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Abstract

We describe the Enosys XML Integration Platform (EXIP), focusing on the query language, algebra,
and architecture of its query processor. The platform enables the development of eBusiness applications
in customer relationship management, e-commerce, supply chain management, and decision support.
These applications often require that data be integrated dynamically from multiple information sources.
The Enosys platform allows one to build (virtual and/or materialized) integrated XML views of multiple
sources, using XML queries as view de¯nitions. During run-time, the application issues XML queries
against the views. Queries and views are translated into the XCQL Algebra and are combined into a
single algebra expression/plan. Query plan composition and query plan decomposition challenges are
faced in this process. Finally, the query processor lazily evaluates the result, using an appropriate
adaptation of relational database iterator models to XML. The paper describes the platform architecture
and components, the supported XML query language and the query processor architecture. It focuses on
the underlying XML query algebra, which di®ers from the algebras that have been considered by W3C
in that it is particularly tuned to semistructured data and to optimization and e±cient evaluation in a
system that follows the conventional architecture of database systems.

1 Introduction

eBusiness applications that support more e±cient, tightly integrated business processes demand access and
integration of up-to-date information from multiple distributed and heterogeneous information systems.
Information integration is a signi¯cant challenge: the relevant data are split across multiple information
sources, often owned by di®erent organizations. The sources represent, maintain, and export the information
using a variety of formats, interfaces and semantics. Many challenges arise:

² Data of di®erent sources change at di®erent rates, making the data warehousing approach to integration
hard to develop and maintain. The Enosys platform resolves this challenge by being based on the on-
demand mediator approach [Wie93, CDSS98, PAGM96, C+95, S+, LRO96], according to which data
are collected dynamically from the sources, in response to application requests. In addition, the Enosys
Software data integration platform enables the applications to access and integrate information using a
high-level, declarative XML query language. Processing XML query statements in a dynamic mediator
approach poses query processing challenges, as we discuss next.

² The mediator has to decompose application requests into an e±cient sequence of requests targeted
to the sources. These requests have to be compatible with the query capabilities of the underlying
sources. For example, if the underlying source is an XML ¯le the mediator may only retrieve the
¯le sequentially. All selections, joins, transformations on the data of the ¯le will have to be done in
the mediator's space. On the other hand, if the underlying source is a powerful SQL database the
mediator can send to it SQL queries that delegate the selections and joins to the SQL query processor,
hence providing e±ciency: The amount of data that are retrieved from the database is much smaller.
Consequently, the SQL query takes correspondingly less time to be evaluated.

The mediator needs to rewrite the plan in order to push the most e±cient supported query to the
underlying sources. In the algebra-based Enosys mediator query processor this requirement is addressed

¤Contact: yannis@enosysmarkets.com

1



by having the rewriter/optimizer transform the algebraic expressions in a way that sub-expressions are
delegated to the sources.

² The requirements on the power of the supported view de¯nition and query language and the exten-
sibility of the system are important. First, di®erent types of information reside in di®erent systems,
have di®erent structure, and are usually in heterogeneous formats. The mediator has to enable and
facilitate the resolution of the heterogeneities. This requires a view de¯nition/query language that can
take care of complex transformations. Furthermore, extensibility is required in order to allow easy
interface with function libraries built in other programming languages, such as Java. Second, di®erent
applications use di®erent XML views and queries, which structure the XML data as close as possible
to the application needs. For example, we have found that XML views and queries that structure the
data in a way that is \isomorphic" to the HTML structure of the Web-application lead to huge time
savings in building web applications. However, providing the °exibility to produce structures that ¯t
the application requirements requires a powerful language for selection, join, and transformation.

Addressing the three points above poses the challenge of optimizing complex queries over views of dis-
tributed information sources with limited query capabilities. The task is accomplished in the Enosys platform
using an algebra-based processor.

Roadmap Section 2 presents related work. Section 3 presents the architecture and components of the
overall Enosys integration platform. Section 4 presents the architecture of the mediator query processor
and introduces the reader to the role of the algebra in the mediator's query processing. Section 5 describes
XCQL, which is the XML query language used by the mediator.1 Section 6 presents the XML query algebra.
It illustrates how XCQL queries are mapped into algebraic expressions.

2 Related Work

Data integration has been an important database topic for many years. Most of the early works focused on
the integration of structured sources - primarily relational databases. A survey and summary of such works
can be found in [T+90, Gup89, LMR90]. In the 90's the scope of data integration systems was extended
to include the integration of non-structured sources and the \mediator" concept was created [Wie93]. The
Enosys mediator follows the architecture of earlier virtual view mediators, such as TSIMMIS [PAGM96],
YAT [CDSS98], HERMES [S+], Garlic [C+95], and the Information Manifold [LRO96].
The query language of the Enosys mediator, XCQL, borrows from similar languages such as XML-QL

