
A Transducer-Based XML Query Processor�

Bertram Lud�aschery Pratik Mukhopadhyayz Yannis Papakonstantinouz

ySan Diego Supercomputer Center
University of California, San Diego

ludaesch@sdsc.edu

zDepartment of Computer Science & Engineering
University of California, San Diego
fpmukhopa,yannisg@cs.ucsd.edu

Abstract

The XML Stream Machine (XSM) system is
a novel XQuery processing paradigm that is
tuned to the e�cient processing of sequen-
tially accessed XML data (streams). The sys-
tem compiles a given XQuery into an XSM,
which is an XML stream transducer, i.e., an
abstract device that takes as input one or
more XML data streams and produces one or
more output streams, potentially using inter-
nal bu�ers. We present a systematic way to
translate XQueries into e�cient XSMs: First
the XQuery is translated into a network of
XSMs that correspond to the basic opera-
tors of the XQuery language and exchange
streams. The network is reduced to a single
XSM by repeated application of an XSM com-
position operation that is optimized to reduce
the number of tests and actions that the XSM
performs as well as the number of intermedi-
ate bu�ers that it uses. Finally, the optimized
XSM is compiled into a C program. First em-
pirical results illustrate the performance ben-
e�ts of the XSM-based processor.

1 Introduction

XML is the standard for information exchange be-
tween applications and information sources. For ex-
ample, Web service implementations and mediators
exchange XML messages and data, and often in-
teract with information systems and databases via

� work partially supported by NSF/ITR OCE-0121726
RoadNet and NSF/NPACI ACI-9619020 Nara (Lud�ascher),
NSF/DGov-9983510 I2T (Lud�ascher, Mukhopadhyay, Papakon-
stantinou), NSF/IDM-9734548 Career (Papakonstantinou)

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,

Hong Kong, China, 2002

XML import/export mechanisms. Web front-ends re-
ceive XML from the underlying information sources
and transform them into XHTML. Migration of XML
archives [MBR+00] to new, \refreshed" schemas re-
quires XML tranformations. Continuous data streams
from sensor networks [CFGR02] are transformed into
formats that can be readily consumed, e.g., trigger-
ing some procedures after detecting certain events
[ROA02]. The common denominator of the examples
above is that some sequentially accessed XML data
needs to be e�ciently accessed and transformed into
some output XML data that �ts the format required
by the consuming application.

A large number of important applications require
extremely e�cient processing and transformation of
sequentially accessed streams. For example, there
are many ongoing works on e�cient XSLT processors
[Res02, SAB, XAL, Kay], which convert XML �les or
strings into XHTML. Other novel streaming applica-
tions, e.g., e�cient XML-based information �ltering
do not require the expressive power of general XML
queries and transformation in the style of XQuery,
but are based on a limited subset, i.e., XPath queries
[AF00, CFGR02].

The importance of e�cient (XML) stream process-
ing will keep growing as communication and comput-
ing systems evolve. This is driven by two trends. The
�rst (and widely recognized trend) is the proliferation
of data stream sources whose number and bandwidth
increases as communication systems provide rapidly
increasing bandwidths and connectivity that allows re-
mote sources, such as sensors, to produce and emit
data streams. The second, long-term, driver of the
importance of e�cient (XML) stream processing will
be the growth of stream bandwidths at rates that sur-
pass the growth of CPU-memory and CPU-disk access
and transfer rates. It is already ine�cient for many
stream applications to bu�er the data in disk-based
bu�ers and analyze it later. At some point it may
become impossible for high-bandwidth streams to be
pushed even to the RAM memory { the CPU will have
to quickly react to pieces of incoming data using just
its cache memory.

A qualitatively di�erent architecture is needed

XQuery

XQuery Translation

C Program

Input DTD Schema Optimization

XSM Composition

XSM Network

XSM

XSM2C Translation

optimized XSM

Figure 1: XQuery to XSM compilation

where stream processing is performed \on the y" and
with minimal memory: Computations are performed
without storing data in secondary storage and by uti-
lizing the limited size CPU cache memory as opposed
to the RAM.1 Each piece of the incoming stream will
have to be consumed with just a few actions by the
CPU. The simple, yet high bandwidth, sequential ac-
cess that XML streams provide requires novel query
processor architectures.

We propose the XSM-based architecture and algo-
rithms for the construction of XML query (in partic-
ular, XQuery) processors that e�ciently process XML
streams on-the-y. An XSM (XML Stream Machine)
can be viewed abstractly as a state machine that can
execute a few simple operations on the incoming data
and its bu�ers. XQueries are compiled into XSMs,
which are consequently translated into C programs, as
shown in Figure 1.

The key challenge is in the XQuery2XSM Compiler,
which has to construct an XSM for a given XQuery and
optimize the produced XSM with respect to time and
bu�er usage, taking into account both the query and
the schemas of the input streams. The various pow-
erful XQuery constructs require that a systematic ap-
proach is taken towards building e�cient XSMs. The
following steps are followed: Each primitive subex-
pression e of the given XQuery q is translated into
an XSM Me. Then an XQuery expression is reduced
to an XSM network where the output bu�er of Me is
an input bu�er forMe0 if e is a subexpression of e0. In
addition, the XSMs corresponding to for expressions
of XQuery output into bu�ers that correspond to the
variables de�ned by the for and those bu�ers are sub-
sequently read by expressions that use the variables.
An XSM network-based implementation corresponds
to a conventional evaluation of XQuery. It requires
multiple intermediate bu�ers, many of which corre-
spond to subexpression results and variable bindings

1In many systems areas, such as networks, utilization of the
limited CPU cache memory becomes an important goal.

that may not have to be computed and stored. It also
requires multiple XSMs to operate. Overall, it is inef-
�cient from both time and memory perspectives. It is
usually preferable to compose the XSM network into
a single XSM which is optimized along the following
dimensions:

� Minimize the computation performed for each in-
coming piece of stream data, i.e., reduce the num-
ber of tests, read and write actions.2

� Minimize the number and size of bu�ers.

� Pipeline the computation and write tokens in the
output stream as soon as possible.

We present an architecture and algorithms that
achieve the above goals. The outline and main contri-
butions of the paper are as follows: Section 2 presents
the XML Stream Machine model. Section 3 describes
XSM networks and the translation of XQueries into
XSM networks. Notice that the essential non-recursive
aspects of XQuery are captured by our translation.
Section 4 describes XSM composition, which enables
the reduction of XSM networks into a single XSM. The
resulting XSM is optimized in a number of ways by
a smart composition algorithm that essentially opti-
mizes the connection between producer and consumer
operators. By doing so, it manages to remove unnec-
essary tests and actions as well as redundant interme-
diate bu�ers. Finally, in Section 6, we present some
experimental results illustrating the e�ciency of the
XSM approach.

2 XML Stream Machine Framework

In this section, after recalling some preliminaries on
XML, we present the mechanics of XML Stream Ma-
chines (XSMs), an extension of conventional transduc-
ers designed to e�ciently query and transform streams
of XML data.

2.1 XML and XML Streams

In our XML model, we consider sets of element names
E and character data (strings) D.3 Below, we will
also consider XQuery expressions containing variables
drawn from a set of variable names V.

