T) = |T |. To overcome this,

paper.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 103

we develop a more subtle approach that has the following main ingredients: First,
the unranked tree T representing the XML document is mapped into a binary tree
encoding that allows us to unify the horizontal and vertical components of valida-
tion. Then the specialized DTD is translated into a bottom-up non-deterministic
tree automaton accepting precisely the encodings of valid documents. Finally, an
incremental validation algorithm for binary trees with respect to tree automata is
developed, based on a divide-and-conquer strategy that focuses on computations
along certain paths in the tree chosen to appropriately divide the work. Auxiliary
structures are associated to each of these paths. The resulting incremental valida-
tion algorithm has time complexity O(m log2 |T |) and uses an auxiliary structure
of size O(|T |).

Finally, in the last part of the paper, we evaluated the general DTD incremental
validation algorithm, the validation algorithm for local DTDs, and a brute-force (re-
)validation algorithm on an XML database that operates on top of a commercial
RDBMS system. We describe the XML database and the implementation of the
necessary data structures on top of an RDBMS. We discuss the applicability of the
validation algorithm for local DTDs and a set of performance results that indicate
its superiority over general incremental validation in the case of local DTDs. The
experiments also quantify the significant superiority of both incremental validation
algorithms over the brute-force technique. Finally, the experiments provide useful
data for the optimization of various parameters of the data structures.

Related Work. As mentioned earlier, XML databases need to efficiently val-
idate updates on their content. Ipedo’s XML database [Ipedo] validates update
commands with respect to XML Schemas; however, to our knowledge no techni-
cal information is publicly available on the underlying structures and algorithms.
Another application where efficient validation is useful is XML editors (see [XML
Edt] for a survey of available products). Some XML editors like XMLMind [XML-
mind] and XMLSpy [XMLSpy] feature incremental validation of DTDs. Recently,
XMLSpy also included validation of XML Schemas [XMLSpy]. No information is
provided on their incremental validation algorithms.

Note that our abstraction of the content models of DTDs [W3C 1998] by arbitrary
regular expressions removes the requirement for 1-unambiguous regular expressions.
The incremental validation algorithm of [Barbosa et al. 2004] utilizes the fact that
1-unambiguousness leads to deterministic Glushkov automata for the regular ex-
pressions of DTDs. Consequently [Barbosa et al. 2004] use the Glushkov automata
to develop a local incremental validation algorithm. Our definition of “locality” is
more general in two aspects. First, the “CF” concept of locality in [Barbosa et al.
2004] corresponds to particular cases of 1-local of our development. We define a
more general concept of “k-local”, whose significance is that an update can be val-
idated by inspecting only the siblings within distance k from the update. Second,
our definition of locality is based on the locality of the minimal automata of the
regular expressions, while [Barbosa et al. 2004] base the definition on the Glushkov
automata. We prove that if an automaton (including potentially a Glushkov au-
tomaton) recognizes a regular expression is local then the minimal automaton is
also local, but the converse does not necessarily hold. Hence detecting locality
using the minimal automata provides a wider definition. Our locality property is

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

104 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

orthogonal to the “1,2 CF” property of [Barbosa et al. 2004], which was designed
exclusively to validate individual atomic updates. Instead, our validation algorithm
supports transactions consisting of multiple updates.

Closely related to incremental validation is incremental parsing, which is key to
incremental program compilation. Research on incremental parsing has focused
on LR parsing [Ghezzi and Mandrioli 1980; Wagner and Graham 1998; Jalili and
Gallier 1982; Larcheveque 1995; Petrone 1995] and LL (recursive descent parsing)
[Murching et al. 1990; Li 1995; Linden 1993], since programming languages are
typically described by LR(0), LR(1), LL(1), LALR(1) and LL(1) grammars. All
techniques start by parsing the input text and producing a parse tree, which is
typically annotated with auxiliary information. The parse tree is updated as a re-
sult of the updates to the input text. A typical theme of the incremental parsing
techniques is identifying minimal structural units of the parse tree that are af-
fected by the modifications (see [Ghezzi and Mandrioli 1980] for LR(0) parsing and
[Larcheveque 1995] for a generalization to LR(k).) However, the performance of the
incremental parsing algorithms is hard to compare to our validation algorithm be-
cause of the differences in settings and goals, which typically involve minimization
of the changes on the parse tree. Indeed, the best-case performance of incremental
parsers will generally beat the one of our regular expression validation algorithm,
which always takes O(log n) steps for a single update. This is because incremental
parsers take advantage of natural “termination points” used in programming lan-
guages syntax [Linden 1993], that typically occur close to the update. Logarithmic
complexity in the size of the string is achieved for LALR grammars by [Wagner
and Graham 1998] but only if the grammar is such that its parse trees have depth
O(log n) for a string of length n. One can easily see that there are LALR gram-
mars that do not meet this property, and neither do the cfgs corresponding to
DTDs. Furthermore, [Wagner and Graham 1998] require that the interpretation
of iterative sequences be independent of the context. In particular, [Wagner and
Graham 1998] provide the following “bad grammar”, which recognizes the regular
expression (a|b)x∗

S → aC+|bD+

C → x
D → x

This grammar is problematic for their algorithm because the reduction of an x
to either a C or a D is determined by the initial symbol in the sentence, which is
arbitrarily distant. In this case their algorithm needs O(n) recomputation, where
n is the size of the string. Notice that our divide-and-conquer algorithm for the
incremental validation of regular expressions does not pose any restriction on the
regular expression.

The complexity of validation is related to that of membership of a word in a
regular language, and of a tree in a regular tree language. The problem of word
membership in a regular language is known to be complete in uniform NC1 under
dlogtime reductions [Vollmer 1999] and acceptance of a tree over a ranked alpha-
bet by a tree automaton is complete in uniform NC1 under dlogtime reductions
if the tree is presented in prefix notation [Lohrey 2001], and complete in logspace

if the tree is presented as a list of its edges [Segoufin 2002]. To our knowledge,
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 105

no complexity results exist on the incremental variants of these problems, with the
exception of a result of [Patnaik and Immerman 1997] discussed below.

Incremental evaluation of queries by first-order means is studied by [Dong and
Su 1995] using the notion of first-order incremental evaluation systems (FOIES) A
related descriptive complexity approach to incremental computation is developed by
Patnaik and Immerman in [Patnaik and Immerman 1997]. They define the dynamic
complexity class Dyn-FO (equivalent to FOIES), consisting of properties that can be
incrementally verified by first-order means. They exhibit various problems in Dyn-
FO, such as multiplication, graph connectivity, and bipartiteness. Most relevant to
our work, they show that membership of a word in a regular language is in Dyn-
FO. For label renamings, they sketch an approach similar to ours. The incremental
algorithm and auxiliary structure for node insertions and deletions that modify the
length of the string are not spelled out. Also, no extension to regular tree languages
is discussed. The study in [Patnaik and Immerman 1997] is pursued in [Hesse and
Immerman 2002], where an extension of Dyn-FO is introduced and it is shown that
the single-step version of the circuit value problem is complete in Dyn-FO under
certain reductions. Complexity models of incremental computation are considered
in [Miltersen et al. 1994]. The focus is on the classes incr-polylogtime (incr-
polylogspace) of properties that can be incrementally verified in polylogarithmic
time (space). Interesting connections to parallel complexity classes are exhibited,
as well as complete problems for classical complexity classes under reductions in
the above incremental complexity classes.

Organization. The paper is organized as follows. Section 2 presents our ab-
straction of XML documents and DTDs. It also presents specialized DTDs, their
restriction capturing XML Schemas, and their connection to tree automata. We also
spell out formally the incremental validation problem and the assumptions made
in our complexity analysis. In Section 3 we examine the incremental validation of
strings with respect to regular expressions and develop the core divide-and-conquer
strategy used later for DTD and XML Schema validation. Section 4 presents an
O(m log |T |) validation algorithm for DTDs and an O(m) algorithm for local DTDs.
Those algorithms are also applicable to the incremental validation of XML Schemas
wrt insertions, deletions and leaf node renamings. Section 5 presents the algorithm
for incremental validation of specialized DTDs, also used for incremental validation
of XML Schemas wrt internal node renamings, yielding O(m log2 |T |) incremental
validation. Section 6 describes our implementation of incremental validation for
DTDs. Section 7 presents an evaluation of the applicability of local validation,
and experimental results comparing our general incremental algorithm for DTDs,
the algorithm for local DTDs, and a brute-force revalidation algorithm. Section 8
contains concluding remarks and future work.

2. BASIC FRAMEWORK

We introduce here the basic formalism used throughout the paper, including our
abstractions of XML documents, DTDs, and XML Schemas. We also recall basic
definitions relating to tree automata.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

106 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

<dealer>

<UsedCars>

<ad>

<model>Honda</model>

<year>92</year>

</ad>

</UsedCars>

<NewCars>

<ad>

<model>BMW</model>

</ad>

</NewCars>

</dealer>

dealer

NewCars

ad ad

UsedCars

yearmodel model

<!DOCTYPE dealer>

<!ELEMENT dealer

(UsedCars, NewCars)>

<!ELEMENT UsedCars (ad*)>

<!ELEMENT NewCars (ad*)>

<!ELEMENT ad (model, year?)>

<!ELEMENT model PCDATA>

<!ELEMENT year PCDATA>

root : dealer
dealer → UC NC
UC → ad∗

NC → ad∗

ad → model (year|ε)
model → ε
year → ε

root : dt

dt → UCt NCt µ(dt) = dealer
UCt → (adu)∗ µ(UCt) = UC
NCt → (adn)∗ µ(NCt) = NC
adu → mt yt µ(adu) = ad
adn → mt µ(adn) = ad
mt → ε µ(mt) = model
yt → ε µ(yt) = year

Fig. 1. XML, DTD and specialized DTD (UC and NC stand for UsedCars and
NewCars)

Labeled ordered trees. We abstract XML documents as labeled ordered trees.
Our abstraction ignores data values present in XML documents, because their vali-
dation with respect to an XML Schema is trivial. For example, an XML document
holding ads for used cars and new cars is shown in Figure 1 (left), together with its
abstraction as a labeled tree.

An ordered labeled tree over finite alphabet Σ is a pair T = 〈t, λ〉, where t is an
ordered tree and λ is a mapping associating to each node n of t a label λ(n) ∈ Σ.
Trees are assumed by default to be unranked, i.e. there is no fixed bound on the
number of children each node may have. The set of all labeled ordered trees over Σ
is denoted by TΣ. We sometimes denote a tree consisting of a root v with subtrees
T1 . . . Tk by v(T1 . . . Tk). We will also consider binary trees, where each node has at
most two children. If every internal node has exactly two children, the binary tree
is called complete.

We assume that finding (i) the label, (ii) the parent, (iii) the immediate left
(right) sibling, and (iv) the first child of a specified node, are unit operations, i.e.,
they can be accomplished in O(1).
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 107

Types and DTDs. As usual, we define XML document types in terms of the
document’s structure alone, ignoring data values. The basic specification method
is (an abstraction of) DTDs. A DTD consists of an extended context-free gram-
mar over alphabet Σ (we make no distinction between terminal and non-terminal
symbols). In an extended cfg, the right-hand sides of productions are regular ex-
pressions over Σ. An ordered labeled tree 〈t, λ〉 over Σ satisfies a DTD d if the
tree 〈t, λ〉 is a derivation tree of the grammar. For example, the tree is valid with
respect to the DTD in Figure 1.

The start symbol of a DTD d is denoted by root(d). We can assume without
loss of generality that for each a ∈ Σ the DTD has a single rule a → ra with a on
the left-hand side. and we denote by Na a standard non-deterministic finite-state
automaton (NFA) recognizing the language ra. The set of labeled trees satisfying
a DTD d is denoted by sat(d).

We use the following notation for NFA. An NFA is a 5-tuple N = 〈Σ, Q, q0, F, δ〉
where Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the start state,
F ⊆ Q is the set of final states, and δ is a mapping from Σ × Q to P(Q). A string
a1 . . . an is accepted by N iff there exists a mapping σ : {1, . . . , n} → Q such that
σ(a1) ∈ δ(a1, q0), σ(an) ∈ F , and for each i, 1 ≤ i < n, σ(ai+1) ∈ δ(ai+1, σ(ai)).
The set of strings accepted by N is denoted L(N). N is a deterministic finite-
state automaton (DFA) iff δ returns singletons on each input. Recall that for each
regular expression r there exists an NFA N whose number of states is linear in r,
such that N accepts the regular language r. In general, a DFA accepting r requires
exponentially many states wrt r. However, for certain classes of regular expressions,
the corresponding DFA remains linear in the expression. One such class consists of
the 1-unambiguous regular languages [Bruggemann-Klein and Wood 1998]. This is
relevant in the context of XML types, since DTDs and XML Schemas require the
regular expressions used to specify the contents of elements to be 1-unambiguous.

An important limitation of DTDs is the inability to separate the type of an ele-
ment from its name. For example, consider the dealer document in Figure 1. Used
cars have model and year while new cars have model only. There is no mechanism to
specify this using DTDs, since rules depend only on the name of elements, and not
on its context. To overcome this limitation, XML Schema provides a mechanism to
decouple element names from their types and thus allow context-dependent defini-
tions of their structure. We abstract and extend this mechanism using the notion
of specialized DTD (studied in [Papakonstantinou and Vianu 2000] and equivalent
to formalisms proposed in [Beeri and Milo 1999; Cluet et al. 1998]).