[DFF+], MSL [PAGM96], FLORID [FHK+97], Lorel [QRS+95, MAG+97], and YAT [CDSS98]. Its most
immediate relative is the XMAS language [LPV00]. XMAS is similar to XML-QL; the queries of both are
based on a WHERE clause that produces bindings for its variables and a CONSTRUCT clause that inputs the
bindings and produces the result. Their main di®erence is that the CONSTRUCT clause of XMAS enables
grouping using an explicit group-by construct, which resembles the group-by structure of OQL [BCD89],
while XML-QL enables grouping by skolem functions. Note that skolem functions also allow the speci¯cation
of graphs. (Graphs are simulated in XML by use of references.) The group-by structure of XMAS does not
allow for the speci¯cation of graphs - only trees can be speci¯ed. The expressive power disadvantage of
group-by is countered by the fact that it has a clean reduction into a corresponding algebraic operator,
which is a critical point in the course of building an algebra-based query processing engine.
XCQL extends XMAS in a number of directions. First, it supports nested queries in both the CONSTRUCT

and WHERE parts of the query. Second, it supports a wide range of operators, such as union and outerjoin,
in the WHERE clause. More generally, XCQL supports null bindings for the query variables and de¯nes
corresponding semantics that enable queries that e±ciently handle irregular data sets. Note that null bindings
do not correspond to XML nulls. Instead, their meaning is that a variable may not be bound.
XCQL is translated into the XCQL algebra. The XCQL Algebra is the cornerstone of query processing

in the Enosys XMediator, similar to the role algebras have played in relational [GMUW01] and object-
oriented databases [CM93, CCM96]. Algebras were also designed for the nested relational [KR89, RKS88]

1XCQL is now being replaced by XQuery. Nevertheless, the key characteristics of the underlying algebra remain the same
and many ideas of XCQL, such as group-by support, are incorporated into the extended XQuery that Enosys implements.
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and complex value models [AHV95]. Recently XML Query Algebras emerge as the underlying infrastructure
of XML databases and mediators [G+, CCMS00, LPV00]. The common characteristic of those algebras is
that the operators input and output sets of tuples. This should be contrasted with functional programming-
based XML algebras, such as [BDHS96] and [F+], which serves as the core of the semantics of the emerging
XQuery W3C XML querying standard [C+]. In those approaches the operators input and output lists of
XML elements. The tuple orientation, which is also present on object-oriented algebras, allows one to carry
proven aspects of relational algebra into XML. For example, it facilitates the speci¯cation of multiple physical
join operators as has been the case with relational algebra systems, where a join may be physically executed
using any of multiple physical join operators [GMUW01].
The algebra has also been the base of an iterator model that minimizes the memory footprint of executing

a plan and the response time required for partial evaluation of the result. The iterator model is coupled with
features that enable arbitrary forms of navigation in the query result. Furthermore it allows a computation
to stop and resume its execution later, even by another process.
The XCQL algebra relates to the OQL algebra [CM93, CCM96] and XML algebras [G+, CCMS00,

LPV00]. However, it has many distinguishing features, oriented towards enabling higher e±ciency in the
query processing engine:

1. The \null bindings" feature facilitates the e±cient handling of irregularities in the data. Furthermore,
it simpli¯es the algebraic equivalent of queries, by reducing the number of required nested plans.

2. There are multiple operators for the same or similar logical operations. For example, there is a main
memory-based nested loops join, an index-based join, and a two-pass sort-merge join (similar to the one
used in relational database systems [GMUW01]). Furthermore, there are typically multiple algebraic
expressions that accomplish the same XML query. The redundancy in the algebra is justi¯ed by
cost-based optimization considerations.

The component of the rewriting optimizer that is responsible for decomposing queries into queries that
are sent to the sources and are commensurate with their abilities is based on the conceptual background set
up in [PGH96, PGH98, VP00, LRU96, RSU95], which, in turn, are related to the background created by
works on answering queries using views either in the relational model (see [Hal01] for a comprehensive survey)
or semistructured/XML models [PV99, FLS98, CGLV99]. The system architecture of the capabilities-based
rewriting component of the Enosys mediator is related to the ones of [HKWY97, HKWY96, CCMS00] in
the sense that it is built around a rewriting optimizer, such as the one of Starburst [HFLP89].
Note that many of the query processing challenges of the mediator's query processor are also faced by

systems that export an XML view of a single relational source [SKS+01, SSB+00, FMST01, FMS01].
On the commercial front, many data integration companies and corresponding systems have emerged

during the last few years [Met, Cal]. More recently, the adoption of XML and its perfect ¯t to integration
applications has led to the emergence of XML-based information integration companies, such as Xyleme
[Xyl01] and Nimble [DHW01].

3 High-Level Platform Architecture and Components

The Enosys platform is based on the wrapper-mediator architecture, as shown in Figure 1. The wrappers, also
called XMLizers, access multiple, distributed, heterogeneous information sources and export Virtual XML
views of them. The XMediator exports the Virtual Integrated XML (VIX) database, which consists of all the
individual views exported by the wrappers. Then virtual integrated XML views can be built on top of the VIX
database. The views organize information from the distributed sources into XML objects that conform to the
application's needs. For example, to a marketplace application the integrated XML view can provide front-
end access to an integrated catalog, where the heterogeneities between the suppliers' products are resolved,
and the products are integrated and classi¯ed according to the needs of the marketplace. Each product
object contains catalog data along with attributes from the pricing, delivery, and other databases. The
views provide distribution transparency, i.e., the originating sources and methods of access are transparent
to the application. For example, it is transparent to the application that the product speci¯cations in the
catalog come from a product database, while the pricing and delivery information may be coming from a
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Figure 1: The High-Level Architecture of the Enosys Platform