An XML stream is a sequence of tokens, where the
set of tokens T is de�ned as:

T = f hei j e 2 Eg [f d(x) j x 2 Dg
[f h=ei j e 2 Eg [f sv ; ev j v 2 Vg [feolg :

2Constrast this approach with conventional query processors
that build algebra-based evaluation plans that consist of multi-
ple operators producing intermediate results [LPV00, FSW00,
MP02, GVD+01]. Often these are constructed by one operator
only to be discarded or reformatted by the next.

3We omit XML attributes to simplify the presentation. One
can either add attributes to our approach directly, or assume
they have been represented as subelements.

The open, data, and close tokens, hei, d(x), and
h=ei, respectively, correspond to the events that a
parser like SAX encounters when processing an XML
document. If an XML stream only comprises such to-
kens, we call it a pure XML stream. The control tokens
sv (ev) indicate the start (end) of the binding of a vari-
able v and can appear in internal bu�ers of an XSM
or in shared bu�ers between XSMs and are used for
coordinating actions. Similarly, the control token eol
is used for grouping variable bindings; it marks the
end of list of variable bindings belonging to the same
group.

A well-formed XML stream is one in which every
pure XML (sub-)stream which is delimited by con-
trol tokens is a well-formed XML fragment (de�ned
as usual). In the sequel we only consider well-formed
streams and fragments. Well-formed XML fragments
correspond to labeled ordered trees, with labels of inner
nodes indicating the element name of a node and leaf
nodes representing character content.

XML Document Type De�nitions (DTDs) are used
to specify sets of valid documents via extended
context-free grammars. DTD grammar rules are of
the form lhs! rhs, where lhs is an element name in E ,
and rhs is a regular expression over E and #PCDATA.4

For example, the DTD

<!ELEMENT root (a)+ >
<!ELEMENT a (b)* >
<!ELEMENT b #PCDATA >

corresponds to the grammar G =

root! a+ ; a! b� ; b! #PCDATA

and validates XML documents where root elements
contain one or more a elements, a elements contain
zero or more b elements, and b elements contain char-
acter data.

For querying streams, it is reasonable to assume
acyclic DTDs, i.e., in which no element may contain
a subelement of the same type. This implies that all
valid XML streams have bounded depth and hence no
stack is required to check well-formedness. Conversely,
with cyclic DTDs, elements can be nested to any depth
which on streams of arbitrary size is impractical and
rules out e�cient stream processing.5 In the sequel, we
only consider valid streams over acyclic DTDs. Such
DTDs are equivalent to regular expressions: e.g., the
language L(G) of documents valid with respect to G
is the same as L(R) where
R = hrooti (hai (hbi #PCDATA h=bi)� h=ai)+ h=rooti

is a regular expression. Observe that the XML trees
de�ned through L(R) have maximal depth four.

4The terminal symbol #PCDATA represents XML leaves hold-
ing character data (=D).

5Alternatively, we could add stacks to our XSM framework
to keep track of well-formedness and validity over cyclic DTDs.
However, in our experience, real world DTDs (even when not
con�ned to streaming applications) rarely require recursive ele-
ment de�nitions.

Q

8>>>>>>>>><
>>>>>>>>>:

for $X in

Ez }| {
$R/a return

L

8>>>>><
>>>>>:

for $Y in

Fz }| {
$X/b return

hresi

Gz }| {
$Y,$Xh/resi| {z }

H

9>>>>>=
>>>>>;

9>>>>>>>>>=
>>>>>>>>>;

Figure 2: Running example

2.2 XQuery and Running Example

We consider the following subset of XQuery expres-
sions XQE , which includes the essential non-recursive
aspects of the language [XQu01]:

XQE ::= XQE1 / Constant % Path
j XQE 1 , XQE2 % Concatenation
j hTagi XQE 1 h=Tagi % Element Creation
j for Var in XQE 1 % Generator

[where Cond] % optional Condition
return XQE2 % Body

j Var

Cond ::= not Cond1
j Cond1 and Cond2 j Cond1 or Cond 2
j Var1 = Var2 j Var = Constant

Example 1 (XQuery) Consider the XQuery in Fig-
ure 2. Subexpressions correspond to subqueries and
have been marked with unique names (E;F; : : : ; Q).
Given a binding for the variable $R, the overall query
Q binds the outermost loop variable $X to each hai
child of $R in turn by means of the path expression
E=\$R/a". For each binding of $X, the inner loop L
successively binds $Y to the hbi children of $X. For
each such $Y binding, H outputs a new hresi element
containing the $Y binding (a hbi element) followed by
the $X binding (the enclosing hai element). Thus, this
XQuery unnests the hbi subelements from within the
enclosing hai elements. Note that each $X binding is
output once for each contained $Y binding; the re-
quired copying of $X is achieved by pointer reset op-
erations on the $X bu�er (cf. the use of x0 in M(L),
Figure 5). 2

We say that the variable V is free in an XQuery ex-
pression if it is not within the scope of a \for V in : : :".
For example, in Figure 2, $R is free in Q, $X is free in
L, and $Y and $X are free in H .

We call input variables the variables that are free
within the outermost XQueryQ, as they correspond to
the input streams of the Q. In our example, the input
variable $R corresponds to the only input stream. In
a conventional, non-streaming application, the input
variable $R has to be bound to a single root XML
element. In general, a variable can be bound not only

to a single element but to a sequence of elements. To
delimit the individual bindings of a variable V on a
stream, we use the control tokens sv and ev.

2.3 XML Stream Machines

XML stream machines resemble traditional transduc-
ers [HU79] and translate one or more XML input
streams into (usually) one output XML stream. Like
transducers and �nite state machines, they have �-
nite sets of states Q and state transitions T . The
latter are de�ned based on the content of the input,
the current state, and some internal memory. In the
case of XSMs, the memory is a �nite set of bu�ers
B = B1; : : : ; Bn. Some bu�ers are distinguished input
bu�ers and output bu�ers, which are associated with
the input streams and output streams of the XSM, re-
spectively.

For example, the XSM in Example 2 (Figure 3
and Figure 4) has two input bu�ers and thus input
streams Y 0 and X 0, and produces an output stream
Z. The individual components of a stream machine
M = (Q; q0; B; T) are explained next.

XSM Bu�ers and Bu�er Actions

Bu�ers are used to store parts of streams, i.e., se-
quences of tokens. The size of a bu�er depends on
the query that the XSM evaluates, and the input on
which it operates. Each bu�er Bi has a set of asso-
ciated pointers ptr(Bi). A pointer p is either a read
pointer or a write pointer. An input bu�er only has
read pointers, while an output bu�er only has a single
write pointer. All other bu�ers of an XSM are work-
ing bu�ers, each of which has has read pointers and a
single write pointer.

In state transitions, XSMs can access and query
bu�er contents (via read operations such as \�p",
see below), and execute sequences of actions A =
A1; : : : ; Ak. An atomic action Ai can have the form:

1. \p++": advance pointer p (advance)

2. \w(p; c)": at p, write c, then advance p (write)

3. \w(p; �r)": at p write �r, then advance p (write)

4. \p0 := p": set p0 to the position of p (reset)

In (2) and (3), p is a write pointer, r is a read pointer,
and c is a token.