Definition 2.1. (Specialized DTD) A specialized DTD is a 4-tuple
〈Σ, Σt, d, µ〉 where Σ is a finite alphabet of labels, Σt is a finite alphabet of types,
d is a DTD over Σt and µ is a mapping from Σt to Σ. ♦

Intuitively, Σt provides, for each a ∈ Σ, a set of types associated to a, namely
those at ∈ Σt for which µ(at) = a. In our specialized DTD example (lower right
corner of Figure 1) we create two types for the element ad: a type adn whose
content is just a “model” type, and a type adu whose content is “model” and
“year”. Note that µ induces a homomorphism on words over Σt, and also on trees
over Σt (yielding trees over Σ). We also denote by µ the induced homomorphisms.

Let τ = 〈Σ, Σt, d, µ〉 be a specialized DTD. A tree t over Σ satisfies τ (or is valid
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

108 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

wrt τ) if t ∈ µ(sat(d)). Thus, t is a homomorphic image under µ of a derivation
tree in d. Equivalently, a labeled tree over Σ is valid if it can be “specialized” to a
tree that is valid with respect to the DTD over the alphabet of types. The set of
all trees over Σ that are valid w.r.t. τ is denoted sat(τ). When τ is clear from the
context, we simply say that a tree is valid.

An XML Schema is abstracted as a specialized DTD 〈Σ, Σt, d, µ〉 where two
additional constraints apply: For every rule a → ra of d, the regular expression
ra does not contain two types at and at′ such that µ(at) = µ(at′). Intuitively, the
constraint implies that for every node v of a tree t that satisfies an XML Schema,
the type of v is a function of its label and of the type of its parent.

Tree automata. There is a powerful connection between specialized DTDs and
tree automata: they are precisely equivalent, and define the regular tree languages
[Bruggemann-Klein et al. 2001]. We will make use of this connection in the paper.

Tree automata are devices whose purpose is to accept or reject an input tree.
Classical tree automata are defined on ranked trees, i.e., trees whose internal nodes
have a fixed number of children. As in the case of string automata, there are
several equivalent variants: top-down nondeterministic automata are equivalent
to bottom-up (non)-deterministic ones. In contrast to string automata, top-down
deterministic automata are weaker than their non-deterministic counterpart and
they capture the key limitation of XML Schemas with respect to specialized DTDs:
An XML Schema assigns a unique type to each node and this type can be inferred
from the label of the node and the labels of the ancestors of the node. In contrast,
specialized DTDs assign to each node a set of possible types, which depends on the
context provided by the full set of nodes of the tree. We next review bottom-up
non-deterministic automata on complete binary trees. For technical reasons that
become clear in Section 5, we assume that all leaves have the same label #.

Definition 2.2. (Bottom-up non-deterministic tree automaton)
A bottom-up non-deterministic tree automaton (BNTA) is a 5-tuple
A = 〈Σ, Q, Q0, qf , δ〉 where Σ is a finite alphabet, Q is a finite set of states, Q0

is the set4 of start states (Q0 ⊆ Q), qf is the accept state (qf ∈ Q) and δ is a
mapping from Σ × Q × Q to P(Q).

A tree T = 〈t, λ, 〉 is accepted by the automaton A iff there is a mapping σ from
the nodes of t to Q such that: (i) if n is a leaf then σ(n) ∈ Q0, (ii) if n is an internal
node with children n1, n2 then σ(n) ∈ δ(λ(n), σ(n1), σ(n2)), and (iii) if n is the root
then σ(n) = qf . The set of trees accepted by A is denoted by T (A). ♦

There is a prima facie mismatch between DTDs and tree automata: DTDs de-
scribe unranked trees, whereas classical automata describe binary trees. There are
two ways around this. First, unranked trees can be encoded in a standard way as
binary trees. Alternatively, the machinery and results developed for regular tree
languages can be extended to the unranked case, as described in [Bruggemann-
Klein et al. 2001]. For technical reasons, it will be useful to adopt here the first
approach.

4Some definitions of BNTA require a single start state for each leaf symbol, and allow a set of final
states. Having multiple start states and a single final state is a harmless variation, convenient
here for technical reasons.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 109

The incremental validation problem. Given a (specialized) DTD τ , a tree
T ∈ sat(τ), and a sequence s of updates to T yielding another tree T ′, we wish
to efficiently check if T ′ ∈ sat(τ).5 In particular, the cost should be less than
re-validation of T ′ from scratch. The individual updates are the following:
(a) replace the current label of a specified node by another label,
(b) insert a new leaf node after a specified node,
(c) insert a new leaf node as the first child of a specified node, and
(d) delete a specified node; if the node is an internal one, the subtree

rooted at the node is also deleted.

We allow some cost-free one-time pre-processing to initialize incremental valida-
tion, such as computing the NFA corresponding to the regular expressions used by
the DTDs. We will also initialize and then maintain an auxiliary structure A(T) to
help in the validation. The cost of the incremental validation algorithm is evaluated
with respect to:
(a) the time needed to validate T ′ using T and A(T), as a function of |T | and |s|
(b) the time needed to compute A(T ′) from T, s, and A(T),
(c) the size of the auxiliary structure A(T) as a function of |T |.

The complexity analysis is provided in terms of the number of update operations
and will also make explicit the combined complexity taking into account the spe-
cialized DTD.

The algorithms can be trivially extended to accomodate insertions of subtrees.
In this case the provided algorithmic complexity results are modified to account for
the straightforward non-incremental validation of the subtree.

3. WARMUP: INCREMENTAL VALIDATION OF STRINGS

As warmup to the validation problem, we consider in this section the incremental
validation of strings with respect to a regular language specified by an NFA. We
first consider the case when all updates consist of label renamings. We discuss
inserts and deletes later.

Consider an NFA N = 〈Σ, Q, q0, F, δ〉, and a string a1 . . . an ∈ L(N). For
compatibility with our tree formalism, we view a string as a sequence of nodes (or
elements) each of which has a label. When there is no confusion we sometimes blur
the distinction between an element and its label.

Consider a sequence of element renamings u(ai1 , b1), . . . , u(aim , bm), where i1 <
i2 < . . . < im. The renaming u(aij , bj) requires that the label of element aij be
renamed to bj . We would like to efficiently check whether the updated string

a1 . . . ai1−1b1ai1+1 . . . aim−1bmaim+1 . . . an ∈ L(N).

Validating the new string from scratch by running it through the automaton N
takes O(n|Q|2 log |Q|). We can easily do better by maintaining some auxiliary
information. For simplicity in the presentation, we assume that we can find the

5Notice that a subsequence (prefix) of s may produce a tree T ′′ �∈ sat(τ), while the complete
sequence produces a consistent tree T ′ ∈ sat(τ).

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

110 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

rank of a specified node among its siblings in O(1). This assumption is removed
later.

Consider the case of a single renaming u(i, b) for 1 ≤ i ≤ n. Suppose that we
have pre-computed, for each i, 1 < i < n, the sets Pre(i) = δ(q0, a1 . . . ai−1) and
Post(i) = {s | δ(s, ai+1 . . . an) ∈ F}. If we precompute Pre and Post in arrays
then we can retrieve Pre(i) or Post(i) in O(|Q|). An O(|Q|2) algorithm for checking
whether the string is in L(N) following the update u(i, b) is now obvious: If there
is a state s1 ∈ Pre(i), a state s2 ∈ Post(i1 + 1) such that s2 ∈ δ(b, s1) then the
updated string is in L(N).

However, the Pre and Post technique does not scale to m updates. Furthermore,
maintaining Pre and Post is problematic because, following each update u(i, b),
we need to recompute all Pre(j) for j > i and Post(j) for j < i. This requires
O(n|Q|2 log |Q|) time.

As the next step in the warmup, we can try to keep some additional auxiliary
information in order to better handle multiple updates. For each i, j, 1 ≤ i < j ≤ n,
let Tij be the transition relation {〈p, q〉 | p, q ∈ Q, q ∈ δ(p, ai . . . aj)}. Note that
Tij = Tik ◦Tkj , i < k < j, where ◦ denotes composition of binary relations. We also
denote by δa the relation {〈p, q〉 | q ∈ δ(p, a)} for a ∈ Σ. If all Tij are available, then
checking validity of the updated string a1 . . . ai1−1b1ai1+1 . . . aim−1bmaim+1 . . . an

reduces to verifying that

〈q0, f〉 ∈ T0(i1−1) ◦ δb1 ◦ T(i1+1)(i2−1) ◦ . . . ◦ T(im+1)(n)

for some f ∈ F . This takes time O(m|Q|2 log |Q|), if we assume that we have
precomputed in a 2-dimensional array all relations Tij . In particular, the composi-
tion of two relations is a join operation. It can be accomplished in O(|Q|2 log |Q|2) =
O(|Q|2 log |Q|) by employing sort-merge join. Each relation is sorted in
O(|Q|2 log |Q|) and then they are merged in O(|Q|2). The same complexity can
be derived if we assume binary tree indices on each attribute of the relations and
we employ index-based join [Garcia-Molina et al. 2001]. The size of the array re-
quired for the precomputation is n2|Q|2. However, maintaining the precomputed
structure is prohibitively expensive, since we have to recompute every relation Tij if
there is an update between the ith and jth position of the string. We are therefore
led to consider a more promising approach, which provides the basis for the solution
we adopt.

Divide-and-conquer validation. We describe a divide-and-conquer approach
that allows validating a sequence of m renamings to a string of length n, as well
as update the auxiliary structure, in O(m|Q|2 log |Q| log n) time. The size of the
auxiliary structure is O(|Q|2n). Note that the approach below is similar to that
briefly sketched in [Patnaik and Immerman 1997].

For simplicity, assume first that n is a power of 2, say n = 2k. The main idea is to
keep as auxiliary information just the Tij for intervals [i, j] obtained by recursively
splitting [1, n] into halves, until i = j. More precisely, consider the transition
relation tree Tn whose nodes are the sets Tij , defined inductively as follows:
• the root is T1,2k

• each node Tij for which j − i > 0 has children Tik

and T(k+1)j where k = j−i+1
2 ,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 111

T18

T14 T58

T12 T34 T56 T78

T11 T22 T33 T44 T55 T66 T77 T88

Fig. 2. The tree T18

• Tii are leaves, 1 ≤ i ≤ n.

For example, T8 is shown in Figure 2.
Note that Tn has n + (n/2) + . . . + 2 + 1 = 2n − 1 nodes and has depth

log n. Thus, the size of the auxiliary structure is O(n|Q|2).
Consider now a string a1a2 . . . an ∈ L(N), and a sequence of renamings

u(i1, b1), u(i2, b2), . . . , u(im, bm), where i1 < i2 < . . . < im. The updated string
is a1 . . . ai1−1b1ai1+1 . . . aim−1bmaim+1 . . . an. Note that the relations Tij that are
affected by the updates are those laying on the path from a leaf Tiviv (1 ≤ v ≤ m)
to the root of Tn. Let I be the set of such relations, and note that its size is at
most m log n.

The tree Tn can now be updated by recomputing the Tij ’s in I bottom-up as
follows: First, the leaves Tiviv ∈ I are set to δbv , 1 ≤ v ≤ m. Then each Tij ∈ I
with children Tiv and Tvj for which at least one has been recomputed is replaced
by Tiv ◦ Tvj . Thus, at most m log n Tij ’s have been recomputed, each in time
O(|Q|2 log |Q|), yielding a total time of O(m|Q|2 log |Q| log n).

The validation of the string a1 . . . ai1−1b1ai1+1 . . . aim−1bmaim+1 . . . an is now
trivial: it is enough to check, in the updated auxiliary structure, that 〈q0, f〉 ∈ T1n

for some f ∈ F . Thus, validation is also done in time O(m|Q|2 log |Q| logn).
The above approach can easily be adapted to strings whose length is not a power

of 2 (for example, by appropriately truncating T2k where k = 	logn
).

Dealing with inserts and deletes. We next extend the divide-and-conquer
approach outlined for renamings to the case when node inserts and deletes are also
allowed. The above approach no longer works, for two reasons: First, inserts and
deletes cause the position of nodes in the string to change. Second, the length n
of the string, and therefore the set of relevant intervals used to construct Tn, are
now dynamic. Due to these differences, inserts and deletes would require recom-
puting the entire tree Tn, which is inefficient. Instead, we would like to use a tree
structure T that can be incrementally maintained under inserts and deletes, as well
as renamings, while preserving the properties that enabled our divide-and-conquer
approach. Most importantly, the tree should continue to be balanced and have
depth O(log n). This suggests adopting an approach based on B-trees, that we
describe next. We assume basic familiarity with B-trees (e.g., see [Garcia-Molina
et al. 2001]).

