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Abstract

An increasing number of business users and software applications need to process information that
is accessible via multiple diverse information systems, such as database systems, file systems, legacy
applications or web services. We describe the Enosys XML Integration Platform (EXIP), a commercial
XQuery-based data integration software platform that provides a queryable integrated view of such
information. We describe the platform architecture and describe what the main principles and challenges
are for the query engine. In particular, we discuss the query engine architecture and the underlying
semistructured algebra, which is tuned for enabling query plan optimizations.

1 Introduction

A large variety of Web-based applications demand access and integration of up-to-date information from multi-
ple distributed and heterogeneous information systems. The relevant data are often owned by different organi-
zations, and the information sources represent, maintain, and export the information using a variety of formats,
interfaces and semantics. The ability to appropriately assemble information represented in different data models
and available on sources with varying capabilities is a necessary first step to realize the Semantic Web [3], where
diverse information is given coherent and well-defined meaning. The Enosys XML Integration Platform (EXIP)
addresses the significant challenges present in information integration:

� Data of different sources change at different rates, making the data warehousing approach to integration
hard to develop and maintain. In addition, Web sources may not provide their full data in advance.
The platform we describe resolves this challenge by being based on the on-demand mediator approach
[49, 9, 34, 7, 46, 29]: information is collected dynamically from the sources, in response to application
requests.

� The Mediator, which is the query processing core of the EXIP platform, has to decompose application
requests into an efficient series of requests targeted to the sources. These requests have to be compatible
with the query capabilities of the underlying sources. For example, if the underlying source is an XML
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file, data may only be retrieved from the file sequentially. All data processing operations on the data of the
file will have to be performed by the Mediator. On the other hand, if the underlying source is a powerful
SQL DBMS, the Mediator can send to it SQL queries that delegate most of the data processing operations
to the SQL query processor, hence providing multiple efficiencies: The amount of data retrieved from
the database is potentially much smaller, and the source’s processing power and optimization ability is
harnessed to answer the integrated query.

In order to address this challenge, the Mediator rewrites the query plan in order to push the most effi-
cient supported query to the underlying sources. In the algebra-based EXIP query processor this is done
by having the rewriter/optimizer transform the algebraic expressions to appropriate sub-expressions and
“delegate” them to the sources. Wrappers are responsible for translating these subexpressions into SQL
or other queries/commands acceptable to the information source [15, 27].

� Integrated views are the key abstraction offered by the EXIP platform, and they often need to be defined
over a variety of sources, with different capabilities and access methods, and for use by different ap-
plications. The platform makes source metadata available for view definition in an automatic way and
simplifies the view definition process via graphical tools.

� Information assets available for integration reside in diverse systems, have different structure, and are usu-
ally in heterogeneous formats. The Mediator enables and facilitates the resolution of the heterogeneities
by using XQuery to perform complex structural transformations. Furthermore, extensibility of the query
engine is required in order to allow easy interface with function libraries built in other programming
languages, such as Java, that perform special-purpose, domain-specific transformations.

� The heterogeneity and Web-orientation of modern applications that make use of the EXIP platform for
integrated access to diverse information again require a lot of flexibility from EXIP. Different applications
use different XML views and queries, which need to structure the XML data as close as possible to the
application needs. We have found in particular that, for presentation-oriented Web applications, XML
views and queries that structure the data in a way that is “isomorphic” to the HTML structure of the
produced Web pages lead to huge time savings in building the applications. Providing the flexibility to
produce structures that fit the application requirements again requires a powerful language for selection,
join, and transformation.

The EXIP platform uses the XPath/XQuery data model [17], augmented with Skolem functions, which were
first proposed in [34] in the context of the OEM model [35]. The platform enables applications and users
to access and integrate information using XQuery, the W3C draft proposal for a high-level, declarative XML
query language [8]. XQuery statements can reference integrated views, also defined in XQuery with small
extensions. Queries and views are translated into the semistructured algrebra used by EXIP, henceforth refered
to as XAlgebra, are combined into a single algebra expression/plan, and are rewritten/optimized to effect query
composition with the views and decomposition into plans appropriate for delegation to the underlying sources.

Processing XML query statements in a dynamic mediator context in a way that addresses the challenges
mentioned above creates new query processing challenges, as we discuss in Section 3. In addition, the EXIP
platform surrounds the Mediator with a series of components that raise the usability of the platform and increase
its efficiency.

