
Mixing Querying and Navigation in MIX

Pratik Mukhopadhyay Yannis Papakonstantinou
CSE Department

University of California, San Diego
fpmukhopa, yannisg@cs.ucsd.edu

Abstract

Web-based information systems provide to their users the
ability to interleave querying and browsing during their in-
formation discovery efforts. The MIX system provides an
API called QDOM (Querible Document Object Model) that
supports the interleaved querying and browsing of virtual
XML views, specified in an XQuery-like language. QDOM
is based on the DOM standard. It allows the client applica-
tions to navigate into the view using standard DOM navi-
gation commands. Then the application can use any visited
node as the root for a query that creates a new view. The
query/navigation processing algorithms of MIX perform de-
contextualization, i.e., they translate a query that has been
issued from within the context of other queries and naviga-
tions into efficient queries that are understood by the source
outside of the context of previous operations. In addition,
MIX provides a navigation-driven query evaluation model,
where source data are retrieved only as needed by the sub-
sequent navigations.1

1. Introduction

Mediators provide integrated views of information from
heterogeneous sources [2, 1, 18]. The interaction paradigm
they offer to their users/clients is the conventional database
one; the user/client issues queries and the mediator server
responds with the full query answer. This interaction
paradigm does not capture the continous interleaving of
browsing and querying that Web users exhibit during their
information discovery efforts. For example, consider an
electronic customer of the photo equipment section of an
auction site such as eBay. He first issues a query for, say,
cameras that cost less than $300. He browses the first few
result objects and he realizes that his query is too general.

1Pratik Mukhopadhay was supported by NSF IRI-9734548 and NSF
Digital Government 9983510. Yannis Papakonstantinou performed part of
the described work while on leave at Enosys Markets, Inc, during 2000.

He also realizes that the objects carry the useful attributes
“autofocus speed” and “Popular Photo Magazine Rating”.
So he refines the current query result by requiring that the
autofocus speed is less than 0.4sec and the rating is at least
“medium”. He browses into the page for a specific camera,
say Nikon123 and then continues browsing into the “match-
ing lens” list only to figure out that there are too many
lenses. So he issues a query against the list of lenses for
Nikon123 in order to find ones costing less than ���� with
diameter greater than 10mm, where the current owner is in
Southern California. Then he browses the “lenses” in the
answer.

The MIX (Mediation In XML) mediator provides vir-
tual (i.e., non-materialized) integrated views of distributed
XML sources and facilitates the interleaved browsing and
querying of the views at both the front-end level and the
programmatic level. At the front-end level it provides the
BBQ [15] GUI, which blends querying and browsing and is
reminiscent of IBM’s PESTO GUI for “in-place querying”
and browsing of object oriented databases [4]. The user of
BBQ navigates into XML data. At every time he may issue
a query relative to the point that his navigation has reached.
(This feature was first introduced in IBM’s PESTO and was
called “query in place”.) For example, the user may navi-
gate into a “camera” node and issue a query for “lens” sub-
objects with diameter greater than 10mm.

At the programmatic level the MIX mediator provides
the Querible Document Object Model (QDOM) Application
Programmatic Interface (API) that natively supports inter-
leaved querying and navigation of XML data, as needed by
client applications such as the BBQ. The navigation com-
mands are a subset of the navigation commands of the stan-
dard DOM API. In addition, QDOM allows an “in-place
query” to be issued from any node in the result of previous
queries. The query generates a new “answer” object from
which a new series of navigation commands may start.

The efficient support of QDOM commands by the
MIX mediator required the resolution of major challenges.
First, MIX supports the efficient on-demand (lazy) evalu-
ation of XQuery[9] queries. To the best of our knowledge,

other XML mediator systems, even those based on the vir-
tual approach, compute and return the full result of the user
query. Thus, they often materialize data that the user will
not inspect – it is well known that Web users browse just a
few results from their query and then move on to the next
query. Evaluating the full result unnecessarily overloads the
mediator and the sources, reduces the response time as per-
ceived by the client, and uses more memory (for intermedi-
ate results) than needed.

Instead the MIX mediator produces the XML result tree
as the user navigates into it, hence avoiding unnecessary
computations. The framework for doing so is conceptually
simple and does not complicate the client’s code: The client
receives a virtual answer document (QDOM object) in re-
sponse to his query. This document is not really computed
or transferred into the client memory until navigation com-
mands request a part of it. The QDOM framework hides
from the client the fact that the result is not really materi-
alized and the client receives a virtual answer XML doc-
ument (DOM object) in response to his query. The non-
materialization of the answer document is completely trans-
parent to the client who accesses the virtual document using
(a subset of) the DOM API, i.e., in exactly the same way as
a main memory resident XML document.