The B-tree variant we use is the 2-3 tree, which was a precursor to B-trees
[Cormen et al. 1990]. Each node contains 3 cells. Each cell is either empty or
contains a transition relation Ts corresponding to some subsequence s of v1 . . . vn,
conforming to the rules described below. At most one of the 3 cells in a node can
be empty, assuming n ≥ 2. Each nonempty cell is either contained in a leaf node
or has one node (with three cells) as a child. The following rules apply to the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

112 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

〈Tsa , Tsb , Tsc〉
〈Ts1 , Ts2〉 〈Ts3 , Ts5 , Ts6〉 〈Ts7 , Ts9〉

〈Tse , Tsf 〉
〈Tsa , Tsb′ 〉 〈Tsb′′ , Tsc〉

〈Ts1 , Ts2〉 〈Ts3 , Ts4〉 〈Ts5 , Ts6〉 〈Ts7 , Ts8 , Ts9〉

sa︷ ︸︸ ︷
n1︸︷︷︸
s1

n2︸︷︷︸
s2

sb︷ ︸︸ ︷
n3︸︷︷︸
s3

n5︸︷︷︸
s5

n6︸︷︷︸
s6

sc︷ ︸︸ ︷
n7︸︷︷︸
s7

n9︸︷︷︸
s9

se︷ ︸︸ ︷
sa︷ ︸︸ ︷

n1︸︷︷︸
s1

n2︸︷︷︸
s2

sb′︷ ︸︸ ︷
n3︸︷︷︸
s3

n4︸︷︷︸
s4

sf︷ ︸︸ ︷
sb′′︷ ︸︸ ︷

n5︸︷︷︸
s5

n6︸︷︷︸
s6

sc︷ ︸︸ ︷
n7︸︷︷︸
s7

n8︸︷︷︸
s8

n9︸︷︷︸
s9

Fig. 3. A T tree before and after the insertion of nodes n4 and n8

transition relations stored in the cells:

—if the root has two nonempty cells containing the relations Ts1 and Ts2 (resp.
three cells containing the relations Ts1 , Ts2 and Ts3) then Ts1 ◦ Ts2 = T[v1...vn]

(resp. Ts1 ◦ Ts2 ◦ Ts3 = T[v1...vn)]);
—if an internal cell contains a relation Ts and its child node contains Ts1 , Ts2 (resp.

Ts1 , Ts2 , and Ts3) then Ts = Ts1 ◦ Ts2 (resp. Ts = Ts1 ◦ Ts2 ◦ Ts3);
—the sequence of non-empty leaf cells is Ts1 . . . Tsn and Tsi = T[vi], 1 ≤ i ≤ n.

We also maintain pointers providing in O(1), for each element v in the input
string, the leaf cell Ts for which the singleton s consists of v. Note that the position
of the element is never recorded explicitly.

For example, the left part of Figure 3 shows a sequence of seven nodes, several
subsequences, and the corresponding tree. Note that the subscript of a node does
not necessarily indicate its position in the string. Each sequence si is the singleton
sequence ni, for i ∈ {1, 2, 3, 5, 6, 7, 9}.

The requirement of having 3 cells per node of which at least 2 are non-empty
ensures that the tree T remains balanced and of depth O(log n) as it is updated.
This follows from the standard analysis of B-tree behavior under the maintenance
algorithm [Garcia-Molina et al. 2001], which we describe here. In a disk-based
implementation one should increase the maximum number of cells per node. Fur-
thermore, the leaf node cells need not correspond to singleton element lists. Indeed,
we reduce storage requirements by associating each leaf node cell with a substring.
Section 7 provides an evaluation of the performance effect of the number of cells in
nodes and of the substring size corresponding to leaf node cells.

Recall that we wish to validate strings with respect to an NFA N = 〈Σ, Q, q0, F, δ〉.
We describe below the maintenance algorithm for T . Once T is computed for the
current string, validation is easy: check that for some f ∈ F , 〈q0, f〉 belongs to the
composition of the sets Ts in the cells of the root node of T , at cost O(|Q|2 log |Q|).

The auxiliary structure T corresponding to a valid string w is initialized by
starting from the empty string and constructing w by a sequence of inserts, using
the maintenance algorithm. Then T is maintained incrementally as follows. If the
update is a renaming of element v, T is updated much like Tn: we use the index to
find the leaf cell of Tv corresponding to v, then update all sets Ts along the path
from Tv to the root. This involves O(log n) updates.

If the update is the insertion or deletion of a new labeled element, the mainte-
nance algorithm mimicks the one for B-trees. In particular, recall that if nodes in
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 113

a B-tree become too full as the result of an insertion they are split, and if they
contain fewer than two non-empty cells as a result of a deletion they are either
merged with a sibling node or non-empty cells are transferred from a sibling node.
The node splits and merges may propagate all the way to the root. Due to the
similarity to classical B-tree maintenance we omit the details but illustrate how to
handle the first variant of insertion; deletion and the second variant of insertion are
similar. Assume that an element y with label a is inserted after element x in the
current string. If there is some empty cell in the leaf node n of T containing the
set Tx corresponding to x we insert the relation Ty = δa in the cell following that
for x and we revise the appropriate Ts relations in ancestor nodes. For example, if
a new node n8 is inserted in the left string of Figure 3 after n7, we insert Ts8 in
the node 〈Ts7 , Ts9〉, as shown in the right side of Figure 3, and we revise Tsc , which
becomes Ts7 ◦ Ts8 ◦ Ts9 .

If the leaf node n for x has no non-empty cells, then we split n into two nodes
n′ and n′′ containing two relations each. We delete from the parent the relation
Ts, where s is the subsequence that corresponds to the node n, and we attempt
to insert in the parent relations Ts′ and Ts′′ , which correspond to n′ and n′′. If
the parent already has three relations, the deletion of Ts and the insertion of Ts′

and Ts′′ will require splitting the parent into two nodes. As is the case for B-trees,
this process may propagate all the way to the root and may end up creating a new
root. For example, the insertion of a node n4 following n3 leads to splitting the
node 〈Ts3 , Ts5 , Ts6〉 into 〈Ts3 , Ts4〉 and 〈Ts5 , Ts6〉. The relation Tsb

is deleted and
two new relations Tsb′ and Tsb′′ are inserted into 〈Tsa , Tsb

, Tsc〉, which leads to a
new split and a new root. The result tree is shown in the right side of Figure 3.
In the worst case, when an insertion in a leaf node results in splits propagating
all the way to the root, we need to recompute 2 logn new relations (one at the
leaf level, one at the new root, and 2(log n − 1) at the internal nodes). Hence, the
worst case complexity is O(|Q|2 log |Q| log n). Deletion proceeds similarly and may
lead to node merging or root deletion, with the same complexity. As in the case of
B-trees, the maintenance algorithm guarantees that T always has depth O(log n)
for strings of length n. Altogether, maintenance of T after m updates takes time
O(m|Q|2 log |Q| logn).

1-unambiguous regular expressions. As discussed earlier, XML Schemas
require regular expressions used in type definitions to be 1-unambiguous. If r is a
1-unambiguous regular expression, the corresponding DFA is of size linear in r. In
this case, the relations Ts used in the above auxiliary structure have size O(|Q|)
rather than O(|Q|2). This brings down the size of the auxiliary structure to O(|Q|n)
and the complexity of maintenance and validation to O(m|Q| log |Q| logn).

4. INCREMENTAL DTD AND XML SCHEMA VALIDATION

We begin this section by presenting an extension to DTDs and XML Schemas of
our incremental validation algorithm for strings. Next, we study in depth a special
class of regular languages, called local, that arises frequently in practice and that
can be validated very efficiently. DTDs and XML schemas whose rules involve only
local regular languages benefit from the efficient validation algorithm we present.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

114 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

4.1 From strings to DTDs and XML Schemas

The incremental validation of DTDs and XML Schemas extends the divide-and-
conquer algorithm for incremental validation of strings described in Section 3. The
following discussion excludes XML Schema validation for internal node renamings,
which is handled using the techniques we use for specialized DTD validation (see
Section 5).

Let d be a DTD, T = 〈t, λ〉 a labeled tree satisfying d, and consider first updates
consisting of a sequence of m label modifications yielding a new tree T ′ = 〈t′, λ′〉.
To check that T ′ satisfies d, we must verify that for each node v in t′ with chil-
dren v1 . . . vn for which at least one label was modified, the sequence of labels
λ′(v1) . . . λ′(vn) belongs to rλ′(v). If the label of v has not been modified, i.e.
λ(v) = λ′(v), then validation can be done using the divide-and-conquer algorithm
described in Section 3 for strings. However, if the label of v has been modified, so
that λ(v) �= λ′(v), the sequence λ′(v1) . . . λ′(vn) has to be validated with respect
to the new regular language rλ′(v) rather than rλ(v). Thus, it would seem that, in
this case, validation has to start again from scratch. To avoid this, we preemptively
maintain information about the validity of each string of siblings with respect to all
regular languages ra for a ∈ Σ. To this end we maintain some additional auxiliary
information. Specifically, for each sequence s of siblings in the tree, we compute the
transitions relations Ts of the divide-and-conquer algorithm described in Section 3,
for each NFA Na corresponding to ra, and a ∈ Σ. We denote the sets Ts for a
particular a ∈ Σ by T a

s .6 Since the auxiliary structure for each fixed NFA and
string of length n has size O(|Q|2n) (where Q is the set of states of the NFA), the
size of the new auxiliary structure is at most O(|Σ||d|2|T |), where |T | is the size of
T and |d| = max{|ra| | a → ra ∈ d}. The maintenance of the auxiliary structure
is done in the same way as in the string case, at a cost of O(m|Σ||d|2 log |d| log |T |)
for a sequence of m modifications. Finally, the updated tree T ′ is valid wrt d if for
each node v with label a in T ′ such that either v or one of its children has been
updated, 〈q0, f〉 is in the relation T a

s where s is the list of children of v, q0 is the
start state of Na, and f is one of its final states. Each such test takes O(|d|2 log |d|)
and the number of tests is m in the worst case. This yields a total validation time
of O(m|Σ||d|2 log |d| log |T |).

For the efficient incremental XML Schema validation of renamings of leaf nodes
we maintain for each node of the tree its type; recall that the type of a node can
be inferred from its label and the type of its parent. For each list of siblings, whose
parent has type at, we maintain a transition relation tree for the NFA of the regular
expression rat that describes the content of nodes with type at. However, XML
Schema validation for internal node renamings cannot be handled in the same way
as DTD validation. The reason is that the renaming of a node v may change the
types of all descendants of v. Indeed, it is easy to see that incremental validation
of XML Schemas with respect to internal node renamings is at least as hard as
validation of strings. We handle this case in the same way we handle validation of
specialized DTDs (see Section 5).

Insertions and deletions are handled by a straightforward extension of the B-

6Examples 6.1 and 6.2 of Section 6 illustrate the need and the remedy for a particular example.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 115

tree approach outlined in Section 3, for both the DTD and XML Schema cases.
In the case of XML Schemas we also compute and store the type of the inserted
node. Insertion of m subtrees can be implemented by a sequence of insertions of
the individual nodes of the subtrees. The data complexity of this implementation
is O(M log |T |), where M is the total number of nodes of the inserted subtrees. A
more efficient implementation first inserts the roots of the subtrees in O(m log |T |).
Then it validates from scratch each subtree. In the case of DTDs the subtree rooted
at node v must conform to a DTD that has the same rules but its root is λ(v). In
the case of XML Schemas the subtree rooted at node v must conform to an XML
Schema that has the same types, rules and mapping from types to symbols but its
root type is the type of v, which can be inferred from the parent of v and the label
of v. The complexity of this implementation is O(M + m log |T |).

4.2 Local DTDs

In the remainder of this section we focus on a restricted class of DTDs that arises
commonly in practice, and for which incremental validation can be done very effi-
ciently. Specifically, these are DTDs using regular expressions for which validity of
a string can be decided after an update by examining only substrings of bounded
length around the position of the update. This is ensured by a property of the
regular expressions called locality, which we define shortly. Locality turns out to
be a very appealing property, since it immediately yields an incremental validation
algorithm that, for all practical purposes, has constant data complexity. In addi-
tion, locality is a very common property in practice. We analyzed a set of 60 DTDs
collected from OASIS and described in [Choi 2002]. The DTDs contained 2141
complex regular expressions. Only 21 regular expressions in 10 DTDs were not
local. We further analyzed these 21 expressions, by examining their content and
contacting the authors. We determined that only 8 non-local regular expressions in
3 DTDs describe potentially large sequences of elements. The above experimental
results are influenced by the fact that OASIS DTDs primarily describe message
exchange information formats and relatively small files. As XML databases mature
we expect that large sequences in XML documents will become more common and
more non-local regular expressions will be in need of efficient incremental validation.
Nevertheless, the results are indicative of how common locality is in practice.

4.3 Local regular languages

Before defining local regular languages, we illustrate the intuition with the following
example.

EXAMPLE 4.1. Consider the language defined by the following regular expres-
sion, taken from the WellLogML DTD [Well] CurveData = (data|(piV alue, data))+.
Its minimal DFA is shown in Figure 4 (a). It has four states: state 1 is a starting
state, state 2 is the only accept state (indicated by shading), and state 0 is a reject
sink, i.e. a state from which no accepting state is reachable (note that a minimum
DFA has at most one such state). Observe that the DFA has the following special
property: when run on a valid string, the current state is uniquely determined by
the most recent symbol. Indeed, all transitions from states other than the reject
sink lead to state 2 for symbol “data”, and to state 3 for symbol “piValue”. Thus,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

116 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

1 2 3

data piValue

datadata

piValue

0

piValue

piValue

data

1 2 3

(b)

(a)

seq

ref

seq

ref ref

seq

1

3

2a

b
0

(c)

a

b
a

ab

b

Fig. 4. Example DFAs: (a) and (b) define local languages; (c) does not.

when running on a valid string, the DFA is in state 2 if the last processed symbol
was “data”, and in state 3 if the last symbol was “piValue”. ♦

In the minimum DFA for the regular expression in Example 4.1, the state is
determined by the most recently read symbol (unless it is the sink state). As might
be expected, some regular expressions require more than one symbol to determine
the current state, as illustrated next.