Customer Relationship Management (CRM) system, which often provide customized pricing and delivery
for each customer.
The virtual database and views enable the front-end applications, which may be the Enosys XQForms web

form generator or custom applications, to seamlessly access distributed heterogeneous information sources
as if they were a single XML database. In particular, the application can issue an XML query against either
the XML database or the views. The query typically selects information from the views and structures
it in ways that are convenient for the application. For example, a HTML application will create queries
that structure the XML results in a way that easily translate into the target HTML pages. In the catalog
example, if the resulting HTML page presents the data grouped by product family then the XML result will
greatly facilitate the construction of the HTML page if the results are grouped by product family.
At a su±cient level of abstraction, when the application issues an XML query to a VIX database or

view, the platform decomposes the XML query into requests that are directed to the sources. The source
responses are assembled into the XML query result that is sent to the source. Keep in mind though that in
practice the information exchange between the client, the mediator and the sources is more complicated, in
order to support e±cient demand-driven (lazy) query evaluation.
When the sources correspond to slow and static sources one may prefer to cache the XML view of those

sources into the XML Store, which is the Enosys XML database. Typically, the data of slow and static
sources are collected, integrated, and cached in advance, while the components originating at fast dynamic
sources are collected dynamically. It is transparent to the application which pieces of the view originate from
dynamic sources and which ones originate from XML Store.
The data integration server is accessible to applications through a query language API and a DOM-

based (Document Object Model) API. XCacheDB is an XML database, primarily used for caching purposes.
XSDesign o®ers a web-base front-end generator for the easy construction of web/HTML-based query form
and report templates. Finally, the platform includes management tools that enable the user to easily create
and manage front-ends, view de¯nitions, queries, and source connections. Each of the key components is
described below.

3.1 XMLizers

There are two classes of XMLizers. The ¯rst class turn structured and semi-structured data into virtual
XML views. Enosys Markets currently o®ers such XMLizers for
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² Relational databases. Every JDBC-compliant database is supported. The virtual XML view exported
by the XMLizing wrapper is a straightforward conversion of the tables and tuples of the database into
an XML structure. Note that the XML view also includes an XML Schema of itself. The XMLizing
wrappers produce the XML Schemas by reading the metadata tables of the database (also called system
tables, or catalog tables in some RDBMS's.)

² XML ¯les or sets of ¯les. The XML Schema of its ¯le is computed in one of three ways: If the ¯le
already refers to an XML Schema then this is the returned XML Schema. If the ¯le already refers to
a DTD then this DTD is converted into an XML Schema. If the ¯le has no XML Schema or DTD
associated with it then a schema is inferred using straightforward conventions.

² HTML ¯les and sets of ¯les. The HTML ¯les are viewed as XHTML.
² Delimited text ¯les. The XMLizing wrapper turns the text ¯le into an XML ¯le by following directions
found in a con¯guration ¯le about how to translate into XML the data that are found between commas,
tabs, lines, or other symbols that we may wish to include in the set of delimiters.

The second class of XMLizers corresponds to functions. Functions may be invoked by the XCQL query
statements. They have speci¯c inputs and outputs. Each input and output may be a basic type, such
as string, integer, etc, or an XML type. The standard library of Enosys includes functions that connect
to WSDL-described Web services and SOAP interfaces. It is easy to see the similarity between WSDL
speci¯cations and the I/O speci¯cations of our functions. Indeed, function speci¯cations will be conformant
to the WSDL format soon.
Additional XMLizer functions can easily be written for other data sources. Existing investments in XML

information exchange (e.g., use of adapters by WebMethods or SeeBeyond) provide excellent leverage for the
development of these XMLizer functions.

3.2 XMediator

The XMediator accesses the virtual views exported by the XMLizers, accesses the functions, and provides a
virtual integrated XML view to the applications. The integrated view appropriately transforms and integrates
the XML views of the information sources into XML that conforms to the target application needs. The
transformation and integration is rapidly and concisely speci¯ed in the XML query language XCQL, which
is described in Section 5.
The XMediator allows queries directly on the VIX views. The query processor transforms the query to

replace references and conditions on views to references and conditions on the actual data sources. The
query is then parsed into a query plan and is optimized by the query rewriter. The decomposer chooses
an e±cient way of decomposing the optimized query plan into requests that are sent to the information
sources. The plan is ¯nally run by the execution engine, which sends the requests to the wrappers, collects
the information, and composes it into the XML query result.

3.3 The XML Store Database

The Enosys Integration Platform uses the XML Store to cache VIX View's that correspond to slow or static
sources. The caching can happen on demand or at regularly scheduled intervals. The XCacheDB is a native
XML database in the sense that it stores XML and responds to XML queries with XML results. XCacheDB
utilizes a JDBC compliant relational database for storage and query processing and is optimized for Oracle8i.
The developer does not need to be aware of the underlying relational database. Nevertheless, XCacheDB
o®ers management functionality that allows a developer/administrator to provide hints on how the data
should be stored. The architecture of XCacheDB uses proprietary storage and query processing algorithms
to deliver improvements in run-time e±ciency.

3.4 The XSDesign Web Front-End Generator

The XSDesign family of tools enables the rapid development of customized Web front-ends that access the
integrated view. XSDesign [PVP01] is designed to be used by the business analyst and provides forms for
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parametric querying of the data sources in the integrated view, summarization and navigation of large query
results and query assistance in formulating and re¯ning queries.

3.5 Metadata Management Tools

As it is the case with database servers as well, the Enosys Markets data integration platform provides a set
of management tools for

² System administration

² Management of views and management of the access rights on the views.
² Dynamic recon¯guration of the views without having to shut down the mediator server. This is a
particularly useful feature when one has to cope with sources that may be out of function for a while.