Nevertheless, the non-materialization of the answer doc-
ument poses an important challenge to evaluating “queries
in-place”. A query q� issued from a node x of the result of
a prior query q has to be evaluated on the non-materialized
tree rooted at x. An obvious evaluation strategy would be
to retrieve and materialize the tree rooted at x and evalu-
ate q� using standard XML query processing techniques.
However, this solution is unacceptable for all the reasons
mentioned above: the tree rooted at x may be large and
the client is not really interested in it - the client simply
wants to be able to navigate in the result of q�. Instead,
the mediator handles the evaluation of q � by using decon-
textualization. Decontextualization is a multi-step process
that given a query q and a query q � issued from a node
x (reached by some navigation n) it produces a query q ��

that delivers the same result with q� but without relying on
the context created by q and x. Note that decontextualiza-
tion solves an additional challenge in developing QDOM
for mediator views: The typical underlying sources do not
support a QDOM-like interaction protocol, which blends
querying and navigation. (Some object-oriented databases
may be considered an exception to this statement.) Typi-
cal sources receive a query and return a result. They often
allow the pipelined production of the result but they rarely
allow a query to be issued from within the context of pre-
vious queries and navigations. The fact that MIX’s decon-
textualization delivers a query q�� that does not depend on
the context set by q and x makes the solution applicable to
sources with no powerful context mechanisms.

 DATABASE
RELATIONAL RELATIONAL

 DATABASE

DATA

D
A
T
A

Client

Engine

Translator to Algebra

object id’s

 Plan
Algebraic

1st query’s

1st query

Composition

 and data

issued from nodes

Optimized

Mediator

(TUPLE REQUEST)

SQL QUERY

S
Q
L

Q
U
E
R
Y

(
T
U
P
L
E

R
E
Q
U
E
S
T
)

RESULT

R
E
S
U
L
T

(TUPLES)

(
T
U
P
L
E
S
)

commands
navigation

REWRITING RULES

Queries and Navigations
Plan Composing OPTIMIZER

REWRITING

Algebraic Plan

CLIENT
INTERFACE

subsequent queries

Figure 1. The Architecture of the MIX mediator

The last step is the optimization of the composed query
q��. We are concerned with logical optimizations that are
performed by a composition optimization phase that is re-
sponsible for simplifying and optimizing the composed
query by removing unecessary intermediate results, pushing
selections down, and, in general, performing a set of alge-
braic rewritings that improve performance in critical ways.
This step follows techniques described in [16].

This paper presents how MIX supports QDOM on views
of relational databases. Relational databases support a basic
form of partial result evaluation: The client issues an SQL
query to the database server and receives a cursor, which
allows the partial evaluation of the result.

In summary, we believe that this paper makes three con-
tributions. It provides the framework and semantics for
the interleaving of querying and browsing. It provides the
XQA query algebra and shows how it is used for enabling
partial query evaluation – much in the way that iterator
models[12] were built on the relational algebra and enabled
the pipelined evaluation of SQL queries. It provides the de-
contextualization algorithm which enables the mediator to
support operations not directly supported by the underlying
sources.

Architecture The XQA algebra-based architecture of the
MIX mediator is depicted in Figure 1. The current system
accesses XML files and relational database sources, which
are wrapped to offer an XML view of themselves. The pa-
per focuses on the issues pertaining to relational databases
and neglects file sources, where the opportunities for effi-
cient QDOM evaluation are limited.

The first XQuery [9] query issued by the client is trans-
lated into an XQA algebra plan, which is subsequently

rewritten into an optimized plan. (We are not concerned
with cost-based optimization issues in this paper.) The en-
gine receives the optimized algebraic plan and returns to
the client the root of the result object. Then the client’s
navigations into the result object are translated by the en-
gine into additional SQL queries and tuple requests sent to
the sources. When the client issues a new XQuery query
q� from a node n of the result of the previous query q the
composition module combines the algebraic form of q with
the node-id of n and the algebraic form of query q � to de-
liver the composed query. Finally composition optimization
is performed.

Related Work A number of mediator systems have
been developed previously; for example, Garlic [2],
XPERANTO [3], TSIMMIS [13], SilkRoute [14], YAT
[6], [11], [17], [16]. The SilkRoute project [14, 11] ad-
dresses the problem of having a mediator present a unified
XML view of multiple relational sources and transform the
queries presented to the mediator by the clients into SQL
queries which can be sent to the sources. The sources re-
turn sorted tuples, which are then marked with appropriate
XML tags to create the result XML document presented to
the user.

In [11] the authors focus on optimization issues in ac-
cessing relational databases. They reach the result that
pushing the maximum amount of work to the relational
source is not always optimal.

In [3] the authors mention the advantages of leveraging
on existing relational query optimization systems for use
in query composition and optimization for XML-query lan-
guages, and describe a relational system extended with sup-
port for querying XML data. Again the focus is on deliv-
ering full query results. Querying of XML data stored in
RDBMS is also discussed in [17].

The XQA algebra is related to the OQL algebra [7, 5],
the XMAS algebra [19] and the XCQL algebra [16]. The
XCQL algebra has many features oriented towards efficient
processing of query plans and queries on semistructured
data. In particular, it has a “null binding” feature that fa-
cilitates the efficient handling of irregularities. In addition,
[16] has multiple physical versions of each logical opera-
tor. For example, there are multiple physical join operators
for the unique logical join operator. In contrast, XQA is
minimal. XQA is also related to the OQL algebra [7, 5] (it
has adopted the group-by structure and nested plans) and
the XMAS algebra [19]. [7, 5] present rewritings for the
unnesting of queries and other rewriting optimizations.

Other researchers have looked at the capabilities prob-
lem, and proposed several solutions [13]. Navigation driven
evaluation of query results was first proposed in [19].