EXAMPLE 4.2. The following regular expression is taken from DDML.DTD,
available at
http://www.w3.org/TR/NOTE-ddml: choice = (seq|ref)(seq|ref)+. This expres-
sion specifies that a “choice” element should have two or more children. This ex-
pression defines a local language. The minimal DFA is shown in Figure 4 (b). From
any given state, after a single symbol, the DFA may be in state 2 or 3. However,
any two letter word always brings the DFA to state 3. ♦

We will call k-local a regular expression for which the current non-sink state is
determined by the previous k symbols. Before providing the formal definition, we
introduce the following notation. Given a DFA M = 〈Σ, Q, q0, F, δ〉, we denote
by δ∗ the natural extension of the transition function δ to Q × Σ∗, defined by
δ∗(q, ε) = q and δ∗(q, sa) = δ(δ∗(q, s), a). The set of potentially accepting states of
M , denoted QA, consists of the states in Q other than the reject sink state. We
denote the reject sink state, if any, by qrej .

Definition 4.1. (Local regular languages and DTDs) A DFA is k-local if
for every string s of length at least k, there are no distinct p, q ∈ QA, such that for
some p′, q′ ∈ Q, δ∗(p′, s) = p, and δ∗(q′, s) = q. A regular language is k-local iff the
minimum DFA accepting it is k-local. A regular language is local iff it is k-local for
some k. The minimum k for which a regular language is k-local is called its degree
of locality. A regular expression is (k-)local iff the language it defines is (k-)local.
A DTD is (k-)local iff all regular expressions it uses are (k-)local. ♦

Let r be a k-local regular language. Note that, given a string w of length ≥ k
and a potentially accepting state p, either δ∗(p, w) = qrej or δ∗(p, w) = q where
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 117

q is a potentially accepting state independent of p. We call a string w rejecting
iff δ∗(p, w) = qrej for every p ∈ Q. For every string w of length ≥ k that is not
rejecting, we denote by δ∗(−, w) the unique potentially accepting state q such that
δ∗(p, w) = q for some potentially accepting p.

Note that the locality of a language is defined as a property of the minimum DFA
accepting the language. The following useful fact shows that locality of any DFA
for the language is sufficient.7

Proposition 4.1. If a regular language is accepted by some k-local DFA, then
it is k-local.

Proof. Suppose a regular language r is accepted by some k-local DFA D, and
let M be the minimum DFA accepting r. We show that M is also k-local. Recall
that the DFA minimization algorithm produces M from D by merging equivalent
states. Specifically, states p and q are equivalent if for all strings s ∈ Σ∗, δ∗D(p, s)
is accepting iff δ∗D(q, s) is accepting, where δD is the transition function of D. The
algorithm builds equivalence classes of states and replaces each class with a single
state of the minimum automaton M . Thus, the minimization algorithm constructs a
total mapping µ from the states of D onto the states of M that preserves transitions.

Consider a string s such that |s| > k. Let p, q, r, t be states in QA
M such that

δ∗M (p, s) = r and δ∗M (q, s) = t. There exist states p′, q′, r′, t′ in QA
D such that µ(p′) =

p, µ(q′) = q, µ(r′) = r, µ(t′) = t. Furthermore, δD(p′, s) = r′ and δD(q′, s) = t′.
Since D is k-local, it follows that r′ = t′, so r = µ(r′) = µ(t′) = t. Thus, M is
k-local.

Notice that Proposition 4.1 does not imply that all DFAs accepting a k-local
language must be k-local, or even local. For example, the language a∗ is 0-local,
and is accepted by a DFA with two accepting states and two a transitions from
each state to the other. Clearly, this DFA is not local.

It is critical to our approach to determine, given a regular language, whether it is
local, and if so to compute its degree of locality. We will show that both questions
can be answered in time O(|M |4) where M is the minimum DFA for the language
and the size of M , denoted by |M |, is |Q| + |Σ| + |δ|. Furthermore, if M is local,
then the degree of locality is bounded by |Q|2 where Q is the set of states of M .

Theorem 4.1. Given a regular language r and its minimum DFA
M = 〈Σ, Q, q0, F, δ〉, it can be decided in O(|M |4) time whether r is local. Fur-
thermore, if r is local, its degree of locality is at most |Q|2 and can be computed in
O(|M |4). ♦

Proof. Consider the directed labeled graph G whose vertices are pairs 〈p, q〉
where p, q are in QA, p �= q, and there is an edge labeled a ∈ Σ from 〈p, q〉 to 〈p′, q′〉
iff δ(p, a) = p′ and δ(q, a) = q′. Note that the size of G is at most |M |2. From the
definition of locality, it follows that M is local iff G does not contain infinite paths.
In other words, M is local iff G is acyclic.

Acyclicity of G can be tested in O(|G|2) by attempting to perform a topological
sort of the vertices of the graph: first compute the in-degree of each node. Next,

7In the cases where a language/DTD is non-local it may be worthwhile to consider modifying the
DTD to a non-equivalent local one.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

118 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

start with the nodes with in-degree zero, then remove their outgoing edges and de-
crease the in-degree count of the target nodes, and repeat. G is acyclic iff eventually
all nodes have in-degree zero.

Now suppose G is acyclic, so M is local. From the definition it immediately
follows that the degree of locality of M is the longest path in G, which is bounded
by |Q|2. This can be computed while the previous topological sort algorithm is
performed, by associating a counter with each node n that stores the length of the
maximum path from some initial node of in-degree zero to n at the point when n
is reached. When the algorithm ends, the maximum value of the counters provides
the length of the maximum path in G. Since G itself is quadratic in M , this yields
an algorithm of O(|M |4).

Note that the analysis yielding O(|G|2) complexity of the above algorithm is
extremely conservative, since it assumes that the complexity of finding a node v,
that is the target of an edge, and its associated counter is O(|G|). Assuming a data
structure that allows locating a node in O(1), which is a reasonable assumption in
practice, the complexity is linear with respect to G.

4.4 Incremental validation of local DTDs

We next show how the locality property of regular languages can be used to obtain
a very efficient incremental validation algorithm, of constant time data complex-
ity. Given a DTD using only local regular expressions, if updates only affect leaf
nodes without changing the labels of internal nodes, we can use a constant-time
incremental validation algorithm without any additional data structure. However,
if updates may also cause a renaming of a parent node the sequence of its children
needs to be validated against the regular expression for the new label. As in the
general incremental validation algorithm for DTDs, we therefore need to maintain
some auxiliary information allowing to validate each string of siblings with respect
to any of the regular expressions of the DTD, whenever the need arises. In the case
of DTDs using only local regular expressions, we attach to each internal node a
counter for each regular expression. Each counter’s size should be at least 	log2 n
,
where n is the maximum size of a sibling list. Notice that 4-byte integers can ac-
commodate sibling lists of up to 232 elements and, hence, in our implementation
we just use 4-byte integers for counters.

Our algorithm relies on the following observation.

Lemma 4.1. Let r be a k-local regular expression. A string s ∈ Σ∗ of length ≥ k
is valid with respect to r iff the following conditions hold:

(1) there is no rejecting substring w of s of length k + 1.
(2) δ∗(q0, w) �= qrej, where w is the prefix of s of length k;
(3) δ∗(−, w) ∈ F , where w is the suffix of s of length k.

♦

Proof. Clearly, conditions (1-3) are necessary for validity. We show they are
also sufficient. Suppose s = a1 . . . an is a string of length ≥ k that satisfies condi-
tions (1)-(3). We show that

(†) δ∗(q0, a1 . . . ai) �= qrej for all i, k ≤ i ≤ n.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 119

Clearly, (†) proves the statement, since in conjunction with condition (3) and
k-locality it implies that δ∗(q0, a1 . . . an) = δ∗(−, an−k+1 . . . an) ∈ F .

We prove (†) by induction. The basis (for i = k) is true by condition (2).
For the induction step, suppose that i ≥ k and δ∗(q0, a1 . . . ai) �= qrej . Con-
sider a1 . . . ai+1. By the induction hypothesis and k-locality, δ∗(q0, a1 . . . ai+1) =
δ(δ∗(−, ai−k+1 . . . ai), ai+1). By condition (1), ai−k+1 . . . ai+1 is not rejecting (since
it has length k + 1). Therefore, there exist potentially accepting states p, p′ such
that δ∗(p, ai−k+1 . . . ai+1) = p′. By k-locality,

δ∗(p, ai−k+1 . . . ai+1) = δ(δ∗(−, ai−k+1 . . . ai), ai+1).

It follows that

δ∗(q0, a1 . . . ai+1) = δ(δ∗(−, ai−k+1 . . . ai), ai+1) = p′ �= qrej .

This completes the induction and the proof of (†).

Lemma 4.1 suggests the following validation algorithm for the sequence of siblings
in an XML document. For each regular expression r of the DTD, determine its
degree k of locality. As long as the string remains of length at most k, we validate
the string with respect to r from scratch if needed. When the string exceeds length
k (if ever), we check conditions (1)-(3) of the lemma. Conditions (2) and (3) are easy
to check from scratch in constant time whenever required. Condition (1) is checked
incrementally by maintaining some auxiliary information consisting in the count of
the number of rejecting substrings of length k + 1 in the current string. To do so,
we first initialize the count in a pre-processing step that takes linear time in the
size of the string (we do so as soon as the length of the string exceeds k). A single
update occuring at position i affects the substrings of length k + 1 containing i,
whose number is constant. For each such affected substring we determine whether
or not it becomes (or ceases to be) rejecting, and update the count accordingly.
Whenever validation with respect to r is needed, we check that the count of rejecting
substrings is zero. For multiple updates, we maintain the counters one update at a
time. Thus, the required auxiliary structure consists, for each internal node in the
XML tree, of one counter for each regular expression in the DTD. For a tree T with
i internal nodes, the size of the auxiliary structure is O(i log(|T |/i)), neglecting the
fact that in practice lists will be smaller than 232, which can be accomodated by
a typical 4-byte counter. Maintaining incrementally the auxiliary structure takes
O(m log |T |) time with respect to the string for m updates. Although its theoretical
worst-case complexity is no better than the general DTD validation algorithm,
the incremental validation algorithm has a very efficient implementation, which
practically provides constant time validation. First, the auxiliary structure consists
of counters. Assuming that no list of siblings is longer than 232 elements, then each
counter can be a usual 32-bit integer. The counters are stored together with the data
tree (internal nodes), hence simplifying their access, and their maintenance consists
of simply incrementing or decrementing them, which in practice takes constant time.

Notice that, if updates do not involve the renaming of internal nodes, then we do
not need to maintain counters. Instead, the number of rejecting substrings is zero
before the transaction starts and we check that it remains zero after the transaction
has ended. This requires that the updates generate no rejecting substring, the prefix

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

120 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

of the sequence was not rejecting when starting at q0, and the suffix of the sequence
leads to an accepting state.

Furthermore, we do not need to maintain counters if every pair (r, r′) of regular
languages used by the DTD is incompatible, in the sense that it is impossible to
turn a string that belongs to L(r) into a string that belongs to L(r′), without a
transaction performing a number of updates that is in the order of the size of the
resulting string - hence, making revalidation of r′ from scratch equally attractive
to incremental validation. Indeed, whenever two regular expressions r and r′ do
not contain any common symbol a within the scope of a ∗ they are incompatible.
Notice that the reverse is not always true.

Even if we cannot fully eliminate counters, we may still be able to reduce the
number of counters we have to maintain for each sibling list. Consider a sibling
list whose parent is labeled a and the list belongs to L(ra). Consider also a label
b and the corresponding regular expression rb, which is incompatible with ra. We
do not need to maintain a counter for rb since a renaming of a to b needs to be
accompanied by a large number of updates on the sibling list and it is not beneficial
to incrementally validate such a number of updates.

5. INCREMENTAL VALIDATION OF SPECIALIZED DTDS

In this section we discuss the incremental validation of specialized DTDs. We
begin with a simple attempt yielding a validation algorithm of time complexity
O(|T | log |T |). We then explore a more sophisticated approach based on encoding
the XML document as a binary tree and validating it using a bottom-up tree
automaton. This improves the time complexity to O(log2 |T |).

5.1 A first attempt

Specialized DTDs add another degree of complexity to the update validation prob-
lem. Intuitively, they abstract the ability of RELAX NG and XML Schemas to
associate different types to each element label. Consider a specialized DTD τ =
〈Σ, Σt, d, µ〉. Recall that a tree T over Σ satisfies τ iff there exists some tree T ′ over
Σt, satisfying d, such that µ(T ′) = T . Essentially, T ′ associates a type in Σt to
each node in T so that the DTD d over Σt is satisfied. The existence of such a type
assignment, and therefore the validity of T , can be tested in a bottom-up manner
as follows. For each leaf v of T , let types(v) = {α | µ(α) = λ(v) and ε ∈ rα}. Thus,
types(v) consists of all types in Σt that may be assigned to the label of v and allow
it to be a leaf.

Then apply the following procedure recursively: for each internal node v of T
with children v1 . . . vn for which types(vi) has already been computed, let types(v)
consist of the types α ∈ µ−1(λ(v)) for which types(v1) . . . types(vn)∩ rα �= ∅, where
α → rα ∈ d. In other words, types(v) consists of all types allowed for the label
of v for which there is at least one choice of allowed types for its children that
is compatible with d. Clearly, T ∈ sat(τ) iff types(root(T)) �= ∅. This procedure
closely corresponds to the evaluation on T of a bottom-up unranked tree automaton
corresponding to τ .