We assume that all action sequences are in action
normal form, i.e., no pointer increment action p++ is
trailed by any non-increment action, so all increment
actions occur in one block at the end of the sequence.6

6This normal form has to be used to guarantee the correct-
ness of the optimized composition in Section 5.1.

XSM Control

An XSM has a �nite number of states Q, one of which
is the distinguished initial state q0. When the XSM is
in q0, all pointers are on their leftmost (i.e., empty)
bu�er positions. An XSM moves from the current
state q to the next state q0, provided there is a transi-
tion t 2 T

t : q
'jA
�! q0

whose condition ' is satis�ed. Before entering q0, the
action sequence A is executed.

The transition condition ' is a boolean combination
over the following atomic expressions:

� p=p0, p6=p0, p<p0 (pointer comparison)

� �r=c, �r 6=c, �r=�r0, �r 6=�r0 (token comparison)

We require that XSMs are deterministic and complete,
i.e., conditions of outgoing transitions are pairwise dis-
joint and the disjunction of all such conditions is valid.
The latter is achieved via a special sink state serr into
which an XSM moves if no explicitly mentioned tran-
sition is satis�ed. To avoid clutter, we omit this state
in our �gures and all transitions into it. For exam-
ple, Figure 3 hides the implicit error state and all its

associated transitions such as 0
�y0 6=s

y0

�! serr.

Example 2 (Concat XSM) Consider the XSM
M(G) in Figure 3 with its input bu�ers Y 0 and
X 0 (and associated read pointers y', x') and output
bu�er Z (with write pointer z). The XSM assumes
Y 0 bindings to be delimited by sy0 and ey0 tokens,
similar for X 0 bindings. In the initial state 0, M(G)
reads the current token �y0 from the Y 0 bu�er and
moves to state 1 if the expected start token sy0 is
found (�y0=sy0). Otherwise, the machine moves to
the implicit sink state serr, indicating an error. The
transition 1!2 is executed if sx0 is read on the X 0

bu�er (�x0=sx0). At this point, sz is written to the
output bu�er Z (w(z; sz;)). In state 2, while the end
of the Y 0 binding has not been reached (�y0 6=ey0 ,
denoted *y' !=ey'" in the �gures), Y 0 tokens are
copied to Z. Once the Y 0 binding has been processed
(�y0=ey0) the machine continues in state 3 with
copying X 0 content to Z until the end of the X
binding is encountered. M(G) returns to its initial
state 0 after recognizing �x0=ex0 , i.e., the end of
the X 0 binding, and outputting ez, which indicates
that the concatenated result has been output to
Z. Summarizing, whenever reaching 0, M(G) has
consumed exactly one Y 0 and one X 0 binding and has
produced one Z binding. 2

Observe that the XSM M(G) not only works for
single Y 0 and X 0 bindings, but for streams of such
bindings, e�ectively computing the operation

zip: [x1; x2; :::]; [y1; y2; :::] 7! [(y1; x1); (y2; x2); :::]

0

1*y’=sy’|y’++

2

*x’=sx’
|w(z,sz),x’++

*y’!=ey
|w(z,*y’)

y’++

3

*y’=ey’|y’++*x’=ex’
|w(z,ez),x’++

*x’!=ex’
|w(z,*x’),x’++

Figure 3: XSM M(G) = Concat(Y0;X0;Z)

For any �nite input, this requires an equal number of
X and Y bindings. Recall that XSMs are determinis-
tic and thus compute functions from input streams to
output streams. In particular, as illustrated with the
previous example, XSMs map pre�xes of input streams
to pre�xes of the output stream(s) and do not require
the complete input to be available before producing
output. Indeed, XSMs are designed to output as soon
as possible, i.e., in an eager mode and thus are well-
suited for pipelining queries.

Comparison of XSMs with Transducer Models

There are some subtle but important points distin-
guishing the XSM framework from standard trans-
ducer models: Classical transducers work on �nite al-
phabets, and their only memory is the state in which
they are in. In contrast, XSMs process whole XML
fragments built from the �nite domain of element
names E , and the in�nite domain of data values D
(#PCDATA). Therefore, transitions cannot be speci�ed
in a �nite manner by explicitly mentioning the input
symbols. Instead, depending on the query being pro-
cessed, XSMs store relevant \chunks" (the variable
bindings) of input into bu�ers and use conditions such
as above to specify transitions and actions. A simple
yet powerful mechanism of accessing bu�ers of XSMs is
through pointers, which are absent from conventional
transducers. Another major di�erence is that XSMs
can work on multiple input streams. For example, the
concat XSM in Figure 3 processes and \zips" two in-
put streams by concatenating pairs of bindings for Y
and X , producing the the output stream Z.

3 Translation to XSM Networks

The XSM Compiler translates XQueries into opti-
mized XSMs. Since XQuery is a non-trivial query
language with numerous constructs, the translation is
accomplished in a series of steps as depicted in Fig-
ure 1. The �rst step, presented in this section, is the
translation of the input XQuery into an XSM network,
which consists of individual XSMs corresponding to
the subexpressions of the XQuery.

We �rst present XSM networks, followed by the
translation of XQueries into such networks. The pro-
cess is based on building bu�ers for subexpression re-

sults and variables, a \basic" XSM for each kind of
XQuery subexpression, and appropriately connecting
the bu�ers and XSMs. Notice that the \for" state-
ment of XQuery and its ability to generate variables
that are visible from its direct and indirect subexpres-
sions complicates the XSM network structure.

XSM Networks

An XSM network is a directed acyclic graph (DAG),
whose nodes are XSMs and whose labeled edges are of

the formM1
B
�!M2 indicating that the output bu�er

of M1 is the input bu�er of M2, i.e., the bu�er B is
shared. M1 is called the producer, M2 the consumer
XSM. An input stream I of a network is denoted by an

edge of the form in
I
!M (so I is an input bu�er ofM).

Similarly, an output stream of a network is denoted in

the form M
O
! out, where O is an output bu�er of M .

Example 3 (XSM Network) Figure 4 illustrates
the XSM network for our running example of Figure 2.
It has a single input stream corresponding to the input
bu�er R of M(E) and a single output stream, corre-
sponding to the output bu�er O of M(H). 2

XSMs compute functions on streams by map-
ping pre�xes of the input streams (partial inputs)
to pre�xes of the output streams (partial outputs).
Based on this, computation in a network with in-
put streams I1; : : : ; Ik proceeds as follows. There is
a list B of \computed bu�ers", which is initially set to
fI1; : : : ; Ing. At each step an XSM M is chosen whose
input bu�ers are in B. We run M to compute a (par-
tial) output for its output bu�er B and we add B to
B. We continue with all M 's until a (partial) output
for O is computed. The DAG structure of the network
guarantees that eventually O is computed.

Translation Algorithm

Let us �rst explain the relationship between the net-
work's bu�ers and the variables and subexpressions of
the given XQuery. We associate each input variable I
with a corresponding input bu�er named I . Then,
for every path, concatenation, and element creation
(sub)expression Q (i.e., every subexpression other
than a for expression or a single variable) we create
a bu�er named out(Q), which will store the output
results of the subexpression.