�root�
list

�XY Z���
customer

�DEF���
customer

��
id 	

XY Z���

��
name 	
XY ZInc�

�

addr 	

LosAngeles

��
id 	

DEF���

��
name 	

DEFCorp�

�
addr 	

NewY ork

�root�
list

�����
order

�����

order

���
orid

����

���
cid 	

XY Z���

��

cid 	

ABCInc�

���
value 	
����

���
orid 	
����

���
value 	
������

Figure 2. An XML database

Overview In Section 2 we introduce the QDOM query
and navigation model. In Section 3 the XQA operators
are specified. Section 6 deals with the query composition
process. In Section 4 the navigation-driven evaluation is
described, and in Section 5 the techniques for supporting
mixed browsing and querying are introduced.

2. Framework

Data Model We use a labeled ordered tree abstraction of
XML where, for simplicity, we have excluded attributes.
The set of labeled ordered trees T is defined as follows:

� The vertex id’s are elements ofO. Let us denote the el-
ements of O as �������root��XYZ���� � � �. The
id’s may be random surrogates or they may carry se-
mantic meaning. For example, see Figure 2 where the
XML equivalent of a relational database is presented.
The relational database wrapper exporting the database
assigns the tuple keys (eg, XYZ123) to be the oid’s of
the corresponding “tuple” objects – after it precedes
them with the &.

� Vertices have labels in the set of constants D, which is
disjoint from O. The labels of leaf nodes will also be
called “values”.2

� The edges e�� � � � � en starting at a non-leaf node v are
ordered. We will refer to the list of trees t�� � � � � tn
pointed by e�� � � � � en as the value of v.

In short, the set T of labeled ordered trees can be de-
scribed by the signature
T 	 �vertexId � O� label � D,
j �vertexId � O� label � D� value � �T ���.

Query Language and Algebra We use a subset of the
W3C-recommended XQuery XML query language[9], aug-
mented with a group-by operation. Figure 3 shows a simple
view that will serve as our running example. The view as-
sumes a source exporting a straightforward XML equivalent
of a relational database with relations “customer” and “or-
ders” (see Figure 2). Note that we use the terms query and

���� ��� �� �� �	
�����		�����
��	�� � ���� �� �� �	
 �����
� ����

�� �� �	�
������		����	��� � ���� �� �� ���
� ����

����� ������������ � �������������

������ � �������� �	
 ����
�
�
�� ����������
 �
����! � ��
 ����
�
�
�
��

�� � �
� �����
� �� � ����
� �������
 ������"	! � � ����
 �����
�
�
�
�� �� ������
� ��

�� � ���
�����
�
�
�� ���
 ���
��	 ���
�
�
�
�� ���
 �������"	! ����

 ��
����! ���� � ���
 ����
�
�
�
�� ���
��	 ���

Figure 3. The example query

����� ��� �	�
���� �����
���� ������
����

�	�
���� ��� ��� �������� �� ����������	�

� �	�
���� �������� �� ����������	�

�����
���� �������� ����������	� ����� ����������	�

� �����
���� �� ����������	� ����� ����������	�

������
���� ��� ��!"�� ���#���

���#��� ��� $%����& ���#���%�� $'%����& ���(�	��)�%��

� ��������

���#���%�� ��� ���#���

� �����

����#���%�� ���#���%��

���(�	��)�%�� ��� * (�	��)�%�� +

� ,�#���-

(�	��)�%�� ��� ��������

� (�	��)�%�� . ��������

Figure 4. The Syntax of XQuery subset

view interchangeably.
Figure 4 provides the syntax of the XQuery subset that

we consider. Notice that we consider only a subset of path
expressions. The complete XQuery path expressions can
include predicates, horizontal navigation features, and other
features that we exclude. Also notice that the “IN” clauses
of the “FOR” statement can only be path expressions.

For the query evaluation process, the mediator translates
the user query into an expression in the XQA algebra (de-
scribed in Section 3). Note that the query language is such
that the result of a query is always of the form list�e� � � � en�
where the elements ei have the same tag. Since the XQA al-
gebra is tuple based on multi-sets of tuples, the tuples are
converted into a list by the tuple-destroy operator, so the fi-
nal result conforms to the data model described above. But
this step means that the order of the elements in the result
list is not specified by the query. This is not a serious restric-
tion since in the case of relational sources when we map the
tables to our data model the ordering of the tuple nodes is
entirely arbitrary.

The QDOM Queries and Navigation Commands The
view exported by the mediator can be accessed by a se-
ries of navigation commands and queries. The navigation
commands presented below abstract a subset of the DOM
API for XML. The queries can in-principle be full-fledged
XQuery queries. Overall, the client can issue the follow-
ing commands, where p and p� are vertex id’s of the virtual
document.

2
D includes all “string-like” data, i.e., element names, character con-

tent, etc.

� d (down): p� �	 d�p� assigns to p� the first child of p;
if p is a leaf then d�p� 	 � (null).

� r (right): p� �	 r�p� assigns to p� the right sibling of p;
if there is no right sibling r�p� 	 �.

� fl (label fetch): l 	 fl�p� assigns to l the label of p.

� fv (value fetch) : v 	 fv�p� assigns to v the value of
the leaf p; if p is not a leaf then fv�p� 	 �. In order to
simplify the discussion we will assume that the down
and right commands are accompanied by fetch com-
mands that deliver the label and value of the reached
object.