Consider now a tree T ∈ sat(τ). We first consider label modifications. We
maintain the following auxiliary structure:
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 121

—for each node v in T , maintain the set of allowed types types(v). This has size
O(|T ||Σt|);

—for each sequence of siblings v1 . . . vn in T and α ∈ Σt, maintain the sets

T α
s = {〈p, q〉 | q ∈ δα(p, βi . . . βj),

βk ∈ types(vk), i ≤ k ≤ j}
where s is a subsequence vi . . . vj used in T , formulated by the usual divide-and-
conquer strategy. This has size O(|Σt||d|2|T |).

We describe how to maintain the auxiliary structure when a single label is modified.
For m modifications, we apply this for each modification. Validity is checked after
the auxiliary structure has been updated for all modifications.

Suppose the node whose label is modified is v, the old label is a, and the new
label is b. We need to update the sets types(w) for all nodes w on the path from
root to v in T , as well as the sets T α

s for the sequences s of siblings where such
nodes occur. This is done in a bottom-up fashion as follows. First, if v is a
leaf, then types(v) = {β | µ(β) = b, ε ∈ rβ}. If v has children v1 . . . vn then
types(v) contains all types β ∈ µ−1(b) such that 〈q0, f〉 ∈ T β

s where q0 is the start
state of Nβ, f is one of its accepting states, and T β

s is the root of the auxiliary
structure corresponding to β and the children of v. Note that this step takes
O(|Σt||d|2 log |d|). Next, suppose that w is a node in T whose sequence of children
w1 . . . wn contains one node wk for which types(wk) has been updated. First, the
sets T α

s need to be updated for the log n affected subsequences s as in the divide-
and-conquer string validation algorithm. This takes time O(|Σt||d|2 log |d| log n).
Next, types(w) is updated as in the base case to contain the types β ∈ µ−1(λ(w))
for which 〈q0, f〉 ∈ T β

s where q0 is the start state of Nβ , f is one of its accept-
ing states and s is the sequence w1 . . . wn. This takes time O(|Σt||d|2 log |d|).
Thus, the maintenance time for this step is O(|Σt||d|2 log |d| log n), and this has
to be repeated at most depth(T) times. This yields a total maintenance time
of O(|Σt||d|2 log |d|depth(T) log |T |)for a single label modification. For m modifi-
cations, the maintenance time is O(m|Σt||d|2 log |d|depth(T) log |T |). Finally the
updated tree is valid iff root(d) ∈ types(root(T)). Hence, the total validation time
is also O(m|Σt||d|2 log |d|depth(T) log |T |).

Node insertions and deletions can be handled by adapting the B-tree approach
used for strings. The resulting complexity is the same as for label renamings.

Note that for fixed specialized DTD and update sequence, the validation algo-
rithm outlined above takes time O(depth(T) log |T |). Thus, the algorithm works
well for shallow trees. However, in the worst case depth(T) could equal |T |, in
which case the complexity is O(|T | log |T |). This is not satisfactory. We will see
in the next section how to use a more subtle strategy that reduces the overall
maintenance and validation cost to O(log2 |T |).

5.2 Incremental Validation via Binary Trees Encodings

In this section we develop a refinement of the incremental validation technique for
specialized DTDs described in the previous section. This results in maintenance and
validation algorithms of complexity O(log2 |T |) for fixed DTD and update sequence,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

122 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

instead of the previous O(|T | log |T |). Intuitively, the algorithm of Section 4 is based
on a divide-and-conquer strategy to split the work of validating sequences of siblings
in the tree. However, for trees of small width and large depth, this strategy is
defeated. The refinement presented in this section extends the divide-and-conquer
strategy to validation of the overall tree, by splitting the work simultaneously with
respect to the horizontal and vertical components. To this end, it is useful to adopt
a representation of unranked trees as complete binary trees and reduce the problem
of validating specialized DTDs on unranked trees to that of acceptance of the binary
tree encodings by a corresponding bottom-up tree automaton. The advantage of
this approach is that it unifies the horizontal and vertical components of validation
and facilitates a natural formulation of the new divide-and-conquer strategy.

Binary tree encoding of unranked trees. We next describe the encoding
of unranked trees as binary trees. We use one of the standard encodings in the
literature (e.g, see [Neven 2002]). To each unranked labeled ordered tree T = 〈t, λ〉
over alphabet Σ we associate a binary tree enc(T) over alphabet Σ# = Σ ∪ {#},
where # �∈ Σ. The input of enc is a (possibly empty) sequence of unranked trees
over Σ, and the output is a complete binary tree over Σ#. The mapping enc is
defined recursively as follows (where T̄0 and T̄ are sequences of trees, possibly ε,
and n0 is a single node):

• enc(ε) = #
• enc(n0(T̄0) T̄) = n0(enc(T̄0), enc(T̄))

For example, a tree T and its encoding enc(T) are shown in Figure 5 (neglect for
now the boxes and bold letters).

We would like to reduce the validation of unranked trees T wrt a specialized DTD
τ to the question of whether enc(T) is accepted by a bottom-up non-deterministic
tree automaton. To this end, we show the following result (a variant of known
results on equivalences of specialized DTDs and unranked tree automata, and of
unranked tree automata and automata on binary trees, see [Neven 2002]):

Lemma 5.1. For each specialized DTD τ = 〈Σ, Σt, d, µ〉 there exists a BNTA Aτ

over Σ# whose number of states is O(|Σt||d|), such that T (Aτ) = {enc(T) | T ∈
sat(τ)}. ♦

Proof. For each α ∈ Σt, let Nα = 〈Σt, Qα, qα
0 , Fα, δα〉 be a standard NFA that

accepts the language r′α = {wr | w ∈ rα} where wr is the reverse of w. Distinct
Nα have disjoint sets of states. Let Qd =

⋃
α∈Σt Qα. Let Aτ be the BNTA

〈Σ#, Q, Q0, qf , δ〉 where Q = {qf} ∪ Qd, Q0 = {qα
0 |α ∈ Σt}, qf is the accept state

(qf �∈ Qd), and δ is defined as follows (δ is empty whenever not specified):

—If a ∈ Σ, α ∈ Σt, α �= root(d), µ(α) = a, β ∈ Σt, qβ ∈ Qβ and qα
f ∈ Fα then

δ(a, qα
f , qβ) = δβ(α, qβ)

—If ρ = root(d), r = µ(ρ), qρ
f ∈ Fρ, β ∈ Σt and qβ ∈ Qβ then

δ(r, qρ
f , qβ) = δβ(ρ, qβ) ∪ {qf}

It is easily seen that T (Aτ) = {enc(T) | T ∈ sat(τ)}.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 123

Our approach is based on reducing the validation of unranked trees with respect
to specialized DTDs to the validation of their binary encodings with respect to
the corresponding BNTA, say A = 〈Σ, Q, Q0, qf , δ〉. As before, the problem really
amounts to efficiently updating the auxiliary structure associated with the input.
In our case, the auxiliary structure will include (among other information to be
specified shortly) the binary encoding enc(T) of the input T , and will provide, for
each node v in enc(T), the set types(v) consisting of the possible states of A at node
v after consuming the subtree rooted at v. Once the auxiliary structure is updated,
validity amounts to checking that types(root(enc(T))) contains the accept state of
A, where T is the updated tree. The strategy for updating the types associated
with nodes applies the divide-and conquer strategy for string validation to certain
paths in the tree, chosen to appropriately divide the work. More precisely, we will
select, in every subtree T0 of a given tree enc(T), a particular path from the root to
a leaf. We call this path the principal line of T0, denoted by line(T0), and defined
as follows:

—root(T0) belongs to line(T0);
—let v be an internal node of T0 that belongs to line(T0), and suppose v has children

v1, v2. If |tree(v1)| ≥ |tree(v2)|, then v1 belongs to line(T0); otherwise, v2 belongs
to line(T0).

Validation of enc(T) can be done by associating to each maximal principal line8 an
NFA that validates that particular line. We make this more precise next.

From BNTA to NFA on principal lines. Consider the principal line v1 . . . vn

of a binary tree encoding enc(T) where v1 is the root and vn is a leaf. By the
definition of binary encodings, each non-leaf node vi has one child v′i that does not
belong to the principal line v1 . . . vn, for 1 ≤ i < n. Consider the sets types(v′i).
Note that if these sets are given, we can validate enc(T) by an NFA N that works
on the string v1 . . . vn. For technical reasons, the constructed NFA recognizes the
reverse word vn . . . v1. Essentially, the NFA guesses a sequence of state assignments
to vn . . . v1 that is compatible with the transition function of A, given the sets of
states types(v′i).

The above intuition is captured as follows: We define new labels for the nodes
vi, which include both λ(vi) and the set types(v′i). More precisely, let Σ′ =
{#} ∪ (P(Q) × Σ) ∪ (Σ × P(Q)) and λ′ be the labeling function defined as
follows:

• λ′(vi) = 〈λ(vi), types(v′i)〉, if v′i is the right child of vi, 1 ≤ i < n,
• λ′(vi) = 〈types(v′i), λ(vi)〉, if v′i is the left child of vi, 1 ≤ i < n.
• λ′(vn) = λ(vn) = #.

The NFA N we construct will accept the string λ′(vn) . . . λ′(v1) iff
A = 〈Σ#, Q, Q0, qf , δ〉 accepts enc(T). At any rate, it will compute the type derived
by the sequence. More precisely, let N = 〈Σ′, Q, q0, F

′, δ′〉, where Σ′ is as described
above, F ′ = {qf}, and δ′ is defined by the following (and is empty everywhere else)

• δ′(#, q0) = Q0;

8A principal line is maximal if it is not included in another principal line.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

124 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

a

b d j k

c e

f h

g i

a #

b d j k #

c # e # # #

f h

g # i #

#

Fig. 5. A tree T (top) and its encoding enc(T)

• δ′(〈a, S〉, q) =
⋃

q′∈S δ(a, q, q′) for a ∈ Σ
• δ′(〈S, a〉, q) =

⋃
q′∈S δ(a, q′, q) for a ∈ Σ

Intuitively, the NFA simulates A by allowing only state transitions compatible
with the transition function of A and the sets of states associated to siblings. It is
easy to verify that N works as desired.

Note that the number of states of N is O(|Q|). Recall that |Q| is itself O(|Σt||d|)
where τ = 〈Σ, Σt, d, µ〉 is the specialized DTD to which the BNTA A corresponds.
The size of its alphabet Σ′ is O(|Σ|2|Q|) which is O(|Σ|2|Σt||d|). Hence, each symbol
in Σ′ can be represented in space O(|Σt||d| + log |Σ|). Notice however that our
auxiliary structure never represents the alphabet or the transition mapping of N
explicitly.

The auxiliary structure. The auxiliary structure used for incremental valida-
tion includes (i) the binary tree enc(T), (ii) the set of maximal principal lines, as
explained below and (iii) for each maximal principal line in enc(T), the auxiliary
transition relation tree for the NFA corresponding to that line.

Note that the principal lines can be specified concisely by annotating each node
in enc(T) with 0 or 1 by a labeling µ as follows: µ(root(enc(T))) = 0, and for every
pair of siblings v1, v2, µ(v1) = 1 and µ(v2) = 0 if |tree(v1)| ≥ |tree(v2)|; otherwise,
µ(v1) = 0 and µ(v2) = 1. Clearly, the principal line of a subtree T0 is the unique
path from root(T0) to a leaf where all non-root nodes are labeled 1. Note that the
principal line of T0 is maximal iff µ(root(T0)) = 0.

For example, consider the unranked tree represented in Figure 5 (top), and its
binary encoding in the same figure (bottom). In the binary encoding in the figure,
the nodes w for which µ(w) = 0 are those inside a box. Note that this identifies all
maximal principal lines. The bold and underlined nodes participate in the principal
line of enc(T). The nodes of one of the secondary principal lines (line j, k) are in
italics.

Part (iii) of the auxiliary structure provides the transition relation trees for the
NFAs associated with the maximal principal lines. The size of each transition
relation tree for an NFA N is O(|enc(T)||Q|2) where Q is the number of states of
N .

In summary, consider an input tree T and a specialized DTD τ = 〈Σ, Σt, d, µ〉.
In view of our construction of the BNTA A from τ (Lemma 5.1), of the NFA N

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 125

from A (above), and of the tree of transition relations for each NFA N (Section
3) it follows that the size of the auxiliary structure associated with T and τ is
O((|Σt|2|d|2|T |).

Validation and maintenance for label renamings. Let us consider first the
validation and maintenance of updates consisting of label renamings. Note that
label renamings in T translate straightforwardly to label renamings in enc(T). To
validate a sequence of label renamings, it is sufficient to show how the auxiliary
structure is maintained for a single renaming. For a sequence of renamings this is
iterated one update at a time and validity is checked at the end using the updated
auxiliary structure. So, suppose the label of some node v in enc(T) is modified
from a to b. Suppose first that v belongs to the maximal principal line l = v1 . . . vn

of enc(T), say v = vk. In the string λ′(v1) . . . λ′(vn) the label renaming corre-
sponds to modifying the label of vk from a to b if k = n and from 〈a, types(v′k)〉
to 〈b, types(v′k)〉 if k < n and v′k is the right child of vk (left is analogous). Then
the transition relation tree associated to l is updated as in the string case in time
O(|Q|2 log |Q| log |l|), that is O(|Σt|2|d|2 log(|Σt||d|) log |l|). Since |l| is O(|enc(T)|)
and |enc(T)| is O(|T |), the update takes time O(|Σt|2|d|2 log(|Σt||d|) log |T |).