The Enosys platform also includes a set of development tools, the most notable of which is the Query
Builder. The Builder allows the graphical creation of XCQL view de¯nitions and queries. The builder ¯rst
imports the XML schemas of the information sources or the existing views. The user then uses a drag-and-
drop interface and wizards to de¯ne joins, function invocations, ¯ltering conditions and more on the input
data. The builder also allows the user to graphically arrange the output data into a di®erent XML schema
by specifying mappings to the input schemas, groupings, and creation of new elements.

4 Query Processor Architecture

In the rest of the paper we focus on the XMediator, its query language and the underlying algebra. As
we described earlier, the XMediator inputs an XCQL query, an optional XCQL view, a description of the
sources, and optional XML Schemas of the sources. It returns the XML query result.
Query processing is based on the set-oriented XCQL algebra. In particular, incoming XCQL queries are

translated into XCQL algebra expressions by the translator module of the query processor (see Figure 2).
Consequently, the rewriting optimizer applies a series of rewritings on the algebra expression in order to
optimize it. For example, selection and projection conditions are pushed down, join operators and join
orders are selected according to characteristics of the sources, such as presence of indices, and parts of the
algebraic query expression are delegated to the underlying source.
At a su±cient level of abstraction, the plan execution engine receives the query plan, sends requests/queries

to the wrappers, and combines the results received from the XMLizers into the XML result of the input
query. In practice, the query result object is not fully materialized immediately. Instead, query evaluation
is driven by the client navigations, as explained below.
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4.1 Navigation-Driven Evaluation and Partial Result Evaluation

A large set of requirements posed by Web applications are covered by the iterator model of executing the
operators of the algebra and the ability of the query plans to perform navigation-driven result evaluation.
Web-based applications are often accessed by large numbers of users who generate correspondingly large
numbers of requests to the mediator. In this context, good use of available resources (main memory, band-
width, resources of underlying sources) is of high importance. In addition, result computations need to be
client-driven and typically partial; the typical Web user tends to issue queries that have very large results.
After navigating into a small part of the result the user may decide that she does not need to see the whole
result. In order to avoid unecessary costs it is important that the mediator produces only what is being
requested by the client.
The mediator allows \just-in-time" generation of the necessary (parts of the) query result, by integrating

result object navigation and querying. In particular, the mediator server process (depending upon appropri-
ate con¯guration by the client) may only send parts of a query result to the client process. A partial result
has multiple lists of elements that are incomplete, as in Figure 3. In place of the missing parts of the results,
appropriate tokens are included that the client may send back to the server if it needs one of the missing
parts. The tokens contain information needed for the mediator to produce missing parts. For example, if
the client navigates to the second child of customer \John Smith", the Token 2 is passed to the mediator
and the mediator produces another partial result, which leads to a tree such as the one of Figure 4.
Applications are shielded from the existence of tokens: a thin client DOM implementation is in charge of

passing the appropriate tokens to the mediator server. The client navigates in the result fragment unaware
that parts of the result are not yet in client memory. If the client happens to navigate into a missing part,
the library will send the relevant token to the server and fetch the required fragment.
A key challenege in optimizing navigation-driven query evaluation is the choice of the size and shape of

the produced fragments. At the one extreme, one may choose each node of the data model to be a fragment
and encode the relevant token in the node itself. This approach, described in [LPV00], is elegant but it is vert
ine±cient in the number of round-trips that will be needed between the client and the server. Moreover, it
penalizes the server with unacceptable overhead in creating tokens. Instead, the mediator employs the Client
Server Interaction Controller module to choose the size and shape of the fragment that will be returned to
the client. The algorithm takes as input con¯guration parameters provided by the client.
The Mediator execution engine supports CLSIC through a pipelined, iterator-based execution model,

which additionally allows the computation state of operators to be exported and imported. Each operator
can respond to a call for the \next" tuple (as we discuss in the next section, XAlgebra is tuple-oriented.)
Moreover, each operator enables the production of tokens by being able to produce information about its
state on command. This state information is encoded by CLSIC in tokens. Each operator is able to reproduce
a prior state and continue its computation from that point on. Upon receipt of a token, CLSIC produces
and imposes the appropriate state on each operator.
Note that, depending on the capabilities of the underlying sources for on-demand computation, the

mediator and the XMLizers set up and invoke appropriate access methods of these sources, such as SAX calls
or SQL cursors. For example, assume that a query produces customer elements, from the customer table
of an underlying relational source. When the client issues the query, the corresponding XMLizer establishes
a cursor, using the cursor manager module. As the mediator requests more results the cursor reads more
tuples. A semantic description of the cursor's status may even appear in tokens that are exported.

5 The XCQL Query Language

We introduce next the XCQL query language. We start with an example that illustrates the basics of the
language and we proceed with examples that highlight its special features. We emphasize the support of
NULL values.
An XCQL query consists of two parts or clauses, as described below:

² The WHERE clause speci¯es the elements expected in the input and the conditions they should satisfy.
It also assigns or binds input elements and values to variables.
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<db>

<homes>

<home id = "h1">

<bedrooms> 4 </bedrooms>

<zip> 92122 </zip>

<descr> Duplex house, quiet neighborhood </descr>

<ocean_view />

</home>

<home id = "h2">

<bedrooms> 2 </bedrooms>

<zip> 92122 </zip>

<descr> Awesome beach house </descr>

<ocean_view />

<fireplace />

</home>

<home id = "h3">

<bedrooms> 3 </bedrooms>

<zip> 92123 </zip>

<descr> House in the suburbs </descr>

<fireplace />

<washer />

<dryer />

</home>

</homes>

</db>

Figure 5: Sample of the \homes" source

² The CONSTRUCT clause de¯nes the arrangement of the variable bindings supplied by the WHERE
clause in a new XML document. Nested queries are also allowed in the CONSTRUCT clause.