Which bu�ers are created for a for expression

F = for V in Q1 return Q2

depends on the free variables in the body Q2 of F .
In the �rst case, the body Q2 contains no free vari-

ables other than the loop variable V . For example,
the outermost for expression Q in Figure 2 meets this
condition, since the only free variable in its body L
is the loop variable $X itself. In such cases, we only

in M(E):
R/a

R out

M(F):
X/bX

M(L):
ForVars Y

 [Y,X]->Y’,X’

X

Y

M(G):
Y’,X’

M(H):
<res>Z</res>

Z OX’

Y’

Figure 4: XSM network of running example XQuery

0 1*r=sr|r++

*r=er|w(x,eol),r++

*r!=<a>|r++

2*r=<a>|w(x,sx),w(x,<a>),r++

*r=|w(x,),w(x,ex),r++

*r!=
|w(x,*r)

r++

0

1
*y=sy

|w(y’,sy),y++

2

*x=sx
|w(x’,sx),x0=x,

x++

*y!=ey
|w(y’,*y)

y++

3

*y=ey
|w(y’,ey),y++

*x=ex,*y=sy|w(x’,ex),x=x0

*y=eol|w(x’,ex),x++,y++

*x!=ex
|w(x’,*x),x++

0
1*z=sz|w(o,<res>),z++

*z=ez|w(o,</res>,z++

*z!=ez|w(o,*z),z

Figure 5: XSM template instances (top to bottom):
M(E)=Path(R,a,X), M(L)=ForVars(Y,[Y,X],[Y',X']),
M(H)=CreateEl(Z,res,O)

need to create two bu�er name aliases (without actu-
ally creating new bu�ers), corresponding to the fact
that those bu�ers are shared: First, we have that
out(Q1) � V , i.e., the output bu�er out(Q1) of the
generator Q1 is named after the loop variable V . In
the running example, out(E) � $X (see Figures 2,4).
Second, out(F) � out(Q2), i.e., the output bu�er of
the for is the output bu�er of the body Q2. In the run-
ning example, this means that the result bu�er out(Q)
of the overall XQuery Q is the same as out(L), the out-
put bu�er of Q's body L.

In the more complex second case, the body of the
for expression F contains free variables other than the
loop variable. Such is the case with the for expression
L, whose body H contains the free variable $X, which
is not the loop variable of L. As in the previous case,
we declare that out(Q1) � V and out(F) � out(Q2).
In addition, for every free variable U in the body of
F we produce a new bu�er named U 0. Consequently,
any reference to the variable U in the body of F will
be meant to refer to the bu�er U 0, unless it is within
the scope of a nested for subexpression in the body or
the generator of F .

For translating an XQuery into an XSM network,
we use the following XSM templates :

� Path(InBuf, ChildTag, OutBuf)

� Concat(InBuf1, InBuf2, OutBuf)

� CreateEl(InBuf, ElemTag, OutBuf)

� ForVars(InVar, [InVars], [OutVars])

The ChildTag and ElemTag parameters have to be in-
stantiated with constants, InBuf, OutBuf, InVar with
bu�er names, and InVars, OutVars with lists of bu�er
names.

We are now ready to produce XSM networks that
use the bu�ers described above. For every subexpres-
sion Q of the given XQuery:

if Q = Var then
/* skip for variables */

else if Q = \Q1=c" then
produce Path(out(Q1); c; out(Q))
/* e.g. Fig.5: Path(R,a,X) */

else if Q = \Q1,Q2" then
Concat(out(Q1); out(Q2); out(Q))
/* e.g. Fig.3: Concat(Y',X',Z) */

else if Q = \heiQ1h=ei" then
CreateEl(out(Q1); e; out(Q))
/* e.g. Fig.5: CreateEl(Z,res,O) */

else if Q = \for Var in Q1 return Q2" and
free(Q2) n fV g 6= ; then
InV ars := free(Q2) ;
OutV ars0 := fV 0 j V 2 InV arsg ;
produce ForVars(V; [InV ars]; [OutV ars0])
/* e.g. Fig.5: ForVars(Y; [Y;X]; [Y0;X0]) */

4 XSM Composition

In XSM networks, consecutive XSMs are linked via
bu�ers. For example, consider two XSMs that are

linked via a shared bu�er Bs: M1
Bs

�!M2: XSM com-
position allows us to replace M1 and M2 with a sin-
gle XSM M3 = (M2 �M1). The composition creates
opportunities for eliminating the need for the shared
bu�er Bs and for optimizing the composed XSM (see
below).

For a state q, let readPtr(q) denote the set of read

pointers on which any outgoing transition t : q
'jA
�! q0

depends, i.e., readPtr(q) contains all read pointers oc-
curring in the condition ' or action A. Then scPtr(q)
is the subset of readPtr(q) which point into the shared
connection bu�ers Bs:

scPtr(q) := ptr(Bs) \ readPtr(q)

Input

� producer XSM M1 = (Q1; q10 ; B
1; T 1),

� consumer XSM M2 = (Q2; q20 ; B
2; T 2),

� shared connection bu�ers Bs = B1 \B2

Output

� composed XSM M3 = (Q3; q30 ; B
3; T 3)

begin
Q3 := Q1 �Q2; q30 := (q10 ; q

2
0);

B3 := B1 [B2; T 3 := ;;
(0)

for (q1
'1jA1

�! q01) 2 T
1, (q2

'2jA2

�! q02) 2 T
2 do

if scPtr(q2) = ; then

add(T 3; f(q1; q2)
'2jA2

�! (q1; q
0
2)g) (1)

else
 :=

V
r2scPtr(q2)

:AE(r);

add(T 3; f(q1; q2)
 ^'2jA2

�! (q1; q
0
2)g) (2)

add(T 3; f(q1; q2)
: ^'1jA1

�! (q01; q2)g) (3)
end

Figure 6: Basic XSM composition algorithm

Note that we suppress the parameter Bs of scPtr()
since it will be clear from the context.

In the sequel, we present two composition algo-
rithms that allow us to replace any network of XSMs
by a single XSM. Consider �rst the algorithm of Fig-
ure 6. It takes a producer XSM M1 and a consumer
XSMM2 linked through shared bu�ers B

s. The states
of the composed XSM M3 are given as the product of
the states of M1 and M2 (line 0). Intuitively, if M1 is
in state q1 and M2 in q2, then M3 is in (q1; q2). In a
sense,M3 executes both, transitions fromM1 andM2.
Since M2 produces the output of the composition, we
execute its write actions as soon as possible, thereby
implementing an eager output strategy.