Now suppose that v does not belong to the principal line l of enc(T). Then there
is some k > 0 such that v belongs to tree(v′k) where v′k is the child of some vk

belonging to l. Note that the update to the label of v may cause a change in the
value of types(v′k). In order to update l, we now have to first compute the new value
for types(v′k), then apply the update procedure for the corresponding modification
in the label 〈λ(vk), types(v′k)〉 of vk. If v belongs to the principal line l′ of tree(v′k)
then the transition relation tree associated with the NFA for l′ can be updated as
before in time O(|Σt|2|d|2 log(|Σt||d|) log |T |). This provides, in particular, the new
value for types(v′k). Continuing inductively, it is clear that renaming the label of a
node v affects precisely the maximal principal lines encountered in the path from
root to v. Let M be the number of such maximal principal lines. Clearly, M is
precisely the number of nodes w along the path from root to v for which µ(w) = 0.
We next provide a bound on this number, using the notion of line diameter of a
tree.

Definition 5.1. (Line diameter) The line diameter of enc(T) is the maximum
number of distinct maximal principal lines crossed by any path from root to leaf
in enc(T). Equivalently, the line diameter of enc(T) is the maximum number of
nodes w for which µ(w) = 0, occurring along a path from root to leaf in enc(T),
where µ is defined as above. ♦

For example, the line diameter of enc(T) in Figure 5 is 3. We can show the
following:

Lemma 5.2. The line diameter of enc(T) is no larger than 1 + log |enc(T)|. ♦

Proof. Consider a path from root to leaf in enc(T) and let w1 . . . wM be the
sequence of nodes w along the path for which µ(w) = 0. Note that, by the definition
of µ, w1 is the root of enc(T), and each node wi other than wM has two children
w′

i and w′′
i where w′

i is on the path from wi to wi+1 and |tree(w′
i)| ≥ |tree(w′′

i)|. It
easily follows that |enc(T)| ≥ 2M−1 so M ≤ 1 + log |enc(T)|.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

126 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

v
l0

l

v’
tree(v) tree(v’)

l’’

l’

v0

Fig. 6. Scenario of Line Rearrangement

From the bound on the line diameter of enc(T), it follows that a label renam-
ing can cause at most O(log |enc(T)|) updates to distinct transition relation trees
of maximal principal lines in enc(T). Since each update takes time O(|Σt|2|d|2
log(|Σt||d|) log |T |), the entire auxiliary structure can be updated in time O(|Σt|2|d|2
log(|Σt||d|) log2 |T |) (and in O(m|Σt|2|d|2 log(|Σt||d|) log2 |T |) for a sequence of m
updates).

Insertions and deletions. We next describe how to extend the maintenance
and validation algorithm described above to updates that include insertions and
deletions.

For a maximal principal line l in enc(T), we denote by Nl the NFA corresponding
to l and by Tl the transition relation tree corresponding to l and Nl.

Note that each insertion or deletion of a leaf node in T translates into up to
four node insertions and deletions into enc(T) (for example, deleting a node in T
may require deleting in enc(T), besides the node itself, up to two leaves labeled #,
and may require inserting another such leaf). This constant factor blow-up in the
number of updates does not affect our analysis.

Insertions and deletions are handled by an extension of the technique used to
maintain the transition relation trees for maximal principal lines in the case of
label renamings. Insertions and deletions that do not cause a change in the set of
maximal principal lines existing prior to the update are handled straightforwardly.
More precisely, let us call an insertion or deletion line preserving if the restriction of
µ to the nodes of enc(T) that are not affected by the update is the same before and
after the update. Note that an insertion may be line preserving but nonetheless
introduce a new singleton maximal principal line consisting of the new node. Also
observe that line-preserving updates affect precisely the maximal principal lines
intersected by the path from the root of enc(T) to the newly inserted node or to
the parent of the deleted node. The transition relation trees for these maximal
principal lines are updated as in the case of label renamings, at the same cost. If
a new singleton maximal line l consisting of an inserted node needs to be added,
computing its auxiliary transition relation tree takes additional time O(|Q|2) where
Q is the set of states of the NFA Nl. This is dominated by the rest of the cost.

Handling inserts and deletes that are not line preserving requires more care. In
this case, the set of maximal principal lines in enc(T) changes as the result of
updates. To illustrate the problem, consider the situation depicted in Figure 6.
The maximal principal line l0 = line(tree(v0)) contains a node v, which has a
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 127

sibling v′. Initially, |tree(v)| ≥ |tree(v′)|. However, a deletion in tree(v) or an
insertion in tree(v′) may make tree(v′) larger than tree(v). In this case a new line
structure is needed, where the line l = line(tree(v)) becomes a maximal principal
line and the new principal line line(tree(v0)) is the concatenation of l′′ and l′ =
line(tree(v′)). This requires updating the auxiliary structure in two steps: First we
compute the transition relation tree Tl for the new maximal principal line l obtained
by truncating l0. Then we compute the transition relation tree Tl′′l′ for the new
maximal principal line obtained by concatenating l′′ and l′.

Fortunately, the new transition relation trees can be computed efficiently from
the old ones. Specifically, Tl is obtained by truncating Tl0 , and Tl′′l′ is obtained
by merging a subtree of Tl0 corresponding to l′′ with the tree Tl′ . This is done by
adapting usual B-tree techniques. We next provide more details.

Given the balanced tree Tl0 of the line l0, we compute the balanced tree Tl by
traversing bottom-up the path in Tl0 from the leaf that contains v to the root.
Note that the path has maximum length 	log |l0|
. At each cell n along the path we
delete the relations Ts1 where s1 ∩ l = ∅ and we recompute the relation Ts, where
the segment s contains v. Recall that each cell in Tl0 has between two and three
relations, so it is not possible for any cell to become empty after these deletions.
In addition, if the deletions have left only the relation Ts at cell n then we do the
following, assuming n is not the root (the case where n is root is simple):

—if the right sibling n′ of n has two relations we delete n and we transfer Ts (and
the corresponding child node) to n′. In the parent of n and n′ we delete the
relation that corresponds to n and we continue our processing at the parent of n
and n′.

—if the right sibling n′ of n has three relations we move its leftmost relation (and
the corresponding child node) to the cell n, so that n also has two relations. We
recompute the entry of n′ at the parent of n and n′.

—if n has no right sibling the we delete n and we copy Ts at the parent cell. Notice
that this case reduces the depth of the balanced tree.

In all cases we continue recursively with the parent cell. The complexity of this
procedure is O(|Q|2 log |Q| log |l0|) where Q is the set of states of Nl0 , since the size
of the traversed path is at most 	log |l0|
 and in each step we recompute at most
two relations.

Next, consider the computation of the balanced tree Tl′′l′ of the new main line
l′′ l′. First, we compute a balanced tree Tl′′ for the segment l′′ in O(|Q|2 log |Q|
log |l′′|). Then we merge Tl′′ and Tl′ as follows. Assume that the depth of Tl′′

is equal or less to the depth of Tl′ - the other case is symmetrical. Locate a
node n2 on the leftmost path of Tl′ such that the depth of the tree rooted at n2

is depth(Tl′′). Then insert each segment (and corresponding child node) of the
root of Tl′′ into n2. The insertions are handled as usual: if there is not enough
space in n2 then n2 will be split, and so on. It is easy to see that the merge
takes O(|Q|2 log |Q| log |l′|) since we have to recompute one or two relations at each
level on the path from n2 to the root of Tl′ . Overall, the rearrangement of these
lines requires O(|Q|2 log |Q|(log |l0| + log |l′|)), which is O(|Q|2 log |Q| log |enc(T)|).
Also, note that a single insertion or deletion may cause at most O(log |enc(T)|)

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

128 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

line rearrangements (one for each maximal principal line intersected by the path
from root to the affected node). Thus, all line rearrangements can be done in time
O(|Q|2 log |Q| log2 |enc(T)|). In terms of the original specialized DTD and input
tree T , this is O((|Σt|2|d|2 log(|Σt||d|) log2 |T |).

Once the line rearrangements have been computed, additional updates to the
transition relation trees of maximal principal lines may have to be computed, as in
the case of label renamings. This takes again time O((|Σt|2|d|2 log(|Σt||d|) log2 |T |).

In summary, the size of the auxiliary structure used for incremental validation
is O((|Σt|2|d|2|T |). Maintaining the auxiliary structure and validating the updated
tree following a sequence of m updates (label renamings, insertions, or deletions)
is done in time O(m|Σt|2|d|2 log(|Σt||d|) log2 |T |).

Similarly to the DTD and XML Schema validation cases, insertion of m sub-
trees containing M nodes can be implemented in O(M log2 |T |) by a sequence of
insertions of the individual nodes of subtrees. A more efficient implementation that
encodes each subtree and validates its type in “batch” mode is O(M + m log2 |T |).

6. IMPLEMENTATION

We implemented incremental and local validation algorithms on the XCacheDB
XML database [Balmin and Papakonstantinou] which is built on top of a com-
mercial relational database engine. The XCacheDB gives an administrator control
over the decomposition of XML data into relations of the underlying RDBMS. For
the purposes of this study we decomposed the XML data into normalized rela-
tional schemas. The following description applies exclusively to the normalized
approach, which is similar to the “hybrid inlining” of [Shanmugasundaram et al.
1999]. [Balmin and Papakonstantinou] provides a description of alternative ap-
proaches.

The XCacheDB creates a table for every repeatable element in the DTD. We say
that an element is repeatable if it can occur an unlimited number of times in a
sibling list. A table contains zero or one data attributes, one system-generated
node ID attribute, and at least one of prnt, rsib, and tid. A data attribute is
created for every element with string content. We encode the tags of elements in
the elements’ IDs to efficiently identify the table that needs to be accessed given an
element’s ID. To preserve the parent-child relationship, each table includes a parent
reference prnt, with the exception of the table that stores the root element of the
DTD. We extended XCacheDB to preserve the document order of XML elements,
by adding the rsib attribute to every relation in the schema. This attribute stores
the ID of the element’s right sibling. Since the ID encodes the tag, the value of
rsib also determines the table in which the sibling is stored.

Every element whose parent requires validation9 also stores a tid attribute. The
tid is a foreign key into the transtion relation storage table, which we will describe
shortly, and stands for the pointers from elements to transition relation tree leafs.

We illustrate the XCacheDB data storage and auxiliary storage used for incre-
mental validation with an example, which will be the running example of this
section.

9We do not validate trivial regular expressions, with minimal DFAs containing a single state.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 129

R
r_id
rsib

tid int (PK)
TR1 char(3)
TR2 char(4)
prnt int
ord int
count int

TR

a_id (PK)
prnt
data
rsib
tid

A

b_id (PK)
prnt
data
rsib
tid

B

1 2 3

a

bb

b a

0

a

a

b

r1=(b|ab)+

1 2 3

a

bb

b a

0

a

a

b

r2=(b|abb)+

4

b

a

(c)

(a) (b)

R1
r1_id
prnt
rsib

R2
r2_id
prnt
rsib

Fig. 7. Relational schema of XCacheDB and TR storage.

EXAMPLE 6.1. Consider the following DTD:
r = (r1|r2)∗
r1 = (b|ab)+
r2 = (b|abb)+
where a and b are elements with string content. The DTD is based on the Well-
LogML DTD [Well], which contains the expression
CurveData = (data|(piV alue, data))+. To illustrate the validation of the renam-
ing of intermediate nodes, we added the r2 element to the DTD. The minimal
DFAs of the expressions r1 and r2 are shown in Figure 7 (c). Figure 7 (a) shows
the relational schema created by the XCacheDB. The tables R, R1, R2, A and B hold
the data of the XML document. The string content of elements a and b is stored
in the data attributes of tables A and B respectively. Tables A and B include parent
references to r1 or r2 elements, since both r1 and r2 can have a and b as their
children. For example, A.prnt references either R1.r1 id or R2.r2 id. Recall that
the element IDs encode the tags of elements. In this example, the last two bits of
the element ID determine whether the element is a, b, r1, or r2. Thus by looking
at the value of the parent attribute of an element we immediately know whether it
references r1 or r2. In Figure 8 we explicitly show the tags as part of the elements’
ID for clarity of exposition. For example, 3b is the ID of the b3 element, and 1r1 is
the ID of r11. ♦

We implemented the three basic update operations, insert, delete and rename,
as well as three validation algorithms, incremental (Section 4), local (Section 4.4),
and a naive, which involves reading the whole sibling list and re-validating it from
scratch.

Incremental Validation. The transition relations (TR) trees required by the
incremental update validation algorithm are stored in the TR relation, as illustrated
in Figure 7 (b). We store m TR nodes per tuple, where m is the number of
regular expressions that the string has to be validated against. The transition
relations that correspond to the same sequence of nodes with respect to different
regular expressions are always accessed simultaneously, and it is advantageous to

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

130 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

A

a_id prnt rsib tid tord

2a 1r1 3b 1 1024
5a 1r1 100b 2 2048
7a 1r1 8b 3 1024
12a 1r1 13b 5 1024

B

b_id prnt rsib tid tord

3b 1r1 4b 1 2048
4b 1r1 5a 2 1024
6b 1r1 7a 9 2048
8b 1r1 9b 3 2048
9b 1r1 10b 4 1024
10b 1r1 11b 4 2048
11b 1r1 12a 4 3072
13b 1r1 null 5 2048
100b 1r1 6b 9 1024

tid tr1 tr2 prnt count ord

1 “220” “4400” 6 2 1024
2 “333” “3303” 6 2 2048
3 “220” “4400” 7 2 1024
4 “222” “2222” 7 3 2048
5 “220” “4400” 7 2 3072
6 “220” “2200” 8 3 1024
7 “220” “4400” 8 3 2048
8 “220” “4400” 0 2 0
9 “222” “2222” 6 2 3072

a2 b3 b4 a5 b6 a7 b8 b9 b10 b11 a12 b13

Insert b100

split

leaf TR
nodes

non-leaf
TR nodes

sibling list

TR

r0

r11

TR 1 TR 2 TR 3 TR 4 TR 5

TR 6 TR 7
TR 2 TR 9

TR 8

R1

r1_id prnt rsib

1r1 0r null

Counts

id r1_vps r2_vps r1_cnt r2_cnt

1r1 true false 0 0

R

r_id rsib

0r null

R2

r2_id prnt rsib

Fig. 8. The state of the storage after a new b element is inserted.

store them together. For instance, the DTD of Example 6.1 contains two regular
expressions r1 and r2 that we need to be able to validate. Thus, the TR table for
this DTD will have two columns tr1 and tr2 as shown in Figure 8. We do not need
to validate trivial regular expressions, such as r, with minimal DFAs containing a
single state.