For our running example, let us assume that there are two sources, exporting \homes" and \schools"
information, as illustrated in Figure 5 and Figure 6.
XCQL queries can combine data from multiple sources with ease and create complex output structures.

In the example of Figure 7, a WHERE clause joins information from two sources, and a CONSTRUCT clause
creates new elements and nests the source elements appropriately. In particular, the XCQL query accesses
the sources \homes" and \schools" and ¯nds homes that are in the same zip code as schools with a national
test score equal to or greater than 500. For each such home, the query creates a \top home" element that
contains the speci¯c home and the qualifying schools of the same neighborhood.
The WHERE clause consists of two tree patterns and two condition clauses. In general, a query may

have multiple tree patterns, which syntactically resemble the tree structure of the input documents and are
annotated with variables. Variables are denoted by the $ symbol. Intuitively, each tree pattern is matched
against the XML source, real or virtual, and each variable is bound to an element or element content of
the source. As a result, a tree pattern produces a list of all matching combinations of variables to source
bindings. Each such combination is termed a binding tuple. The \homes" tree pattern of the example query
produces all binding tuples

($H = h; $Z = z1)

such that the following conditions hold:

² The root of the XML document at \homes" is named db.
² The root contains a \homes" element.
² The \homes" element contains a \home" element, h.
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<db>

<schools>

<school id = "s1">

<zip> 92122 </zip>

<nts> 430 </nts>

</school>

<school id = "s2">

<zip> 92123 </zip>

<nts> 500 </nts>

</school>

<school id = "s3">

<zip> 92123 </zip>

<nts> 600 </nts>

</school>

</schools>

</db>

Figure 6: Sample of the \schools" source

² The home element h, in turn, contains a \zip" element.
² The content of \zip" is z1.
The tree patterns generate binding tuples, and the condition clauses apply join and selection conditions,

as in SQL. The ¯rst tree pattern produces all possible binding tuples ($H = h; $Z1 = z1) for variables $H
and $Z1. The second tree pattern produces all binding tuples ($S = s; $Z2 = z2; $nts = n) for variables $S,
$Z2, and $nts. Together, they produce all possible tuples of the form

($H = h; $Z1 = z1; $S = s; $Z2 = z2; $nts = n)

by combining every tuple for the ¯rst tree pattern with every tuple for the second. Finally, the two condition
clauses select only the tuples for which z1 = z2 and n ¸ 500. Using these binding tuples, the CONSTRUCT
clause generates a \homes around good schools" root element, which contains a list of \top home" elements.
The group-by construct f$Hg requires that one \top home" element is constructed for each binding h of $H.
This is speci¯ed by the f$Hg construct after the closing of the \top home" element in the CONSTRUCT
clause. In other words, the f$Hg construct groups \top home" elements by h. Within each \top home"
element, along with the binding for $H, a \schools" element is also generated. In a \schools" element, all
bindings, s, of $S for the speci¯c binding of $H are listed. Figure 8 illustrates the XML result.

5.1 Optional patterns and the use of NULLs in XCQL

Optional tree patterns allow for matching with sources that have irregular structure, characterized by missing
elements or missing element content. Given that structure irregularities is a prime feature of semistructured
data and XML, it is obvious that the feature is very useful. Like regular tree patterns, an optional tree
pattern matches elements and their components to variables, if matching elements are present in the data.
A regular tree pattern requires that all variables in the pattern are bound to some content or element in
the source before it produces a binding tuple. However, an optional pattern produces binding tuples even
when the speci¯ed pattern is missing from the data. In such cases, the variables in the pattern receive empty
(NULL) bindings. Optional patterns are annotated with a question mark (?).
The example of Figure 9 illustrates regular tree patterns. The user collects all home ID's from the

\homes" source regardless of the presence of an ocean view. At the same time, if a home has an ocean view,
the \ocean view" object should be included in the output. In other words, the \ocean view" subelement is
optional.
Before we proceed with explanations on optional patterns let us note that we used the attribute pattern

\id = $hid" in the WHERE part and a syntactically identical construct was used in the CONSTRUCT
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CONSTRUCT

<homes_around_good_schools>

<top_home>

$H

<schools>

$S {$S}

</schools>

</top_home> {$H}

</homes_around_good_schools>

WHERE

% Start of ``homes" tree pattern

<db>

<homes>

$H:<home>

<zip> $Z1 </zip>

</home>

</homes>

</db>

in "homes.xml"

% End of tree pattern on ``homes"

AND

% Start of ``schools" tree pattern

<db>

<schools>

$S:<school>

<zip> $Z2 </zip>

<nts> $nts </nts>

</school>

</schools>

</db>

in "schools.xml"

% End of tree pattern on ``schools"

% Condition clauses

AND $Z1 = $Z2

AND integer($nts) >= 500

Figure 7: A typical join-and-construct query
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<homes_around_good_schools>

<top_home>

<home id="h3">

<bedrooms>3</bedrooms>

<zip>92123</zip>

<descr>House in the suburbs</descr>

<fireplace/>

<washer/>

<dryer/>

</home>

<schools>

<school id="s2">

<zip>92123</zip>

<nts>500</nts>

</school>

<school id="s3">

<zip>92123</zip>

<nts>600</nts>

</school>

</schools>

</top_home>

</homes_around_good_schools>

Figure 8: Result of the example query

CONSTRUCT

<ans>

<home id = $hid>

$ocean_view {$ocean_view}

</home> {$hid}

</ans>

WHERE

<db>

<homes>

<home id = $hid >

$ocean_view : <ocean_view/> ?