(1{3) determine the transitions ofM3: For each pair
of transitions (t1; t2) 2 T 1 � T 2, following the eager
strategy, we do a transition t2 in the consumer M2 if
possible. Determining whether the transition is possi-
ble depends on scPtr(q2), i.e., the set of read pointers
into the shared bu�ers Bs on which the transition t2
of M2 depends. If scPtr(q2) is empty, M2 can move
to the subsequent state q02 directly (provided '2 is sat-
is�ed and the actions A2 are executed), since t2 is in-
dependent of the shared bu�er and, hence, of t1 (line
1). However, if there are read pointers r 2 scPtr(q2),
i.e., pointers required by t2 and which point to bu�ers
written byM1, we can execute t2 only if those pointers
are not at the end of their associated bu�er. For this
we use the pointer comparison AE(r) (\At-End r"),
which is a runtime check \r=wp" comparing the posi-
tion of r in Bs with the position of its associated write
pointer wp (=writePtr(bu�er(r)) fromM1. Note that
each bu�er has exactly one write pointer. If AE(r)
evaluates to false, then no relevant read pointer of M2

(0, 0)

(0, 1)

(1, 0)

(2, 1)

(2, 0)

(3, 1)

(3, 0)(1, 1)

q ! q0 ' actions A

(0; 0)!(0; 1) :AE(z0)^�z0=sz w(o; hresi); z0
++

(0; 0)!(1; 0) AE(z0)^�y0=sy y0
++

(2; 1)!(2; 1) :AE(z0)^�z0 6=ez w(o;�z0); z0
++

(2; 1)!(2; 1) AE(z0)^�y0 6=ey w(z; �y0); y0
++

(2; 1)!(2; 0) :AE(z0)^�z0=ez w(o; h=resi); z0
++

(2; 1)!(3; 1) AE(z0)^�y0=ey y++
(2; 0)!(2; 1) :AE(z0)^�z0=sz w(o; hresi); z0

++

(2; 0)!(2; 0) AE(z0)^�y0 6=ey w(z; �y0); y0
++

(2; 0)!(3; 0) AE(z0)^�y0=ey y++
(1; 1)!(2; 1) AE(z0)^�x0=sx w(sz; z)
(1; 1)!(1; 1) :AE(z0)^�z0 6=ez w(o;�z0); z0

++

(1; 1)!(1; 0) :AE(z0)^�z0=ez w(o; h=resi); z0
++

(3; 0)!(0; 0) AE(z0)^�x0=ex w(z; ez); x
0
++

(3; 0)!(3; 0) AE(z0)^�x0 6=ex w(z; �x0); x0
++

(3; 0)!(3; 1) :AE(z0)^�z0=sz w(o; hresi); z0
++

(0; 1)!(0; 0) :AE(z0)^�z0=ez w(o; h=resi); z0
++

(0; 1)!(1; 1) AE(z0)^�y0=sy y0
++

(0; 1)!(0; 1) :AE(z0)^�z0 6=ez w(o;�z0); z0
++

(1; 0)!(2; 0) AE(z0)^�x0=sx w(sz; z)
(1; 0)!(1; 1) :AE(z0)^�z0=sz w(o; hresi); z0

++

(3; 1)!(3; 0) :AE(z0)^�z0=ez w(o; h=resi); z0
++

(3; 1)!(0; 1) AE(z0)^�x0=ex w(z; ez); x
0
++

(3; 1)!(3; 1) :AE(z0)^�z0 6=ez w(o;�z0); z0
++

(3; 1)!(3; 1) AE(z0)^�x0 6=ex w(z; �x0); x0
++

Figure 7: Result of basic composition M(H) �M(G)

has reached its end of the bu�er and, similar to (1),
we can make a step inM2 (2). Otherwise, theM2 step
t2 cannot be executed in q2 and we proceed with a t1
step (3).

One can show that each sequence of state transi-
tions of the composed XSM M3 on any input stream
I corresponds to valid sequences of state transitions
of the network (M2 �M1)(I) and produces the same
output, so the above composition algorithm is correct.
Since XSM networks are acyclic, we can repeatedly
compose adjacent XSMs until there is a single XSM
left.

Example 4 (Basic Composition)
Figure 7 depicts the machine resulting from applying
the basic composition algorithm on the XSMs M(H)
and M(G) of Figure 5. 2

5 Optimizations

While the composition algorithm of Figure 6 is simple
and elegant, the e�ciency of the resulting XSM can
be improved in several ways.

5.1 Lockstep Optimization

First, we exploit the fact that the basic algorithm in-
troduces runtime checks AE(p) which can be shown to
be valid or unsatis�able using a static analysis tech-
nique. The basic idea is to statically analyze when the

producer M1 and the consumer M2 operate in \lock-
step" on the shared connection bu�er, i.e., when a
read pointer r is trailing its associated write pointer
wp by at most one position.7 In such cases, the opti-
mized composition can eliminate AE checks. However,
note that some checks are inherently runtime and data
dependent and thus cannot be decided or \optimized
away" by any compile-time analysis. When r and wp
are in lockstep, we do not need the bu�er as an inter-
mediate storage. Consequently, we are able to elimi-
nate tests, actions, and often the whole bu�er.

The input and output of the optimized composition
algorithm in Figure 8 are as before. However, unlike
the basic algorithm which can always be applied, we
can use the improved version only if no state q2 2 Q2

depends on two di�erent read pointers into a shared
connection bu�er. Thus, the optimized composition
algorithm in Figure 8 has the following input/output,
precondition, and initialization steps:

Input

� producer XSM M1 = (Q1; q10 ; B
1; T 1)

� consumer XSM M2 = (Q2; q20 ; B
2; T 2)

� shared connection bu�ers Bs = B1 \B2

Precondition

for all q2 2 Q2 : jscPtr(q2)j � 1
Output

� optimized composed XSM M3 = (Q3; q30 ; B
3; T 3)

Initialization

Q3 := Q1�Q2�fgo; no; aeg;
q30 := (q10 ; q

2
0 ; no); B

3 := B1 [B2; T 3 := ;;

The states Q3 of the optimized composed XSM M3

have Q1 and Q2 components of M1 and M2, respec-
tively, and can be in one of three modes: go; no; ae.

In a state (q1; q2; go) 2 Q3, the consumerM2 can go
forward eagerly and execute a transition t2 since any
read pointer r on which t2 may depend is known to be
trailing its associated write pointer wp by exactly one
step. Thus AE(r) will be false and can be eliminated;
cf. (GO) in Figure 8: if q2 has exactly one read pointer
r into the shared bu�er and if r is advanced by M2,
then we execute t2 but go into no mode. Otherwise
(note the precondition of the algorithm), we know that
scPtr(q2) = ; and we can remain in go mode after
executing t2.

In states of the form (q1; q2; no) (e.g., the initial
state q30 of M3 is of this form), we know that the read
pointer r has reached its write pointer wp (i.e., AE(r)
is true) and we usually cannot go forward withM2 but
have to execute a transition t1 of M1 �rst (NO). The
only exception is when scPtr(q2) 6= frg hence q2 does
not depend on any read pointer into Bs. In this case,
we can stay in no mode and just execute a M2 step.
In the main case, scPtr(q2) = frg and several sim-
pli�cations can be applied, since we know that what

7Recall that we are interested in moving M2 as soon as pos-
sible to achieve eagerness.

for (q1
'1jA1
�! q01) 2 T 1, (q2

'2jA2
�! q02) 2 T 2 do

/* handle (q1; q2; go) 2 Q3 */ (GO)
if scPtr(q2) = frg and r++ 2 A2 then

add(T 3 ; f(q1; q2; go)
'2jA2
�! (q1; q02; no)g)

else

add(T 3 ; f(q1; q2; go)
'2jA2
�! (q1; q02; go)g)