Each transition relation is stored as a string of length n, where n is the number
of states in the minimal DFA of the regular expression that is being validated. We
assume that the minimal DFA has at most 256 states and, hence, a byte is enough
to represent a state. The reject sink is by convention the state 0, and its transitions
are not stored in the database. For example, the minimal DFAs for r1 and r2 are
shown in Figure 7 (c). These DFAs have three and four potentially accepting states
respectively. Hence, tr1 is a string of size 3, and tr2 has length 4.

Each tuple of the TR relation has a unique tid attribute, and a prnt attribute
that references the parent TR node. The attribute count stores the number of
children TR nodes, and ord is used for ordering sibling TR nodes, which map
to the same parent. When assigning the ord numbers, we leave enough space to
accommodate many updates without renumbering. Notice, that renumbering does
not entail much overhead since the ord numbers have to be unique only among the
children of the same TR node.

We create an index on the pair (prnt,ord), to facilitate efficient validation and
TR splits. These operations require access to a list of sibling TR nodes.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 131

EXAMPLE 6.2. Consider the XML fragment of Figure 8 that is valid with
respect to the DTD of Example 6.1. Note that the TR table maintains transition
relations that validate the list of siblings both against r1’s content definition (those
relations are stored in tr1) and transition relations that validate against r2’s con-
tent definition (those relations are stored in r2) despite the fact the parent of the
list of siblings is not r2. The reason is that, as we explained in Section 4, we need
to be able to validate a renaming of r1 to r2 without validating the sequence of
siblings from scratch. Assume that the TR tree is constructed for the list of a’s and
b’s as shown in Figure 8. Assume that the maximum TR tree node size is 3 (nodes
cannot have more than 3 children).

The first tuple of the TR relation in Figure 8, corresponds to the TR1 node, which
covers the substring a2b3. If we run this string on the r1 DFA, the automaton will
terminate in states 2, 2, and 0 if it was initialized at states 1, 2, and 3 respectively.
Thus, the transition relation TR.tr1 for this substring is encoded by “220”.

Now consider an insertion of a new b element with id = 100 between the fourth
and fifth child of r1. Figure 8 shows the state of the database after the insertion.
Shading indicates elements and transition relations that were accessed to validate
the insertion. Notice that a new TR node (“TR 9”) has to be created, since “TR
2” cannot have 4 children elements, due to the maximum TR node size assumption.
♦

Local Validation. The table Counts stores counters used for validation of com-
plex node renames by the local validation algorithm described in Section 4.4. For
each complex element, i.e., for each internal node of the data tree, we store a tuple
that contains the element’s ID and a pair of vps and cnt attributes for each reg-
ular expression that needs to be validated. The vps attribute is a boolean “valid
prefix/suffix” flag which indicates whether conditions (2) and (3) of Lemma 4.1 are
satisfied for the element’s children list. The cnt attribute stores the number of
rejecting sequences of length k + 1 in the list. The condition (1) of Lemma 4.1 is
satisfied if this number is 0.

EXAMPLE 6.3. Figure 8 shows a Counts tuple that corresponds to r11.
The list of the element’s children is valid with respect to expression r1. Indeed,
r1 vps=true and r1 cnt=0. However, this element cannot be renamed to r2, since
the same list is not valid with respect to expression r2. Even though the sequence
does not contain any rejecting substring (r2 cnt=0), the last two elements leave
the minimal DFA of r2 in state 4, which is not accepting (see Figure 7 (c)). This
breaks condition (3) of the lemma, hence r2 vps=false. ♦

To facilitate efficient access to the element’s left sibling, which is required by the
local validation algorithm, we create indices on A.rsib and B.rsib.

7. APPLICABILITY AND PERFORMANCE EXPERIMENTS

Local validation was applicable on the majority of 60 real-world DTDs found at
OASIS and described at [Choi 2002]. In particular, there were only 21 non-local
regular expressions in 10 DTDs; the total number of regular expressions was 2141.
By investigating the documentation of the DTDs and contacting their authors we
determined that 8 of those expressions describe potentially very large lists of data.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

132 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

In addition, the minimal k, which affects the performance of the local validation
algorithm was always less than 4. In total, 2070 expressions were 1-local, 23 expres-
sions were 2-local but not 1-local, and 27 expressions were 3-local but not 2-local.
39 DTDs contained only 1-local expressions, 8 DTDs contained only 2-local expres-
sions (recall, the set of 2-local expressions includes the set of 1-local expressions)
and 3 DTDs contained only 3-local expressions; recall, 10 DTDs contained non-local
expressions.

Next we experimentally compare the performance of three update validation
algorithms: local validation, described in Section 4.2, general incremental validation
described in Section 4, and a naive algorithm that involves reading whole sibling lists
and re-validating them from scratch. We simulated a number of update scenarios
and analyzed the running time and space overhead of the algorithms under various
parameters. We have considered a case where the database objects are perfectly
clustered and a case where a fraction of the database objects is not placed at the
optimal clusters, which is a typical assumption for a database that is being updated.

7.1 Experiment Setup

All the experiments were performed on a 1.2 GHz Pentium system with 512 MB
of memory and 5400 rpm hard drive. The XCacheDB server and the RDBMS
were installed on the same system. To offset the relatively small dataset size, the
RDBMS was configured to use only 16 MB for the buffer cache.

We used a synthetic XML dataset containing about 150000 elements. The dataset
conformed to the DTD of Example 6.1, which is similar to the WellLogML DTD
[Well]. The a and b elements have text content, which does not alter the valida-
tion algorithms, but its size affects the performance of the implementation since it
increases the size of the dataset. Notice that this DTD is local, as the r1 expression
is 1-local, and r2 is 2-local. Since the DTD is local, we use the same dataset to
compare all three algorithms: local, incremental, and naive.

Scenarios and Parameters. We controlled the following parameters of the
dataset, and of the Transition Relation (TR) storage.

(1) Sibling list size: Each dataset had 150000 leaf elements, evenly distributed
between 10, 100, 1000, or 10000 top-level (r1 or r2) elements. Thus, the average
length of a sibling list that had to be validated was 15000, 1500, 150, and 15
respectively. This is the number of elements that has to be accessed by a naive
algorithm to validate each update.

(2) Size of the data attributes of relations A and B. These attributes store text con-
tent for the leaf a and b elements. We tried sizes 25, 100, and 400 bytes, which
translated to 8MB, 20MB and 65MB relational database sizes respectively.

(3) Transition Relation (TR) Tree Leaf Node Size: This size refers to the maximum
number of XML elements that can point to the same transition relation tree
node. For every update the incremental algorithm has to read the data elements
belonging to the same leaf TR node. For this parameter we tested values of: 4,
16, 64, and 256.

(4) TR Tree Non-Leaf Node Size: This size refers to the maximum number of
children an internal TR tree node is allowed to have. For this parameter we

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 133

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 100 200

Element Identity [0..255]

R
el

at
iv

e
Fr

eq
ue

nc
y

of
 A

cc
es

s
to

 T
hi

s
E

le
m

en
t

(b
ar

s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(l

in
e)

Fig. 9. Relative frequency and cumulative distribution of NURand() function, used in TPC-C.

tested values of: 4, 16, 64, 256 and 1024.

We tested the performance of element renames and three insert scenarios: uni-
formly distributed insertions, insertions distributed according to the TPC-C bench-
mark, and append-only access.

Unless otherwise specified, the experiments were conducted with the transition
relation tree nodes being 75% full. For example, when the TR leaf node size was
4 and the non-leaf node size was 64, a leaf TR node would be created for every 3
XML elements and a non-leaf TR node would be created for every 48 sibling TR
nodes.

In the random insertion scenario, 10000 b elements were inserted at uniformly
distributed random points in the document. All insertions were done as a part of a
single transaction. The incremental algorithm had to maintain the data structure
for each insertion. Notice that all our transactions are valid to avoid an (orthogonal)
issue of transaction roll-backs. Since the DTD is local, incremental validation
requires reading only a single TR tree node, unless the insertion happens at distance
less than k from the end of the sub-list of elements that point to the same transition
relation tree leaf node.

In the “average case” insertion scenario, which follows TPC-C, the same 10000
b elements were inserted at points picked by the NURand() non-uniform random
function. The cumulative distribution of this function, for the case when one ele-
ment is picked out of a list of 256 elements, is shown in Figure 9 (taken from [Levine
1997]). The same random function is used to construct update transactions in the
TPC-C benchmark [TPC-C].

In the “append-only” scenario the dataset was constructed in the same way.
However, the 10000 b elements were all appended to one of the r lists. Notice, that
this scenario caused the maximum number of node splits, and, at the same time,
took maximum advantage of database caching.

We performed the experiments on both clustered and unclustered datasets. In
the first case, each list of siblings was stored consecutively in the tables A and
B, hence leading to perfect clustering of the data. In the second case, 15% of

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

134 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

Append-Only Scenario

0
2
4
6
8

10
12
14
16
18

4 16 64 256 1024

Non-Leaf Node Size

A
ve

ra
ge

 In
se

rt
io

n
T

im
e

(m
s.

)

Leaf Node Size=4 Leaf Node Size=16
Leaf Node Size=64 Leaf Node Size=256

Full Nodes Scenario

0

50

100

150

200

250

4 16 64 256 1024

Non-Leaf Node Size

A
ve

ra
ge

 In
se

rt
io

n
T

im
e

(m
s.

)

Leaf Node Size=4 Leaf Node Size=16
Leaf Node Size=64 Leaf Node Size=256

Average Use Scenario

0

10

20

30

40

50

60

70

80

90

4 16 64 256 1024

Non-Leaf Node Size

A
ve

ra
ge

 In
se

rt
io

n
T

im
e

(m
s.

)

Leaf Node Size=4 Leaf Node Size=16

Leaf Node Size=64 Leaf Node Size=256

Random Inserts Scenario

0

20

40

60

80

100

120

4 16 64 256 1024

Non-Leaf Node Size

A
ve

ra
ge

 In
se

rt
io

n
T

im
e

(m
s.

)

Leaf Node Size=4 Leaf Node Size=16 Leaf Node Size=64 Leaf Node Size=256

Fig. 10. Effects of the node size parameters under different update scenarios.

randomly picked records were shuffled around by deleting and reinserting them
back into the table. The second case models a databases that has been updated
up to 15%, without having been reorganized for clustering purposes yet. Without
the perfect clustering the naive approach was at even greater disadvantage, as it
requires accessing full sibling lists for each update.

Optimizing the TR parameters. First, we experimented with the TR node
size parameters to maximize the performance of the incremental algorithm. Fig-
ure 10 shows the average insertion time, which includes actual insertion and incre-
mental validation time, for the uniform, average and append scenarios described
above. The last graph corresponds to the “full nodes” scenario, which is a random
insertion scenario modified so that all nodes were initially created 100% full. Thus
any insertion will trigger one or more node splits. This is essentially a worst-case
scenario for the incremental validation algorithm, as it requires the highest number
of node splits and the database server cannot take full advantage of caching, due
to the random locations of the updates.

All four graphs of Figure 10 exhibit the tradeoff between large number of node
splits needed for smaller node size and large sibling lists that need to be read to
validate for larger node size. In all four scenarios, leaf node size of 16 performed
better than very small and very large values.

The TR leaf node size affects the performance more than the size of the internal
TR nodes, since leaf TR tree nodes need to be accessed for every insertion, while
internal ones are accessed much less frequently10. The sibling list size and data

10Since our DTD is locally updateable, non-leaf TRs are accessed only when the leaf node is split,
or when the updated element happens to be within k of the end of sibling sub-list that maps to
a particular TR leaf node.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 135

0

10

20

30

40

50

60

70

80

90

4 16 64 256

Leaf Node Size

V
al

id
at

io
n

T
im

e
(m

s.
)

'data' size=25 bytes 'data' size=100 bytes 'data' size=400 bytes

Fig. 11. Effects of the “data” attribute size.

attribute size for these experiments were fixed at 15000 and 100 respectively and
the dataset was perfectly clustered. We don’t include the graphs for different sibling
list sizes and unclustered data, since they are very similar with the ones of Figure 10.

The effects of the size of the data attribute on the “average-case” scenario are
shown in Figure 11. The non-leaf node size does not significantly affect this exper-
iment and was fixed at 64. We report only validation time, as the insertion time,
naturally, increases with the data size and creates the same offset for all methods.

Notice that in all three cases the leaf size 16 performed the best. However, with
25 byte data attributes, leaf size 64 performed better than leaf size 4, while with
400 byte data attributes the opposite can be observed. The reason is that with
larger column size fewer tuples fit on a database page. Thus there is higher chance
that an update validation will require access to multiple pages. This increases the
negative effects of larger leaf node sizes.