</home>

</homes>

</db>

in "homes.xml"

Figure 9: Example of Optional Tree Patterns
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<ans>

<home id = "h1">

<ocean_view />

</home>

<home id = "h2">

<ocean_view />

</home>

<home id = "h3"/>

</ans>

Figure 10: Result of Optional Tree Pattern Query

clause. Attribute patterns in the WHERE clause are used to place conditions on XML element attributes
and bind attribute names and values to variables, as is the case with XML QL, as well. Attribute patterns
in the CONSTRUCT clause are used to include attributes in the results.
The result of the query is illustrated in Figure 10. The optional pattern \<ocean view /> ?" is used to

signify that the pattern does not have to necessarily match any elements in the source. If the <ocean view/>
element is encountered within the <home> element, the variable $ocean view is bound to it. Otherwise, the
variable binds to NULL.

Remark on passing NULLs to predicates and functions: Most of the predicates in the standard
predicate library of the XMediator will turn false if one of their arguments is NULL. For example, \5 >
NULL" will return false and, in SQL spirit, \NULL = NULL" will also return false. However, one can build
predicates that can return \true" even if they are given NULLs. The \isnull()" predicate is one of them.
The XCQL iterators do not construct elements that correspond to tuples that have NULL bindings for

the variables of the iterator. In other words, if a binding tuple has a NULL binding for one of the variables
in a group-by list, no element is generated for the particular tuple.

6 The XCQL Algebra

In this section we describe the XCQL algebra, which is used to evaluate the queries in the XMediator. Unlike
the XML Query Algebra and the XQuery Core, which are algebras based on functional languages, the XCQL
algebra is tuple-oriented and draws on the relational and nested relational algebras. Tuple orientation allows
the construction of an iterator model, which extends the iterator model of relational databases and enables
navigation-driven partial evaluation. In addition, it enables a better ¯t with the underlying relational
databases, which naturally return tuples. Finally, it introduce join operators, which open the gates for
cost-based optimization.
A close relative of the XCQL algebra is the XMAS algebra [LPV00]. There are some obvious di®erences

between the XCQL algebra and XMAS, stemming from the fact that the latter addresses \abstractions".
For example, it omits direct support of attributes. However, there are also substantial di®erences that a®ect
query processing in the mediator:

1. The XCQL algebra has a \relational query" operator that is reponsible for turning a part of the plan
(which typically corresponds to the FOR and WHERE parts of the XQuery) into an SQL query that
returns tuples of bindings.

2. The XCQL algebra supports and OQL-like group-by and nested plans.

3. The XCQL Algebra supports NULLs. Its ability to support NULLs becomes useful when we evaluate
query language constructs that explicitly involve NULLs, such as optional patterns and outerjoins.
It is also useful in the evaluation of other language constructs, such as nested queries, which can be
translated into constructs involving null operators { and such a translation may lead to more e±cient
plans.
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The input and output of most operators is a set of tuples fbi j i = 1; : : : ; ng. Each tuple bi ´ [$var1 =
vali1; : : : ; $vark = val

i
k] consists of variable-value pairs, also referred to as bindings. We say that the variable

$varj is bound to the value val
i
j in the tuple bi if the pair $varj = valij appears in bi. All input (resp.

output) tuples of an operator have the same list of variables and no variable appears more than once in a
tuple. Each value vij can either be a constant, NULL, a single element, a list of elements or a set of tuples,
recursively.
In the rest of the paper bi:$x is used to represent the value to which the variable $x is bound to in the

tuple bi. The notation bj = bi+($v = w) means that the tuple bj contains all the bindings from the tuple bi
and the binding $v = w, and bk = bi + bj means that the tuple bk contains all the bindings from the tuples
bi and bj . The notation l[e1; : : : ; ek] is used to describe an XML element l with subelements e1; : : : ; ek.
A subset of the operators of the XCQL algebra is described next:

² source&srcid;[$V1;:::;$Vn];query?(). The &srcid parameter identi¯es the source/wrapper from which bind-
ings for the variables [$V1; : : : ; $Vn] will be obtained. The number of variables in the list is dependent
on the type of the source. In the simplest case, which is the case of an XML ¯le source, the list of
variables is a single variable [$V ] and the result is the singleton list of tuples f[$V = r]g, where r is
the root node of the XML ¯le.

In the XML ¯le case the query is missing. Note that whenever we include the symbol \?" next to a
parameter we mean that the parameter may be missing. In general, the plan is an algebra expression
that is evaluated by the underlying wrapper and returns a list of tuples of the form [$V1 = v1; : : : ; $Vn =
vn]. For example, in the case of a relational database source the plan can be an expression which
corresponds to a combination of selections and joins.