The EXIP platform is currently in use for a variety of integration projects in large corporations and is being
evaluated by two leading software companies for incorporation in their data processing and application server
products.

Roadmap Section 2 presents the architecture and components of the EXIP platform. Section 3 presents the
internal architecture of the Mediator query processor and introduces the reader to XQuery and the semistructured
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algebra used in the Mediator’s query processing. Section 4 discusses related work.

2 High-Level Platform Architecture and Components

The Enosys XML Integration Platform is based on the wrapper-mediator architecture, as shown in Figure 1(a).
Each wrapper, called XMLizer, accesses an information source, such as a relational DBMS or a web service,
and exports a Virtual XML view of it. In particular, a wrapper exports an XML Schema describing the content of
the source as XML, and it allows querying of that content by the Mediator. It also obtains and exports metadata
describing the capabilities of the sources, such as the existence of special access structures or adornments [21]
for web services. The Mediator exports the Virtual Integrated XML (VIX) database, which provides access to
all the individual views exported by the wrappers. Virtual integrated XML views and queries can be built on
top of the VIX database. The views organize information from the distributed sources into XML objects that
conform to an application’s needs. For example, to a marketplace application the integrated XML view can
provide front-end access to an integrated catalog, where the heterogeneities between the suppliers’ products are
resolved, and the products are integrated and classified according to the needs of the marketplace. Each product
object contains catalog data along with attributes from the pricing, delivery, service and other databases. The
views provide distribution transparency, i.e., the originating sources and methods of access are transparent to the
application. For example, it is transparent to the application that the product specifications in the catalog come
from a product database, while the pricing and service information may be coming from a Customer Relationship
Management (CRM) system, which often provides customized pricing and service options for each customer.
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Figure 1: EXIP architecture

The virtual database and views enable the front-end applications, which may be the XQForms system [40]
for declarative generation of query forms and reports or custom applications, to seamlessly access distributed
heterogeneous information sources as if they were a single XML database. In particular, the application can
issue an XML query against either the XML database or the views. The query typically selects information from
the views and structures it in ways that are convenient for the application. For example, a HTML application will
create queries that structure the XML results in a way that easily translate into the target HTML pages. In the
catalog example, if the resulting HTML page presents the data grouped by product family then the XML result
will greatly facilitate the construction of the HTML page if the results are organized hierarchically by product
family.
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An XML view can be cached into the XCacheDB, which is an XQuery database implemented on top of a
relational back-end, as in Niagara [44], employing proprietary storage and query processing and translation algo-
rithms. Typically, the data of slow and relatively static sources are collected, integrated, and cached in advance,
while the information originating at fast dynamic sources is collected by accessing the sources dynamically. It
is transparent to the application which pieces of the view originate from the underlying sources and which ones
originate from XCacheDB.

The Mediator is accessible by applications through a query language API and a DOM-based (Document
Object Model) API. Finally, the platform includes management tools that enable the user to graphically create
and manage query forms, view definitions, queries, source connections and other metadata.

Example 1: Assume we want to find information about available houses, to guide our home-buying decision-
making. Two important considerations are size and price, and we also want to know the quality of the schools
in the home’s neighborhood. Also assume that

� information on houses and their neighborhoods is accesible via a realtor’s database system

� information about school performance is available from an external web service

The following XQuery retrieves the appropriate integrated information:

FOR $h IN database("homesDB")/*/homes/home
WHERE

$h/area > 1,500 AND
$h/price <500,000

RETURN <home_with_schools>
{$h},
{FOR $s IN database("schoolsDB")/*/schools/school
WHERE $s/zip = $h/zip
RETURN
{$s},
{ws:schoolreview($s/name)}

}
</home_with_schools>

The XQuery produces home_with_schools elements that group houses with the required size and
within the right price range with schools in the same zip code and with their reviews. The web service
schoolreview, offered by an external entity, e.g., the Department of Education, is invoked as an external
function, via a simple extension to the function naming mechanism of XQuery. The physical details of the Web
service are given in its WSDL description. The school reviews, if the data were available, would also be a good
candidate for storage in XCacheDB, for improved performance. A query such as this can be built graphically
with EXIP’s metadata-aware query and view builder.