In the rest of the experiments reported in this section we fix leaf and non-leaf
node sizes to be 16 and 64 respectively, since these values consistently provide good
performance.

Comparing the algorithms. Figure 12 shows that the local and incremental
update validation algorithms are virtually insensitive to the sibling list size, while
the naive algorithm scales almost linearly. Notice that the graphs are in logarithmic
scale. The data attribute size was fixed at 100.

The local validation algorithm is a winner even when the updated element has
as few as 15 siblings. This is remarkable considering how much more efficient the
local validation implementation could have been if we had lower level access to
the data. With small sibling list size, performance of the incremental validation
is comparable to that of the naive algorithm. As the sibling list size grows, the
incremental validation outperforms the naive by more than an order of magnitude
(sibling list of length 15000).

Naturally, all three algorithms perform worse on non-clustered data, as they
cannot take full advantage of caching and prefetching done by the database server.
However, the naive algorithm’s performance is impacted more since it has to access

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

136 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

Average Use (Non-Clustered Data)

1

10

100

1000

10000

15 150 1500 15000

Average Sibling List Size

A
ve

ra
g

e
In

se
rt

io
n

 T
im

e
(m

s.
)

Local Incremental Naïve

Random Inserts (Non-Clustered Data)

1

10

100

1000

10000

15 150 1500 15000

Average Sibling List Size

A
ve

ra
g

e
In

se
rt

io
n

 T
im

e
(m

s.
)

Local Incremental Naïve

Average Use (Clustered Data)

1

10

100

1000

10000

15 150 1500 15000

Average Sibling List Size

A
ve

ra
g

e
In

se
rt

io
n

 T
im

e
(m

s.
)

Local Incremental Naïve

Random Inserts (Clustered Data)

1

10

100

1000

10000

15 150 1500 15000

Average Sibling List Size

A
ve

ra
g

e
In

se
rt

io
n

 T
im

e
(m

s.
)

Local Incremental Naïve

Fig. 12. Performance of the three validation algorithm under different update sce-
narios on clustered and non-clustered datasets.

1

10

100

1000

10000

100000

25 100 400

"Data" Attribute Size (bytes)

A
ve

ra
g

e
In

se
rt

io
n

 T
im

e
(m

s.
)

Local C Local NC Incremental C Incremental NC Naïve C Naïve NC

Fig. 13. Effects of the data attribute size on the three validation algorithms, on clustered and
non-clustered datasets, in “average-use” case.

more data per update.
Figure 13 shows effects of the data attribute size on all three validation algorithms

in the “average-use” case. The sibling list size was fixed at 15000. Once again, the
graph is in logarithmic scale. With all three algorithms the validation for larger
data size takes longer as it requires reading more data. Notice that with small data
size, clustering almost does not impact the performance of the naive algorithm. In
this case the entire database fits in the buffer space of the RDBMS. However,
when the data attribute size is large and the database is 4 times bigger than the
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 137

node size fan-out time (sec) size (KB)

4 15000 194 1875

16 15000 40 341

64 15000 12.5 80

256 15000 6.6 20

1024 15000 5.2 5.3

4 1500 198 1886

16 1500 59 344

64 1500 26 82

256 1500 19.8 23

1024 1500 19 7.5

4 150 282 1912

16 150 128 395

64 150 103 126

256 150 92 25

1024 150 94 25

4 15 1068 2027

16 15 1051 685

64 15 881 244

256 15 881 244

1024 15 872 244

Table I. Overhead of Transition Relations

buffer space, the naive algorithm slows down by almost an order of magnitude when
running on non-clustered data. In this case the data has to be read from disk, and
without the clustering, the algorithm cannot take full advantage of the prefetching.

Construction Overhead of Transition Relations. Table I shows time and
space required to initially construct transition relations, with various node sizes,
for datasets with average sibling list sizes 1500, 150, and 15. Notice that larger TR
node sizes do not incur larger overhead. Local validation algorithm also has space
overhead as it stores an integer counter for each complex element and each regular
expression that the element is validated against. In our experiments this overhead
ranged from 80 bytes (10 internal nodes) to 80 KB (10000 internal nodes).

Summary. We compared naive (”from scratch”) update validation with the
described in Section 6 implementation of general incremental validation and local
validation, in the context of an XML database built on a relational database. The
following key results and guidelines emerged. First, local validation should always
be used, when applicable, since it outperforms naive and general incremental val-
idation in all scenarios. Fortunately, our investigation in real-life DTDs posted
at OASIS showed that local DTDs are very common. Second, the tuning of the
leaf node size parameters of the auxiliary structure needed for general incremental
validation is relatively easy, since values in the 16-64 range consistently provided
good results. General incremental validation marginally outperforms naive valida-
tion for sibling list sizes around 150 and significantly outperforms naive validation
for sibling list sizes in the thousands and beyond. The relative comparison results
were not significantly sensitive to how the data were clustered and the pattern of
the sequence of updates.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

138 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

8. CONCLUSIONS AND FUTURE WORK

The incremental validation algorithms we exhibited are significant improvements
over brute-force validation from scratch. However, several issues on update valida-
tion need further investigation:

Lower bounds. To understand how close our algorithms are from optimal,
it would be of interest to exhibit lower bounds on incremental maintenance of
strings, DTDs, and specialized DTDs. There are known results that yield lower
bounds for validation from scratch: acceptance of a tree by a tree automaton is
complete for uniform NC1 under dlogtime reductions [Lohrey 2001]. However, this
does not seem to yield any non-trivial lower bound on the incremental validation
problem. We are not aware of any work providing such lower bounds applicable to
our framework.

Optimizing over multiple updates. For a sequence of m updates, our incre-
mental validation algorithm modifies the auxiliary structure one update at a time,
then checks validity of the final updated tree. Clearly, it is sometimes more efficient
to consider groups of updates at a time. For example, this may avoid performing
unnecessary intermediate line rearrangements in the incremental algorithm for spe-
cialized DTDs. Also, if the number of updates is large compared to the size of the
resulting tree, it may be more efficient to re-validate from scratch.

More complex updates on trees. We only considered here elementary up-
dates affecting one node at a time. Some scenarios, such as XML editors, require
more complex updates arising from manipulation of entire subtrees (deletion, in-
sertion, cut-and-paste, etc). Our approach can still be applied by reducing each of
these updates to a sequence of elementary updates. However, in this case it may
be more efficient to consider updates of coarser granularity.

Update Languages. It is expected that XQuery will soon be augmented with
an update language [Sur et al. 2004; Tatarinov et al. 2001]. Systems supporting
complex update languages can naturally use our work: first compute the set of
updates of particular nodes and then apply the incremental validation techniques
described in this paper. However, this approach may miss the extra optimization
opportunities presented by the fact that the set of updates has been developed by
a single update statement. Realizing those opportunities requires analysis of the
update statement.

ACKNOWLEDGMENTS

We would like to thank Byron Choi for providing us a collection of DTDs and the
source code of the DTD Inquisitor tool used in [Choi 2002]. We are also grateful to
Jayavel Shanmugasundaram for useful discussions on the problem. Finally, we are
grateful to the ACM TODS reviewers for their constructive comments.

REFERENCES

Balmin, A. and Papakonstantinou, Y. Storing and querying XML data using de-
normalized relational databases. VLDB Journal . To appear. Also available at
http://www.db.ucsd.edu/people/andrey.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Incremental Validation of XML Documents · 139

Barbosa, D., Mendelzon, A., Libkin, L., Mignet, L., and Arenas, M. 2004. Efficient incre-

mental validation of xml documents. In Proceedings of the 20th International Conference on
Data Engineering (ICDE’04). IEEE Computer Society, Los Alamitos, CA.

Beeri, C. and Milo, T. 1999. Schemas for integration and translation of structured and semi-
structured data. In Proceedings of the 7th Int’l. Conf. on Database Theory. Lecture Notes in
Computer Science, vol. 1540. Springer, New York.

Bruggemann-Klein, A., Murata, M., and Wood, D. 2001. Regular tree and reg-
ular hedge languages over non-ranked alphabets. Tech. Rep. HKUST-TCSC-2001-05,
Hong Kong Univ. of Science and Technology Computer Science Center. Available at
http://www.cs.ust.hk/tcsc/RR/2001-05.ps.gz.

Bruggemann-Klein, A. and Wood, D. 1998. One-unambiguous regular languages. Information
and Computation 142, 2, 182–206.

Choi, B. 2002. What are real dtds like? In Proceedings of the Fifth International Workshop on
the Web and Databases, WebDB. Informal proceedings, 43–48.

Cluet, S., Delobel, C., Simeon, J., and Smaga, K. 1998. Your mediators need data conversion!
In Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data.
ACM, New York, 177–188.

Cormen, T., Leiserson, C., and Rivest, R. 1990. Introduction to Algorithms. MIT Press,
Cambridge, MA.

Dong, G. and Su, J. 1995. Space-bounded foies. In Proc. ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, May 22-25, 1995, San Jose, California. ACM,
New York, 139–150.

Garcia-Molina, H., Ullman, J., and Widom, J. 2001. Database Systems: The Complete Book.
Prentice Hall, Upper Saddle River, NJ.

Ghezzi, C. and Mandrioli, D. 1980. Augmenting parsers to support incrementality. Journal of
the ACM 27, 3, 564–579.

Hesse, B. and Immerman, N. 2002. Complete problems for dynamic complexity classes. In
Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS 2002). IEEE
Computer Society, Los Alamitos, CA.

Ipedo. Ipedo XML Database: Technical overview. Available at
http://www.ipedo.com/downloads/
products ixd technical overview.pdf.

Jalili, F. and Gallier, J. 1982. Building friendly parsers. In Proceedings of the Ninth Annual
ACM Symposium on Principles of Programming Languages. ACM, New York.

Larcheveque, J. 1995. Optimal incremental parsing. ACM Transactions on Programming
Languages and Systems 17, 1, 1–15.

Levine, C. 1997. Standard benchmarks for database systems. Presented at Sigmod 97. Available
at http://www.tpc.org/information/sessions/sigmod/indexc.htm.

Li, W. 1995. A simple and efficient incremental LL(1) parsing. In Proceedings of the 22nd
Seminar on Current Trends in Theory and Practice of Informatics(SOFSEM ’95). Lecture
Notes in Computer Science, vol. 1012. Springer, New York.

Linden, G. 1993. Incremental updates in structured documents. Licentiate Thesis, Report C-
1993-19, Department of Computer Science, University of Helsinki.

Lohrey, M. 2001. On the parallel complexity of tree automata. In Proceedings of the 12th
International Conference on Rewriting Techniques and Applications, (RTA 2001). Lecture
Notes in Computer Science, vol. 2051. Springer, New York.

Miltersen, P., Subramanian, S., Vitter, J., and Tamassia, R. 1994. Complexity models for
incremental computation. TCS 130, 1, 203–236.

Murching, A., Prasant, Y., and Srikant, Y. 1990. Incremental recursive descent parsing.
Computer Languages 15, 4, 193–204.

Neven, F. 2002. Automata, logic and XML. In Computer Science Logic, 16th International
Workshop (CSL 2002). Lecture Notes in Computer Science, vol. 2471. Springer, New York.
Available at http://alpha.luc.ac.be/ lucg5503/publs.html.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

140 · Andrey Balmin, Yannis Papakonstantinou, Victor Vianu

Papakonstantinou, Y. and Vianu, V. 2000. DTD inference for views of XML data. In Pro-

ceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS 2000), Dallas, Texas, USA. ACM, New York, 35–46.

Patnaik, S. and Immerman, N. 1997. Dyn-FO: A parallel, dynamic complexity class. JCSS 55, 2,
199–209.

Petrone, L. 1995. Reusing batch parsers as incremental parsers. In Foundations of Software
Technology and Theoretical Computer Science. Lecture Notes in Computer Science, vol. 1026.
Springer, New York.

RELAX NG. http://www.relaxng.org.

Segoufin, L. 2002. Personal communication.

Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D. J., and Naughton, J. F.

1999. Relational databases for querying XML documents: Limitations and opportunities. In
Proceedings of 25th International Conference on Very Large Data Bases (VLDB’99), Edin-
burgh, Scotland, UK. Morgan Kaufmann, San Francisco, CA, 302–314.

Sur, G., Hammer, J., and Simeon, J. 2004. UpdateX - an XQuery-based language for processing
updates in XML. In International Workshop on Programming Language Technologies for XML
(PLAN-X 2004). Informal Proceedings.

Tatarinov, I., Ives, Z., Halevy, A., and Weld”, D. 2001. Updating xml. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. ACM, New York.

TPC-C. Benchmark. Available at http://www.tpc.org/tpcc/.

Vollmer, H. 1999. Introduction to Circuit Complexity. Springer Verlag, New York.

W3C. 1998. The extensible markup language (XML). W3C Recomendation available at
http://www.w3c.org/XML.

W3C. 2001. XML schema definition. W3C Recomendation available at
http://www.w3c.org/XML/Schema.

Wagner, T. and Graham, S. 1998. Efficient and flexible incremental parsing. ACM Transactions
on Programming Languages and Systems 20, 2, 980–1013.

Well. WellLogML DTD. Available at http://www.posc.org/ebiz/WellLogML/.

XML Edt. XML editor products. Available at http://www.perfectxml.com/soft.asp?cat=6.

XMLmind. XMLmind XML Editor. Available at http://www.xmlmind.com/xmleditor/.

XMLSpy. xmlspy document editor. Available at http://www.xmlspy.com/products doc.html.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