/* handle (q1; q2; no) 2 Q3 */ (NO)
if scPtr(q2) = frg then

wp := writePtr(bu�er(r));
if fw(wp;) 2 A1g = fw(wp;X)g then

('12; A12; A
0
12) := simplify(('1^'2jA1;A2); �r=X);

if r++ 2 A2 then

add(T 3; f(q1; q2; no)
'12jA

0

12�! (q01; q
0
2; no)g)

else

add(T 3; f(q1; q2; no)
'12jA12
�! (q01; q

0
2; go)g)

else if fw(wp;) 2 A1g = ; then

add(T 3; f(q1; q2; no)
'1jA1

�! (q01; q2; no)g
else

add(T 3; f(q1; q2; no)
'1jA1

�! (q01; q2; ae)g)
else

add(T 3 ; f(q1; q2; no)
'2jA2

�! (q1; q02; no)g)

/* handle (q1; q2; ae) 2 Q3 */ (AE)
if scPtr(q2) = frg then

add(T 3 ; f(q1; q2; ae)
:AE(r)^'2jA2

�! (q1; q02; ae)g);

wp := writePtr(bu�er(r));

if jfw(wp;) 2 A1gj = 1 then

add(T 3; f(q1; q2; ae)
AE(r)^'1jA1

�! (q01; q2; go)g)
else

if fw(wp;) 2 A1g = ; then

add(T 3; f(q1; q2; ae)
AE(r)^'1jA1

�! (q01; q2; no)g)
else

add(T 3; f(q1; q2; ae)
AE(r)^'1jA1

�! (q01; q2; ae)g)
else

add(T 3 ; f(q1; q2; ae)
'2jA2
�! (q1; q02; ae)g)

Q3 := Q3 n funreachable statesg;
B3 := B3 n funused bu�ersg

Figure 8: Optimized composition algorithm

is written by M1 is consumed by M2 immediately: If
there is exactly one M1 action A1 that writes some X
to the write pointer wp that M2 is reading from via r,
then we can do both a M1 step and a M2 step. More-
over, we can simplify the conjunction '1 ^ '2 of the
composed condition as well as the sequence of actions
A1;A2 using the equality �r = X :

The simpli�ed condition '12 is obtained by apply-
ing the substitution �r 7! X and reducing the result-
ing expression as much as possible using well-known
logic simpli�cations. In particular, if '12 can be re-
duced to false, then the transition can be removed.
The simpli�ed A12 is similarly obtained by substitut-
ing X for �r and simplifying if possible. In addition,
all pointer increment actions of A1 are moved after
any non-increment action of A2 and just before the
increment actions of A2, in order to obtain the action
normal form (Section 2.3) which guarantees the cor-
rectness of the composition and simplication. A0

12 is

0,0,no

1,0,no*y’=sy|y’++

2,1,no

*x’=sx’
|w(o,<res>),x’++

*y’!=ey’
|w(o,*y’),

y’++

3,1,no

*y’=ey’|y’++
*x’=ex’

|w(o,</res>,x’++
*x’!=ex’,*x’!=ez
|w(o,*x’),x’++

Figure 9: Optimized composed XSM M(H) �M(G)

like A12 but with the actions w(wp;X) and r++ re-
moved. If A1 does not contain a write action, then we
only moveM1 and stay in no mode. If instead A1 con-
tains more than one write via wp then we have \lost
lockstep" and go into ae mode.

Finally, the (AE) block in Figure 8 handles transi-
tions emanating from (q1; q2; ae) 2 Q3, i.e., which may
require runtime checks AE(r). Note that there are sit-
uations where we \fall back" into lockstep, i.e., either
no or go mode, depending on whether we have zero or
one write actions on wp, and under the proviso that
AE(r) is detected at runtime.

Example 5 (Optimized Composition)
Figure 9 depicts the XSM resulting from applying the
optimized composition on M(H) and M(G).

Figure 11 shows the �nal result of successive ap-
plication of the optimized composition on the XSM
network in Figure 4, i.e., the XSM corresponding to
our running example XQuery Q. 2

5.2 Schema-Based Optimization

If the XML schema of the input stream is known, fur-
ther optimizations are possible. For example, consider
the XSM M(E)=Path(R,a,X) in Figure 5. If we knew
that on the input stream R only hai elements can ap-
pear, we could simplify the XSM further. In par-
ticular, the transition corresponding to the self-loop
in state 1 can be eliminated since it is known that
�r 6= hai will always be false. Similarly, test for con-
trol events sv , ev marking the beginning and end of a
variable binding of v can be eliminated using schema
information, appropriately augmented with informa-
tion regarding start/end variable tag symbols.

XML schema information is incorporated into our
XSM framework as follows. Given the input schema as
an XML DTD, we �rst use a type inference algorithm
[XQu02, PV00] to infer the types of variables used in
the input XQuery Q. These variable types directly
yield the bu�er types of the XSM network equivalent
to Q. We can denote the type of a variable v (and thus
of its associated bu�er v) by an augmented DTD, i.e.,
a DTD whose root element is a variable name. We
then interpret the open and close tags hvi and h=vi as
the control events sv and ev, respectively.

0 1|r++

|w(x,eol),r++
2|w(x,sx),w(x,<a>),r++

*r=|w(x,),w(x,ex),r++

*r!=
|w(x,*r)

r++

Figure 10: M(E)=Path(R,a,X) after schema-based op-
timization with DTD(R) = fR! a�; : : :g.

Example 6 (Augmented DTD)
Consider the XQuery in Figure 2 and its XSM network.
Given the input DTD:

froot! a�; a! b�; b! PCDATAg ,

and using a standard type inference for variables, we
obtain the following augmented DTDs:

DTD(R) = fR! a�; a! b; : : :g,
DTD(X) = fX ! a; a! b; : : :g,
DTD(Y) = fY ! b; : : :g, etc.

By interpreting tags of variables as control events,
we obtain the desired schema information on bu�er
contents. For example, for the R bu�er we obtain
sr hai: : :h=ai � � � hai: : :h=ai er, similarly, for the X bu�er
we get sx hai: : :h=ai ex, etc. 2

Using standard type inference of XQuery variables
and augmented DTDs for XSM bu�ers, we can further
simplify and thus optimize XSMs.

Example 7 (Schema-Based Optimization)
Consider the XQuery Q and the augmented DTDs
from the previous example. Figure 10 shows an
optimized version of M(E) from Figure 5. Note that
the loop transition t: 1! 1 has been eliminated since
its condition �r 6=hai is equivalent to false for the
given DTD(R) having only hai elements. Similarly,
(parts of) conditions that are always true have been
eliminated. 2

Schema-based optimization not only applies to ba-
sic XSMs such as instances of the Path template, but
also to XSMs resulting from composition or (lockstep)
optimized composition.