� q (query): p� �	 q�hXQuery queryi� p� assigns to p�

the root of the answer to the query q. The query q uses
a special root, which is lexically denoted as “root”
in the query. The root is assigned the id of p before
the query is executed. (Note that p need not have a
printable representation.)

EXAMPLE 2.1 We describe next the sequence of pro-
grammatic level actions happening while a user browses
and queries the integrated view shown in Figure 3. The
client initially has access only on the root p� of the view.
By issuing the command

p� 	 d�p��

the client obtains the first CustRec node. The command

p� 	 r�p��

fetches the second CustRec node while the command

p� 	 d�p��

fetches the customer node which is the child of the first
CustRec node. The sequence of commands

p� 	 d�p��� p� 	 r�p��� p� 	 r�p��

lets the client navigate into the customer (p�) of the first
CustRec and then into the two first OrderInfo objects
(p� and p�). At this time the client may decide that there are
too many orders for this specfic customer. So he issues the
following query. Notice that the query is contextualized by
the first customer.

p� 	 q�Q�� p��

(Q2)
FOR $O IN document(root)/OrderInfo/order
WHERE $O/value > 2000
RETURN $O

A new navigation and query sequence can start from p�. �

3. The Algebra

In this section we describe the operators in the XQA al-
gebra, which is used to evaluate the queries at the media-
tor. Unlike the XML Query Algebra and the XQuery Core
[10], which are algebras based on functional languages, the
XQA algebra is tuple-oriented and draws on the relational
and nested relational algebras. Tuple orientation allows the
construction of an iterator model, which extends the iter-
ator model of relational databases and enables navigation-
driven partial evaluation. In addition, it enables a better fit
with the underlying relational databases, which naturally
return tuples. The input and output of most opera-
tors is a set of tuples fbi j i 	 �� � � � � ng, also referred
to as set of binding lists. Each binding list bi is a tuple
��var� 	 vali�� � � � � �vark 	 valik� of variable-value pairs,
also referred to as bindings. We say that the variable �varj
is bound to the value valij in the binding list bi if the pair
�varj 	 valij appears in bi. All input (resp. output) tu-
ples of an operator have the same list of variables and no
variable appears more than once in a tuple. Each value v ij
can either be a single element, a list of elements or a set of
binding lists.

For the purposes of evaluating navigational commands,
the output of each operator is also viewed as a tree. The tree
representation of a set of binding lists consists of a root node
with label list whose children nodes are labelled “binding”
and represent the binding lists. Each node representing a
binding list has an id which identifies that specific tuple,
and has a child node corresponding to every variable for
which it has a binding. Each node representing a variable
has a single child node representing the value to which the
corresponding variable is bound in the binding list. The
value nodes may either be a leaf node representing a single
element (object), or the root of a subtree representing a list
of elements or a set of binding lists. A subtree representing
a list of elements l consists of a root node with the label list
and child nodes corresponding to the values of the elements
of the list l.

In the rest of the paper bi��x is used to represent the value
to which the variable �x is bound to in the binding list bi.
The notation bj 	 bi���v 	 w� means that the binding list
bj contains all the bindings from the binding list bi and the
binding �v 	 w, and bk 	 bi � bj means that the binding
list bk contains all the bindings from the binding lists bi and
bj . The notation l�e�� � � � � ek� is used to describe an XML
element l with subelements e�� � � � � ek.

The operators in the XQA algebra are as follows:

1. getD : The “get descendants” operator getD	A�r�	X

is used to obtain bindings for the variables from the
sources. The output of the getD	A�r�	X operator on
input I 	 fbi j i � � � � � ng is as follows : Sup-
pose bi 	 ��A 	 vi� � � ��. Let Yi 	 fyijg, where

yij is reachable from the node vi by a path p such that
the labels on this path satisfy the regular expression
r. (The path contains the labels of both the start and
finish node, unlike path expressions in other query lan-
guages, where the label of the first node is not included
in the path.) Then the output is the set of binding lists
(tuples) defined by

getD	A�r�	X�I� 	 fbi���X 	 y� j bi � I� y � Yig

2. Relational operators: The standard relational opera-
tors like select, project, join, semi-join are part of the
algebra.

3. createElement: The crEltl�f
�g��	ch�	name operator
has four parameters: a label l, a skolem function sym-
bol f whose parameters are the list of grouping vari-
ables �g, a variable �ch whose value is the list of chil-
dren and a variable �name to which the newly cre-
ated object is bound. For every incoming tuple bin
the operator outputs a tuple bout 	 bin � ��name 	
l�v�� � � � � vk��, where the vi are the elements of the list
bin��ch. The element created has an object id f��g�
which is a skolem of the values of the variables in �g.

4. cat: The cat	x�	y�	z has three parameters: input vari-
ables �x� �y and the output variable �z. One or both
of the input variables may be qualified by a list con-
structor. For every tuple in the input, the cat	x�	y�	z

operator concatenates the lists to which �x and �y are
bound to in that tuple, and the resulting list is bound
to the variable �z in the corresponding output tuple. If
one of the input variables, say �x is qualified by a list
constructor, the value to which �x is bound is first in-
serted into a list, and this list is concatenated with the
list to which the other input variable is bound.