² getD$V:p!$X;d;o(I) The \get descendants" operator is used to obtain bindings for the fresh variable
$X by navigating using the path expression p into the bindings of the variable $V of the input I.
The parameters d (called \NULL disqualify") and o (called \optional") are binary °ags that guide the
behavior of the operator when the path p cannot be followed or when the binding of $V is NULL. In
the basic case, where d = 1 and o = 0 the output of the getD$V:p;$X;1;0 operator on input I = fbi j
i 2 1 : : : ng is as follows: Suppose bi = [$V = vi; : : :]. Let Yi = fyijg, where yij is reachable from the
node vi by a path p

0 such that the labels on this path satisfy the path p. Then the output is the set
of binding lists (tuples) de¯ned by

getD$V:p!$X;1;0(I) = fbi + ($X = y) j bi 2 I; y 2 Yig
Basically this means for every tuple in the input, for the node n bound to the variable $V , we ¯nd
the set of nodes reachable from n by a path satisfying the regular expression p, and these nodes are
the bindings for the variable $X. Every pair of bindings for $V and $X is inserted into a new output
tuple and bindings for all the other variables in the corresponding input tuple (the tuple from which
we took the value of $V ) are copied into the output tuple.

Note that if $V = NULL then the corresponding tuple is disquali¯ed. Similarly, if Yi is the empty set
the corresponding input tuple bi is disquali¯ed. The other cases are de¯ned similarly.

EXAMPLE 6.1 Consider the set of input tuples

B = f [$H : home[descr[neat]; descr[clean]; beds[2]; : : :]];
[$H : home[bed[3]; : : :]];
[$H : NULL]

g

Then it is

getD$H:descr7!$X;1;0(B) = f [$H : home[descr[neat]; descr[clean]; beds[2]; : : :]; $X = descr[neat]];
[$H : home[descr[neat]; descr[clean]; beds[2]; : : :]; $X = descr[clean]]

g
2
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² assignf($V1;:::;$Vn)7!$X . In the ideal case, for each input tuple bi = [$V1 = v1; : : : ; $Vn = vn; : : :], the
assignment operator outputs the tuple bi+($X = f(v1; : : : ; vn)), where f is some function understood
by the query processor.

However, it is often the case that f cannot accept NULL values for some (or even all) of its inputs. It
may also be the case that f may not be de¯ned for some of its inputs. The function may respond in
one of two ways in such cases:

{ The function f returns the special result \FAIL", which in practice is actually communicated to
the mediator by a Java exception. The the assign operator disquali¯es bi from the output.

{ The function f returns NULL. Then the tuple bi + ($X = NULL) is included in the output.

The mediator provides to a developer functions functionality that facilitates the implementation of
each one of the two behaviors above.

EXAMPLE 6.2 Consider the addition function +:

assign+($V1;$V2)7!$X(f[$V1 = 1; $V2 = 2; $V3 = a]; [$V1 = 0; $V2 = 3; $V3 = b]g =
f[$V1 = 1; $V2 = 2; $V3 = a; $X = 3]; [$V1 = 0; $V2 = 3; $V3 = b; $X = 3]g

2

² I1 [ I2. The union operator is identical to union (without duplicate elimination) of relational systems,
in the case where the \schemas" of I1 and I2 are identical. However, if the tuples of I1 are of the form

b1 = [$V1 : v1; : : : ; $Vk : vk; $V
1
1 : v

1
1 ; : : : ; $V

1
l : v

1
l ]

and the tuples of I2 are of the form

b2 = [$V1 : v1; : : : ; $Vk : vk; $V
2
1 : v

2
1; : : : ; $V

2
l : v

2
m]

then each tuple b1 of I1 is propagated in the output after it has been expanded with NULL bindings
for the variables $V 21 ; : : : ; $V

2
l , i.e., the following tuple is output

b1 + ($V
2
1 : NULL; : : : ; $V

2
l : NULL)

We treat the tuples of I2 similarly.

² ¼[$V1;:::;$Vn](I). The projection operator ¼ is identical to the non-duplicate-removing duplicate elimi-
nation operator of relational systems. For every tuple b = [$V1 : v1; : : : ; $Vn : vn; : : :] 2 I, the operator
outputs exactly one tuple [$V1 : v1; : : : ; $Vn : vn].

² ¾µ(I) The output of the select operator ¾µ is the set of input tuples that satisfy the condition µ.
¾µ(I) = fbjb 2 I; µ(b) ´ trueg

The condition µ is a boolean expression involving built-in functions and predicates, such as =;6=; >;<
;¸;·, and possibly other functions and predicates that have been interfaced to the XMediator. The
arguments of the functions and the predicates are constants or variables that appear in the schema of
I.

The evaluation of the condition µ when NULL bindings are present is identical to the evaluation of SQL
WHERE clauses in the corresponding situation. In particular, predicates may return one of the three
values T (true), F (false), or ? (uncertain). The built-in predicates =;6=; >;<;¸;· always return ?
when one or both of their arguments are NULL. Other predicates may exhibit other behavior. Indeed,
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some predicates have input °ags that control their response in the case that their argument(s) is (are)
NULL.

The boolean operators AND (^), OR (_), and NOT (:), evaluate the boolean expression using the
following list of equations, which is identical to the way SQL evaluates boolean expressions.

^ T F ?
T T F ?
F F F F
? ? F ?

_ T F ?
T T T T
F T F ?
? T ? ?

:
T F
F T
? ?

Eventually, if the boolean expression results into T the corresponding tuple quali¯es. It it results into
a F or ? the boolean expression is disquali¯ed.

² joinM?
µ (I1; I2) The joinµ operator has a single parameter µ which is a boolean predicate. The join

operator is like the relational join operator except that it operates on binding lists instead of relational
tuples, with variables taking the place of attributes. So the output of the joinµ(I1; I2) operator is

joinµ(I1; I2) = fb1 + b2 j b1 2 I1; b2 2 I2; µ(b1; b2) ´ trueg
The condition µ is of the form $v1 op $v2 where v1, v2 are variables and op is one of =; <;·; >;¸. The
condition is true for a given pair of binding lists b1; b2 if b1:$v1 is bound to a leaf node whose value is
x1, b2:$v2 is bound to a leaf node whose value is x2, and x1 op x2 is true.