Example 8 (Schema-Based Optimization)
The transition (3; 1; no) ! (3; 1; no) of the optimized
XSM in Figure 9 has the condition �x0 6=e0x ^ �x

0 6=e0z.
Using DTD(X) we can simplify this to �x0 6=e0x since
ez cannot occur in an X bu�er. 2

6 Experimental Results

The output of the XSM compiler is a C program which
uses a SAX parser on the incoming XML stream. We
measured the performance of our XSM-based query
processing engine and compared it to several publicly
available XSLT engines by running the following query

on the DBLP XML database. We report below the re-
sults for the query Qtrans that transforms an incoming
XML stream into an (X)HTML stream: For each con-
ference paper, an HTML table row is generated, listing
the title of the paper, followed by a nested table listing
all authors of that paper. Qtrans is:

<html>
<table>
for $X in doc(root)/dblp/inproceedings
return

<tr><td> $X/title </td>
<td>

<table>
for $Y in $X/author return

<tr><td> $Y </td></tr>
</table>

</td>
</tr>

</table>
</html>

Our experiments were carried out on a worksta-
tion with an Intel Xeon 2.2GHz processor with 1GB
of RAM, running MS Windows 2000 Professional, af-
ter warming up the �lesystem cache to minimize in-
terference from the disk and the OS virtual memory
manager. Sun JDK version 1.3 was used as the Java
compiler/JVM. The C compiler was gcc run under the
cygwin tool suite. For parsing the XML documents the
expat C library and the Apache tools for Java were
used. We used varying sizes of XML input streams
from the well-known DBLP database (80MB). The re-
sults of the experiments are summarized in Table 1.

Discussion

In general, we observed that the XSM-based imple-
mentations are signi�cantly faster for simple transfor-
mations, and the time spent in the process grows lin-
early with the document size for queries with linear
data complexity. In contrast, there is a size beyond
which the time taken by the XSLT-based tools be-
gins to grow superlinearly, i.e., the tested XSLT en-
gines do not scale to very large �les. The results o�er
some insight into the problems of currently available
transformation engines based on XSLT. A key reason
that their performance degrades and does not attain
linear complexity is memory management. It seems
that they do not detect that Qtrans can process one
inproceedings record at a time. Instead the mem-
ory management issue is delegated to Java's garbage
collection, which is strained.

In contrast, our approach of applying optimizations
locally and minimizing the number of bu�ers in a
transducer framework leads to programs which scale
very well on certain classes of \streamable queries",
i.e., queries that exhibit a local transformation be-
havior. Our experiments show that for such queries
our translation algorithm coupled with the optimizing

composition and the schema-based optimizations leads
to highly e�cient throughput. Note that even the lim-
ited class of XQueries we consider is su�ciently more
complex than XPath queries, which are the typical
topic of many XML streaming and �ltering applica-
tions [AF00, Oni01, ILW00, DFFT02].

0,0,0

1,0,0

*r=sr|r++ *r=er|r++

*r!=<a>|r++

2,1,0

*r=<a>
|w(x,sx),w(x,<a>),

r++,x’’++

*r=
|w(x,),w(x,ex),

r++,xs=x

*r!=&*r!=
|w(x,*r),r++,x’’++

2,2,1

*r=|w(x,),r++

2,2,2

true|xm=x’,w(o,<res>),w(o,),x’++

*r!=&*r!=
|w(x,*r),w(o,*r),x’’++,r++

2,1,3

*r=
|w(x,),w(o,),r++,x’’++

!AE(x’)&*x’!=ex
|w(o,*x’),x’++

AE(x’)&*r!=
|w(x,*r),w(o,*r),

r++,x’’++

1,1,3

AE(x’)&*r=
|w(x,),w(o,),w(x,ex),r++,x’++

!AE(x’)&x’!=ex
|w(o,*x’),x’++

1,1,0

!AE(x’)&*x’=ex
|x’=xm,w(o,</res>)

!AE(x’’)
&*x’’=ex
|xs=x’’

!AE(x’’)&*x’’!=
&*x’’!=ex|x’’++

1,2,1

!AE(x’’)&*x’’=|x’’++

1,2,2

true|xm=x’,w(o,<res>),
w(o,),x’++

!AE(x’’)&*x’’=
|w(o,),x’’++

!AE(x’’)
&*x’’!=

|w(o,*x’’),x’’++

Figure 11: Optimized XSM for XQuery Q

7 Related Work

The availability of large amounts of data that are pro-
duced by sensors, coupled with a need to analyze this
data in real-time, has led to research on the vari-
ous ways in which the streaming nature of the data
sources a�ects the traditional query evaluation ap-
proaches. Most of the work has focused on simple
relational data streams and has addressed issues in
e�cient query processing and memory consumption.
Many of the query processing works have focused on
join queries. At the plan execution level, pipelined
operators have been developed for join operations
[WA91, HH99, UF00, LHEN02]. At the optimization
level, new cost models for relational optimizers have
been developed that account for the fact that the data
comes from streams rather than from disks [VN02]. In
addition, techniques have been developed to account
for changes in data arrival rates, as well as the fact
that these costs may change during the evaluation of
a plan. This has led to the development of adaptive
query evaluation plans [AH00, MSH02, AFTU96]. The

Query Stream Xalan SAXON XSLTC XSM Java XSM C
Size time (in ms) time (in ms) time (in ms) time (in ms) time (in ms)

Qtrans 4KB 663 703 708 266 30
5MB 7031 7070 7081 2360 312
10MB 23200 22900 22950 4375 594
20MB 102710 102100 102400 8266 1156
80MB 1 1 1 32078 4640

Table 1: Experimental Results: experiments marked 1 timed out or failed (memory violation)

issue of join/selection order in continuous queries over
streams is discussed in [CDN02].

The optimization of aggregation queries has also
attracted signi�cant attention. E�cient algorithms
and data structures for maintaining aggregates have
been developed, both for the case of the entire stream
and the case of a sliding window over the stream
[MRL98, DGIM02]. The notion of correlated aggre-
gate queries (i.e., queries computing the aggregated
value of an attribute where there is a selection condi-
tion involving the aggregate value of another attribute)
is introduced in [DGGR02], and techniques for the
computation of approximate results to correlated ag-
gregate queries over a single relational data stream are
discussed. Techniques for computing approximate an-
swers to aggregate queries involving joins are presented
in [GKS01]. The ideas of e�cient stream processing
for joins and aggregates can be adopted in subsequent
versions of the XSM.

The issue of memory requirements of relational
stream queries has been studied in various contexts.
The class of conjunctive select-project-join (SPJ)
queries with arithmetic comparisons that can be eval-
uated in constant memory is identi�ed in [ABB+02].
The widespread use of XML as data model has led to
a large body of work on XML-based information inte-
gration and query processing, e.g., [FMS01, SSB+00].

On the issue of XML stream processing, the fast
evaluation of regular expressions using a pipelined
(SAX based) approach is considered in [ILW00] and
[GMOS02]. In [OMFB02] equivalences of XPath loca-
tion paths are used to rewrite queries with reverse axes
into reverse-axis-free ones, thereby enabling a more ef-
�cient SAX based stream processing. [VS02] considers
the problem of e�ciently validating XML documents
against DTDs.

The key contribution of our work is the introduction
of an extended state transducer model for processing
XML streams. Transducers have been used earlier by
the database community for type checking and type
inference [PV00]. However, it is the �rst time that
transducers become e�ectively the execution plan of
the query. In previous work on XML query process-
ing, the plan has been typically based on algebras hav-
ing operators that extend the relational algebra with
operators speci�cally suited to XML query processing
[VGD+02, JLST01, LPV00]. Other work in compil-

ing XML transformations directly to programs exists
in the context of XSLT [XSL02]. However, to the best
of our knowledge, the XSLT community has not de-
veloped ways to minimize the memory and number of
operations of an XSLT program.