5. tuple destroy : The output of the tuple destroy oper-
ator tD	A on the input I 	 fbi j i � � � � � ng is well
defined when every tuple bi � I has a binding for �A,
and let bi��A 	 vi. Then the output is the tree T whose
root node has the label ‘list’, where

T 	 tD	A�I� 	 list�v�� � � � � vn�

The tuple destroy operator may take an optional sec-
ond argument which specifies the id of the root node
output by this operator. The tuple destroy operator is
used as the final operator in every XQA plan to keep
the tuple structure of the intermediate results (the bind-
ing lists) internal to the mediator and to export to the
users the view of the result they expect, i.e. a view
conforming to the DOM.

6. group-by: The groupBygl�	name�I� operator parti-
tions the input I into sets of tuples P�gl

�I� which agree

tD��V� rootv�

crElt�custRec� f��C�� �W� �V �

cat��C� �Z� �W �

apply�p� �X� �Z�

gBy��C� �X�

join��� 	 ���

getD��C�customer�id� ���

getD��K�customer� �C�

mksrc�root�� �K�

getD��O�orders�id� ���

getD��J�orders� �O�

mksrc�root�� �J�

tD��P �

crElt�OrderInfo� g��O�� list��O�� �P �

�	O

nSrc��X�

p �

Figure 5. A plan for the query in Fig. 3

on the values of the variables in the group-by list gl.
The output consists of one tuple for each partition cre-
ated. Each of the tuples has attributes corresponding
to the variables in the group-by list gl and an addi-
tional attribute corresponding to the variable �name.
In each tuple the variable �name is bound to the par-
tition set P�g�I�, while the variables in gl are bound
to corresponding value of the tuples in the partition
set P�g�I�. Formally, let I 	 fbi j i � � � � � ng.
Let gij 	 bi��vj where bi � I� j � � � � � k, and let
G be the set of distinct �gi where �gi 	 �gi� � � � gik�.
Let ��gj be the condition

Vk
i����vi 	 gji�. Let

P�gj �I� 	 fb j b � I� ��gj �b� � trueg. The
output of groupBygl�	name can then be defined as
groupBygl�	name�I� 	 f��v� 	 g�� � � � � �vk 	
gk� �name 	 P�g�I�� j �g � Gg

7. apply operator : The applyp�	inp�	l operator has 3
parameters: a plan p, an input specifier �inp and an
output variable �l. The output of the applyp�	inp�	l

is well defined only when the value of �inp is a set
of tuples in every tuple in the input I . Formally, the
output is applyp�	inp�	l�I� 	 fb � �l 	 res� j b �
I� res 	 p�b��inp�g The plan p may operate on input
which does not depend on the current binding of the
parameters, and in this case the parameter specifying
the input is set to null.

8. source operators : The algebra has different types of
source operators which provide an interface to differ-
ent data sources (like relational sources, or the value
of a variable in the current tuple) in the form of sets of
binding lists.

The MIX mediator translates the queries it receives into
plans in the XQA algebra. For example, the query shown in
Fig. 3 has the plan shown in Fig. 5. The process of trans-
lating the query posed by the user into an expression in the
XQA algebra is fairly straightforward, and is not described
here because of page limitations.

4. Navigation-Driven Lazy Evaluation

The MIX client receives a virtual answer document (ob-
ject) in response to its query. The virtual document is not
materialized into the client memory until the client starts
navigating into it using the r and d navigation commands.
Client navigations into the virtual answer are translated by
the mediator into various kinds of commands sent to the
sources. In the ideal case where the underlying source is
an XML source that supports navigation (e.g., a MIX medi-
ator can be such a source to another MIX mediator) client
navigations are translated into r and d commands sent to
the source. In the case where the underlying source is a
relational database, navigations are translated into either
queries or moves of the cursors that have been obtained by
prior queries. 3

The decomposition of client navigations into commands
sent to the sources is achieved by having every XQA algebra
operator in the plan operate as a lazy mediator. When an
operator (other than the source access operators) receives a
navigation command n�p� from an operator that is above it
in the plan, it sends navigation commands to the operators
below, and combines the results it receives to produce the
result of n�p�.

In particular, each operator op of the engine is imple-
mented by a Java class supporting the six calls described
below:

� The getRoot�� call normally returns the node id of
the list element that is at the root of the table that
is exported by op. The getRoot�� call always makes
getRoot�� calls to the operators that are the input of
op.

� Each operator supports the r�p�, d�p�� fl�p�, and fv�p�
calls for navigation into the result table, its tuples, and
the attribute values.

� To facilitate access to the attributes of the bindings,
operators support calls of the form f�p� �V �, where p
has to be the node id of a binding node and �V is
one of the variables of the binding. The call returns the
node id of the attribute value.

Node-Id Structure for Navigation Based Query Evalua-
tion In general, each node id p exported by an operator
op contains state information, which includes information
about the nodes p�s� � � � � p

m
s exported by the operator(s) that

are the input of op and are required to produce the node
p. This information enables each operator to evaluate the

3In the case that the underlying source does not support any form of
navigation then the mediator simply obtains the full source result in one
step. For example, if the underlying source is an HTML page the mediator
obtains it in a single step.

result of the navigation commands r�p�� d�p�� p��V , fl�p��
and fv�p� by issuing navigation commands involving one
or more of p�s� � � � � p

m
s .