The optional annotation M dictates one of the following join execution methods:

{ M = m is applicable on equijoins only. It assumes that the inputs I1 and I2 are sorted on the
join attribute and a merge join is performed at the XMediator. Note that there is no sort-merge
join operator that does both the sorting and the merging, but nevertheless a sort-merge joins are
done by inserting order-by operators that sort the arguments of the merge join. The reason that
the sort is decoupled from the merge is that in this way the optimizer has the freedom to delegate
the order-by to the underlying source, if such a delegation is supported by the underlying source
and reduces the overall cost.

{ M = i is applicable when µ involves equality and inequality conditions. The XMediator builds an
index on I2, based on the attribute(s) of I2 involved in the join.

{ M = l is applicable to all kinds of conditions µ. The XMediator stores I2 and matches incoming
tuples of I1 against the I2 copy.

² A semijoin operator is de¯ned in the obvious way.
² outerjoinM?

µ (I1; I2). The outerjoin operator is de¯ned in the same way that is de¯ned in relational
systems. It is very useful to integration applications for two reasons: First, it is an operation that
naturally arises when one fuses together data that arrive from distributed databases where there is no
guarantee that information on entity x found in the ¯rst source will ¯nd matching information on x
in the second source. Second, the outrjoin operator provides a rewriting of queries that involve nested
plans, as we discuss later.

6.1 Grouping and Nested Plans

² groupBy[$G1;:::;$Gn];[$P1;:::;$Pm]!$P (I). The group-by operator partitions the input I into sets of tuples
that agree on the values of the variables in the group-by list [$G1; : : : ; $Gn]. (It is easy to see the
in°uence of OQL's group-by.) One partition is created for each unique binding [$G1 : g1; : : : ; $Gn : gn]
of the variables $G1; : : : ; $Gn. The output consists of one tuple [$G1 : g1; : : : ; $Gn : gn; $P : p] for each
partition, where p is called the partition set is the tuple set de¯ned by

¼$P1;:::;$Pm¾$G1=g1^:::^$Gn=gn(I)

Typically partition sets are passed to the \apply" operator, described next, which applies algebra
expressions on them.
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crElthomes around good schools;$47!$Result(
apply$3;p17!$4(
groupBy[]7!$3(
selectint($NTS)¸500(
join$Z1=$Z2(
getD$H;zip= 7!$Z1(
getD$1;db=homes=home7!$H(
source`homes:xml0;[$1]));
getD$S;nts= 7!$NTS(
getD$S;zip= 7!$Z2(
getD$1;db=schools=school7!$S(
source`schools:xml0;[$2]))))))))

p1 :

8>>>>>>>>>>>><>>>>>>>>>>>>:

listify$117!$4(
crElttop home;$107!$11(
cat$9;$87!$10(
crList$H7!$9(
crList$77!$8(
crEltschools;$67!$7(
apply$5;p27!$6(
groupBy[$H]7!$5(
nestedSrc$3))))))))))

9>>>>>>>>>>>>=>>>>>>>>>>>>;
p2 :

½
listify$S7!$6(
nestedSrc$5)

¾

Figure 11: The XCQL algebra for the query of Figure 7

² apply$P;$plan;$X!$L(I). The \apply" operator has three parameters: A plan plan, a variable $P that
binds to a partition set and an output variable $L. The apply operator is well de¯ned only when the
binding p of $P is a set of tuples. Furthermore, it is assumed that the result plan(p) of applying the
plan on p is a single tuple with a single attribute. Let us assume this attribute is named $A. Typically,
the plan has a \listify" operator on top, which guarantees that the output is a single tuple with a
single attribute. Formally,

apply$P;$plan!$L(I) = fb+ ($L = res) j b 2 I; res = plan(b:$P )g

² listify$X7!$L(I). The \listify" operator collects all bindings of the variable $X. The result is a single
tuple, having the single variable $L. Typically, the variable $L is annotated to be the variable that
has the result of the algebraic plan. The listify operator requires the variable $X to bind to nodes. It
discards all NULL bindings.

listify$X7!$L(I) = f[$L : list[fe j [$X : e; : : :] 2 I; e6= NULL; e6= list[: : :]g]g

² nestedSrc$x() The \nested source" operator has only one parameter, and may be used only in nested
plans, i.e. plans which appear as a parameter to an apply operator in some other plan. It functions
mainly as a placeholder. The output of the nestedSrc$x operator is the set of binding lists to which
the variable $x is bound to in the current tuple in the outer plan (the plan in which the corresponding
apply operator appears).

Finally, the construction operators crElt, cat and crList are responsible for creating news elements,
concatenating lists, and turning single elements into lists respectively. The operators are illustrated in the
following example.

EXAMPLE 6.3 The algebra for the query/view of Figure 7 appears in Figure 11. Notice the special
variable/attribute $Result that carries the query result in its unique binding. The main plan has a bottom
part that corresponds to the WHERE clause and an upper part that corresponds to the CONSTRUCT clause. All
the bindings of the WHEREclause are grouped into a single group, which binds to $3 and becomes the input
of the nested plan p1. The nested plan p1 groups its input by homes ($H). For its group it creates a list of
schools $6 using the nested plan p2. Then by using the construction operators it organizes the bindings of
$H and $6 into top home and schools.

2
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