References

[ABB+02] A. Arvind, B. Babcock, S. Babu, J. McAlister,
and J. Widom. Characterizing Memory Re-
quirements for Queries over Continuous Data
Streams. In ACM PODS, 2002.

[AF00] M. Altinel and M. J. Franklin. E�cient Filter-
ing of XML Documents for Selective Dissemi-
nation of Information. In VLDB, 2000.

[AFTU96] L. Amsaleg, M. Franklin, A. Tomasic, and
T. Urhan. Scrambling Query Plans to Cope
with Unexpected Delays. In PDIS, 1996.

[AH00] R. Avnur and J. M. Hellerstein. Eddies: Con-
tinuously Adaptive Query Processing. In ACM
SIGMOD, 2000.

[CDN02] J. Chen, D. J. DeWitt, and J. F. Naughton.
Design and Evaluation of Alternative Selection
Placement Strategies in Optimizing Continu-
ous Queries. In ICDE, 2002.

[CFGR02] C.-Y. Chan, P. Felber, M. Garofalakis, and
R. Rastogi. E�cient Filtering of XML Docu-
ments with XPath Expressions. In ICDE, 2002.

[DFFT02] Y. Diao, P. Fischer, M. J. Franklin, and R. To.
YFilter: E�cient and Scalable Filtering of
XML Documents (demo description). In ICDE,
2002.

[DGGR02] A. Dobra, M. Garofalakis, J. E. Gehrke, and
R. Rastogi. Processing Complex Aggregate
Queries over Data Streams. In ACM SIGMOD,
2002.

[DGIM02] M. Datar, A. Gionis, P. Indyk, and R. Mot-
wani. Maintaining Stream Statistics over Slid-
ing Windows. In Annual ACM-SIAM Symp.
on Discrete Algorithms (SODA 2002), 2002.

[FMS01] M. F. Fernandez, A. Morishima, and D. Su-
ciu. E�cient evaluation of XML middle-ware
queries. In ACM SIGMOD, May 2001.

[FSW00] M. Fernandez, J. Simeon, and P. Wadler. An
Algebra for XML Query. In Foundations of
Software Technology and Theoretical Computer
Science (FSTTCS), Delhi, India, 2000.

[GKS01] J. Gehrke, F. Korn, and D. Srivastava. On
Computing Correlated Aggregates Over Con-
tinual Data Streams. In ACM SIGMOD, 2001.

[GMOS02] T. Green, G. Miklau, M. Onizuka, and D. Su-
ciu. Processing XML Streams with Determinis-
tic Automata and Stream Indexes, 2002. http:
//www.cs.washington.edu/homes/suciu.

[GVD+01] L. Galanis, E. Viglas, D. J. DeWitt,
J. F. Naughton, and D. Maier. Follow-
ing the Paths of XML Data: An Al-
gebraic Framework for XML Query Eval-
uation. http://www.cs.wisc.edu/niagara/
papers/algebra.pdf, 2001.

[HH99] J. Hellerstein and P. J. Haas. Ripple Joins for
Online Aggregation. In ACM SIGMOD, 1999.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction
to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

[ILW00] Z. G. Ives, A. Y. Levy, and D. S. Weld. E�cient
Evaluation of Regular Path Expressions on
Streaming XML Data. TR UW-CSE-2000-05-
02, University of Washington, 2000. http://
data.cs.washington.edu/papers/xscan.pdf.

[JLST01] H. Jagadish, L. Lakshmanan, D. Srivastava,
and K. Thompson. TAX: A Tree Algebra for
XML. In Proc. DBLP Conference, 2001.

[Kay] M. Kay. Saxon XSLT Processor. http://
sourceforge.net/projects/saxon.

[LHEN02] G. Luo, P. Haas, C. Ellmann, and J. Naughton.
A Scalable Hash Ripple Join Algorithm. In
ACM SIGMOD, 2002.

[LPV00] B. Lud�ascher, Y. Papakonstantinou, and P. Ve-
likhov. Navigation-Driven Evaluation of Vir-
tual Mediated Views. In EDBT, Konstanz,
2000.

[MBR+00] R. Moore, C. Baru, A. Rajasekar,
B. Lud�ascher, R. Marciano, M. Wan,
W. Schroeder, and A. Gupta. Collection-
Based Persistent Digital Archives (Part I&II).
D-Lib Magazine, 6(3&4), March 2000.

[MP02] P. Mukhopadhyay and Y. Papakonstantinou.
Mixing Querying and Navigation in MIX. In
ICDE, 2002.

[MRL98] G. S. Manku, S. Rajagopalan, and B. G. Lind-
say. Approximate medians and other quantiles
in one pass and with limited memory. In ACM
SIGMOD, 1998.

[MSH02] S. Madden, M. Shah, and J. Hellerstein. Con-
tinuously Adaptive Continuous Queries over
Streams. In ACM SIGMOD, 2002.

[OMFB02] D. Olteanu, H. Meuss, T. Furche, and F. Bry.
XPath: Looking Forward. In Workshop
on XML-Based Data Management (XMLDM),
Prague, March 2002.

[Oni01] M. Onizuka. XML Toolkit and Tuto-
rial. http://www.cs.washington.edu/homes/
suciu/XMLTK/, 2001.

[PV00] Y. Papakonstantinou and V. Vianu. DTD In-
ference for Views of XML Data. In ACM
PODS, 2000.

[Res02] Resin XSLT to Java compiler. http://www.
caucho.com/, 2002.

[ROA02] Real-time Observatories, Applications, and
Data management Network (ROADNet).
http://roadnet.ucsd.edu/, 2002.

[SAB] Sablotron XSLT processor. http://www.
gingerall.com/.

[SSB+00] J. Shanmugasundaram, E. J. Shekita, R. Barr,
M. J. Carey, B. G. Lindsay, H. Pirahesh, and
B. Reinwald. E�ciently Publishing Relational
Data as XML Documents. In VLDB Journal,
pp. 65{76, 2000.

[UF00] T. Urhan and M. J. Franklin. XJoin: A
Reactively-Scheduled Pipelined Join Operator.
IEEE Data Engineering Bulletin, 23(2):27{33,
2000.

[VGD+02] S. D. Viglas, L. Galanis, D. J. De-
Witt, D. Maier, and J. F. Naughton.
Putting XML Query Algebras into Context,
2002. http://www.cs.wisc.edu/niagara/
Publications.html.

[VN02] S. D. Viglas and J. F. Naughton. Rate-Based
Query Optimization for Streaming Information
Sources. In ACM SIGMOD, 2002.

[VS02] V. Vianu and L. Segou�n. Validating Stream-
ing XML Documents. In ACM PODS, 2002.

[WA91] A. Wilschut and P. Apers. Dataow Query Ex-
ecution in a Parallel Main Memory Environ-
ment. In Proc. PDIS, 1991.

[XAL] Xalan XSLT processor. http://xml.apache.
org/xalan-j/.

[XQu01] XQuery 1.0: An XML Query Language.
W3CWorking Draft, www.w3.org/TR/xquery/,
2001.

[XQu02] XQuery 1.0 Formal Semantics. W3C Working
Draft, March 2002. http://www.w3.org/TR/
query-semantics/.

[XSL02] XSLTC Compiler Documentation. http://
xml.apache.org/xalan-j/xsltc/, 2002.