We denote node id’s as hstate descriptor� state infoi.
If every node id p exported by an operator op has all the in-
formation needed for executing r�p�� d�p�� p��V� fl�p� and
fv�p� we say that op is a stateless operator, since the op-
erator itself does not need to keep any information. Most
operators have only stateless implementations. For exam-
ple, consider the stateless �	A� operator. When it exports
a binding tuple to (or an attribute of a tuple) it includes in
its state information field the id of the corresponding input
tuple ti. If the client of the � operator issues a r�to� com-
mand then the operator will issue an r�ti� command and re-
ceive the next tuple ti�. Then it will issue a f�ti�� �A� fetch
command to receive the value of �A. If the fetch command
returns a � then the tuple ti� is exported. Otherwise, the next
tuple ti� is requested and so on.

Other operators, such as the gBy (group-by) may be ei-
ther stateless or stateful, depending on the input. The state-
less gBy assumes that its input is sorted along the group-by
variables. The stateful gBy makes no such assumptions,
and hence needs buffers to store the input stream.

To illustrate the above ideas, let us consider the
gBy��C �� �X� operator of the plan of Figure 5. Its goal is
to build for each customer a nested table which contains the
orders for that customer. Assume that its input is presorted
on �C. Table 1 provides the actions and output produced
by the presorted gBy operator, which is stateless since it
assumes the input is sorted on the values of the variables in
its group by list.

The first method invoked is the getRoot��. This returns
the result root node id hroot� rsi, where the token “root”
denotes the “state” of the navigation and rs is the root node
of the result exported by the join operator of Figure 5. The
node id rs is all we need to continue the navigation. On re-
ceiving a d�hroot� rsi� command the operator retrieves the
first binding b�s 	 d�rs� exported by the semijoin. In addi-
tion, note that the value c� 	 b�s��C, which determines the
first group, is also retrieved and included in the result node
id hbinding� b�s� �c��i.

The navigation hbinding� b�s� �c��i��C will return
hidentity� c�i. The “identity” token indicates that every
navigation command on this node is simply propagated to
the node below. For example, an r�hidentity� c�i� results
into an r�c�� being sent to the source. If n 	 r�c�� then the
operator returns hidentity�ni.

5. Queries from nodes reached by Navigations

The MIX system allows the user to issue queries from
the nodes reached during navigation. In order to provide
this functionality the mediator needs to encode into the id

set
&rootq

customer
&DEF345

CustRec

customer
&XYZ123

id = XYZ123

OrderInfo

&28904

order

CustRec

orid =28904

y

OrderInfo

&4

&11 &14

&($V,f(&XYZ123))
&($V,f(&DEF345))

&($P,g(&28904)) &($P,g(&111))

value = 2400

Figure 6. The result of query in Fig. 3

tD��O�

select��P � �����

getD��O�order�value� �P �

getD��M�orderInfo�order� �O�

mksrc��root� �M�

(a) Plan for the query 2

Figure 7.

of the node information about its position in the result in
a form that is understood at the sources. This is achieved
by including in the id of each node information about the
values of the group-by attributes associated with the nodes
that enclose the given node in the result, and the variable
to which this node was bound to in the representation of
the intermediate results at the mediator (i.e., the variable to
which this node was bound to before the tD operator). If
the variables in the group-by list are bound to compound el-
ements, the id needs to encode the values of the fields of this
compound element that form a key for elements of this type.
To illustrate the above points consider the example query Q
shown in Fig. 3 having the plan in Fig. 5. A possible result
for the query Q is shown in Fig. 6.

Suppose the user issued the query q� shown in query Q2
that has the plan pq� shown in Fig. 7(a) from the node y
(shown in Fig. 6) reached by issuing the navigation com-
mand down from the root node of the result. Then the me-
diator could compute by decoding the information available
in the id of node y that in the plan pQ for query Q the node
y was the value bound to the variable �V in the tuple in
which the the variable �C was bound to the node with id
�XYZ���. This enables the mediator to create the com-
plete plan for the query q� being the plan shown in Fig. 8.

After simplifying this expression the mediator sends to
the sources the queries necessary to produce the result of
query q�.

The above example illustrates the technique employed

���������� 	
����� ��� �����

���������
�� � ��	
�����������
������ ������ ���

�������� ����
� � �����
�� � ������ � � � � �� � �����

������ �������� �� ���� � � � � ����

���������� �� ���� � � � � �����

������
�

�
� ����

�� �

�
� � ������ �

��

�
� �

�
����� � � � � �

�

�
� �

�
����

����� �� �� ��

�
� � � � � �� �� ��

�

������ �������� �

�
� ���

�
� � � � � ��

�
��

�������� �� ���� � � � � �������� ������ ���������� ���

���������� 	
����� ��� �����

�������� �� ���� � � � � ������� ������ ����
	� �� ���� � � � ����
������
	� �� ���� � � � ����� ������ ��� ������� ���� � � � ����

����� ������� �� ���� � � � �����

�

�
� �����

�� �

�
� � ������ �

��

�
� �

�
����� � � � � �

�

�
� �

�
�����

�� �� � ��

�
� � � � � �� � ��

�

������ ��� ������� �

�
� ���

�
� � � � ��

�
��

����
������ �

��� ������� �� ���� � � � �������� ������ ���������� ���
��� ������� �� ���� � � � ������� �
����� �� �� ���� � � ����

� � ����
������ ���������� ��

	�� �������� ����������
������� ������ �

Table 1. The implementation of the presorted stateless gBy�	G������	Gn���	P

tD��O�

select��P � �����

getD��O�order�value� �P �

getD��C�orderInfo�order� �O�

select��C 	 �XY Z����

crElt�custRec� f��C�� �W� �V �

cat��C� �Z� �W �

apply�p� �X� �Z�

gBy��C� �X�

join��� 	 ���

getD��C�customer�id� ���

getD��K�customer� �C�

mksrc�root�� �K�

getD��O�orders�id� ���

getD��J�orders� �O�

mksrc�root�� �J�

tD��P �

crElt�OrderInfo� g��O�� list��O�� �P �

�	O

nSrc��X�

p �

Figure 8.

by the mediator to convey the identity of a node reached
by navigating into a query result to the sources that do not
support navigation. If the client issues a query Q from a
node n reached by navigating into the result of a previous
query, and values of the group-by attributes (or the values of
the fields that form a key, in case the value of the group-by
attribute is a complex object created at the mediator) associ-
ated with nodes which include the start noden are available,
the mediator can replace references to the node n in the plan
pQ for the queryQ by a plan constructed by replacing oper-
ators of the formmksrc��root� �Z� in plan pQ by the plan
p� constructed as follows. The information in the id of node
n is decoded to determine the variable which is to be used
in place of �Z in plan pQ, and this variable renaming step is
carried out in plan pQ. (Note that the node n is referred to
in the query Q by the keyword root, and appears only in
the mksrc operator in pQ) The top tD operator in the plan
p which produced the node n is removed from the plan to
give a plan p��. Appropriate selection conditions are added
to the plan p�� to fix the values of the variables which have
been fixed as a result of the navigation, and this is the plan
p�.

FOR �O IN document��root��orderInfo�order

WHERE �O�value � ����

RETURN �O

(a) The example query

tD��R�

select��� � ������

getD��S�orderInfo�order�value� ���

getD��R�custRec�orderInfo� �S�

getD��A�custRec� �R�

mksrc�rootv� �A�

(b) Plan for query in Fig. 9(a)

Figure 9.

6. Efficient Composition of Queries

When the client issues a query q� from the root of the
result of a previous query q� the MIX mediator computes
and runs the composite plan qc � q��q�. When the query qc
is evaluated on the sources S the result qc�S� is equivalent
to q��q��S��, i.e., the result of applying q� on the result of
q�. If effiency is not a concern, the algorithm for delivering
an algebraic plan pc for qc is derived trivially: The mediator
simply uses the algebraic plans p� and p� of q� and q�, and
for every source operator in p� that refers to the root of q�,
the mediator sets the input of the source operator as the plan
p�, and this gives the resulting plan pc. For example the
query in Fig. 9(a) has the plan shown in Fig. 9(b). When
the plan in Fig. 9(b) is composed with the plan in Fig. 5,
which is the plan for the view, the resulting plan is shown in
Fig. 10.

Unfortunately the simple composition algorithm de-
scribed above results in plans with multiple inefficiencies
which need to be removed.

� The “RETURN” clause of q� creates and groups many
objects that are consequently matched by the condi-
tions of q� but are not used in the result of q�. Our
rewritings remove the construction of unecessary ob-
jects from the plan p�. They also remove path condi-
tions of q� that are provably true or provably false.

� The trivial plan pc is evaluated by pushing to the
sources only the conditions of q�. Our rewriter com-
bines the conditions of q� and q� and pushes to the
sources the most constrained queries, which results in
the transfer of the minimum amount of data between
the mediator and the sources. In order to push selec-
tions in the presence of element creation and grouping
operations join operations not present in p� may need
to be introduced into the result plan pc.

Efficient composition plans will be derived in MIX by
having a rewriter module optimize the straightforward (and
inefficient) composition plans similar to that shown in
Fig. 10. The rewriter accepts as input a set of rules of the
form

(search pattern, result pattern)
and a plan on which to apply the rewritings. The changes
made by a single rewriting step to the structure of a plan are
local, i.e. only the part of the plan which matches the search
pattern may have its structure changed. The only change
made in the rest of the plan by a rewriting rule application
is the possible renaming of variables. We plan to implement
in MIX rewriting rules similar to those incorporated in the
Enosys Markets mediator [16].

tD��R�

select��� � ������

getD��S�orderInfo�order�value� ���

getD��R�custRec�orderInfo� �S�

getD��A�custRec� �R�

mksrc�rootv� �A�

tD��V� rootv�

crElt�custRec� f��C�� �W� �V �

cat��C� �Z� �W �

apply�p� �X� �Z�

gBy��C� �X�

join��� 	 ���

getD��C�customer�id� ���

getD��K�customer� �C�

mksrc�root�� �K�

getD��O�orders�id� ���

getD��J�orders� �O�

mksrc�root�� �J�

tD��P �

crElt�OrderInfo� g��O�� list��O�� �P �

�	O

nSrc��X�

p �

Figure 10. Naive composition of query and
view

The result of applying rewriting rules to the plan in
Fig. 10 will be the optimized plan shown in Fig. 11(a).
The simplified algebraic plan can then be input to a mod-
ule which splits the plan into two components: one part
consisting of restructuring and grouping operators which is
executed at the mediator. The second part, which forms
the input to the first consists of the initial getD, select, and

tD��V �

crElt�custRec� f��C�� �W� �V �

cat��C� �Z� �W �

�	C�	X�	Z�	S

apply�p� �X� �Z�

gBy��C� �X�

Lsemijoin��C�

crElt�OrderInfo� g��O�� list��O�� �P �

select��� � ������

getD��O�order�value� ���

�	O

P�

P�

tD��P �

crElt�OrderInfo� g��O�� list��O�� �P �

�	O

nSrc��X�

p �

(a)

tD��O�

select��P � �����

getD��O�order�value� �P �

getD��C�orderInfo�order� �O�

select��C 	 �XY Z����

crElt�custRec� f��C�� �W� �V �

rQ�s� q��m��

q� �

SELECT c��id� c��name� c��addr� o��orid� o��value
FROM customer c�� orders o�� customer c�� orders o�
WHERE c��id 	 o��cid AND c��id 	 o��cid
AND c��id 	 c��id AND o��value � �����

ORDER BY c��id� o��orid

m� �
f�C 	 f�� �g� �O 	 f�� �gg

(b)

Figure 11. Optimized Plan

join operators and is translated into a query in the appropri-
ate query language for sending to the sources, and is repre-
sented at the mediator by a source access operator of the ap-
propriate type. The result of this step is shown in Fig. 11(b).

7. Conclusions

In this paper we demonstrated the feasibility of a sim-
ple algebraic framework which supports pipelined (demand
driven) evaluation of queries on tree structured data. The
framework allows the development of mediators which of-
fer their clients an API with a full feature set which al-
lows the clients to interleave queries and browsing in their
information discovery process, even though all the opera-
tions may not be directly supported by the sources. The
framework builds on previous work done in optimization
and query processing for relational databases, and adapts
them to the specific challanges posed by XML (tree struc-
tured data).

References

[1] S. Adali, S. C. Candan, Y. Papakonstantinou, and V. S. Sub-
rahmanian. Query caching and optimization in distributed
mediator systems. In Proc. SIGMOD, pages 137–48, 1996.

[2] M. Carey et al. Towards heterogeneous multimedia infor-
mation systems: The Garlic approach. In Proc. RIDE-DOM
Workshop, pages 124–31, 1995.

[3] M. Carey, D. Florescu, Z. Ives, et al. XPERANTO: Pub-
lishing object-relational data as XML. In Proc. of the Third
International Workshop on the Web and Databases, 2000.

[4] M. Carey, L. Haas, V. Maganty, and J. Williams. PESTO:An
integrated query/browser for object databases. In Proc.
VLDB, 1996.

[5] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating
queries with generalized path expressions. In H. V. Ja-
gadish and I. S. Mumick, editors, Proceedings of the 1996
ACM SIGMOD International Conference on Management
of Data, Montreal, Quebec, Canada, June 4-6, 1996, pages
413–422. ACM Press, 1996.

[6] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your medi-
ators need data conversion! In Proc. ACM SIGMOD Conf.,
1998.

[7] S. Cluet and G. Moerkotte. Nested queries in object bases.
In C. Beeri, A. Ohori, and D. Shasha, editors, Database Pro-
gramming Languages (DBPL-4), Proceedings of the Fourth
International Workshop on Database Programming Lan-
guages - Object Models and Languages, Workshops in Com-
puting, pages 226–242. Springer, 1993.

[8] Enosys Markets, Inc. The universal, real-time
data integration platform, 2001. Available at
http://www.enosysmarkets.com/solutions/
whitepaper/paper-form.html.

[9] D. C. et al. XQuery: A query language for
XML. W3C working draft, Latest version available at
http://www.w3.org/TR/xquery/.

[10] P. F. et al. XQuery 1.0 formal semantics.
W3C working draft, Latest version available at
http://www.w3.org/TR/query-semantics/.

[11] M. Fernandez, A. Morishima, and D. Suciu. Efficient evalu-
ation of xml middle-ware queries. In Proc. SIGMOD, 2001.

[12] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–170, 1993.

[13] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Pa-
pakonstantinou, J. D. Ullman, and M. Valiveti. Capability
based mediation in TSIMMIS. In SIGMOD 1998, Proceed-
ings ACM SIGMOD International Conference on Manage-
ment of Data, June 2-4, 1998, Seattle, Washington, USA,
pages 564–566. ACM Press, 1998.

[14] Mary Fernandez and Wang-Chiew Tan and Dan Suciu.
SilkRoute: Trading between Relations and XML. In
WWW9, May 2000.

[15] K. Munroe and Y. Papakonstantinou. BBQ: A visual inter-
face for browsing and querying xml. In Visual Database
Systems, 2000.

[16] Y. Papakonstantinou et al. XML Views, Queries and
Algebra in the Enosys Markets Integration Platform,
2001. Available at http://www.db.ucsd.edu/
publications/DKE.pdf.

[17] J. Shanmugasundaram, J. Kiernan, et al. Querying xml
views of relational data. In Proc. VLDB, pages 261–270,
2001.

[18] A. Tomasic, L. Raschid, and P. Valduriez. Scaling heteroge-
neous databases and the design of DISCO. Technical report,
INRIA, 1995.

[19] P. Velikhov, B. Ludascher, and Y. Papakonstantinou.
Navigation-driven evaluation of virtual mediated views. In
Proc. EDBT Conf., 2000.