For more detail on the components of EXIP, please refer to [39]. In the next section, we discuss briefly how
such a query is processed by the EXIP Mediator.

3 Mediator Query Processing Architecture

As we described earlier, the Mediator inputs an XQuery, one or more optional view definitions (also in XQuery),
a description of the sources and optional XML Schemas of the sources, and a description of available user-
defined functions. It returns the XML query result. The Mediator architecture, shown in Figure 1(b), is similar
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to the architecture of a traditional DBMS query engine [21], with a few significant differences that are discussed
in this section. A query is first parsed into an Abstract Syntax Tree. During parsing, references to data sources
and external functions are resolved, using the metadata information available to the Mediator. References to
views are also resolved, and view definitions are parsed. Moreover, the parser performs type checks and infers
the type of the final as well as of intermediate results [14].

The produced AST is then translated by the translator into an XAlgebra expression. The principles of
XAlgebra are described in Section 3.2. Consequently, the rewriting optimizer applies a series of algebraic and
cost-based rewritings on the algebra expression in order to optimize it. We use a rule-based heuristic rewriter
that performs optimizations such as

� constant folding

� pushing selections down the algebra expression

� optimizing the join order based on the characterisitcs of the sources (such as the existence of fast access
structures)

� unfolding nested XAlgebra expressions

� optimizations targeted for navigation-based evaluation, which is described further in Section 3.1

� choosing the right kind among semantically equivalent operators, e.g., sort-merge join operator or nested
loops join operator.

The rewriter performs capability-sensitive decomposition, i.e., it decomposes the logical plan into the maximal
fragments that can be executed by the data sources and the Mediator and respect the capabilities of the data
sources. That is, the decomposition pushes as much processing as possible to the data sources, based on their
query capabilities. In the case of relational databases, the rewriter also uses heuristics that allow it to take into
account the abilities of the query optimizer of the underlying relational database, so that the decomposition pro-
duces fragments that are efficiently optimizable by the underlying system (and hence, not necessarily maximal.)

The plan is finally run by the execution engine. Conceptually, the execution engine receives the query
plan, sends requests/queries to the wrappers, and performs necessary local processing, such as joins across
data sources and XML tagging and composition of the result. In practice, the query result object is not fully
materialized immediately. Instead, query evaluation is driven by the client navigations, as described below.

3.1 Navigation-Driven Evaluation

Since Web-based applications are very often accessed by large numbers of users, and often generate correspond-
ingly large numbers of requests to the Mediator, good use of available resources, and in particular main memory
and bandwidth, is of high importance. The EXIP Mediator allows “just-in-time” generation of the necessary
(parts of the) query result, by integrating querying and result object navigation. In particular, the Mediator,
following an initial negotiation with the client, may only send parts of a query result to the client. In place of the
missing parts of the results, appropriate tokens are included that the client may send back to the server if it needs
one of the missing parts. The tokens contain information needed for tne Mediator to produce the missing parts.
The effects of the on-demand, navigation-driven execution model are lower memory footprint and reduced data
exchanges from the data sources to the Mediator [32].

A partial result has multiple lists of elements that are incomplete, as in Figure 2(a), from where navigation
can continue because of the information encoded in the tokens. For example, the Mediator may have exported
the partial result of Figure 2(a). If the client navigates to the second child of customer John Smith, the Token
2 is passed to the Mediator and the Mediator produces another partial result, which leads to a tree such as the
one of Figure 2(b).
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Figure 2: Navigation-driven evaluation

Different clients are exposed differently to result fragmentation and navigation-based evaluation, depending
on the interaction model used between the client and the Mediator server. Web-based query applications, which
use the Mediator as a servlet, � benefit from being aware of the existence of tokens and can be made responsible
for returning the appropriate tokens to the Mediator via a POST request. This approach fits well with the
navigational nature of such applications, e.g., with the existence of “Next” or “Drill Down” hyperlinks that are
a common feature of these applications. On the other hand, a general purpose application can be shielded from
the existence of tokens: a thin client library is in charge of passing the appropriate tokens to the Mediator server.
The client navigates in the result fragment, unaware that parts of the result are not yet in client memory. If the
client happens to navigate into a missing part, the library will send the relevant token to the server and fetch the
required fragment.

A key challenge in optimizing navigation-driven query evaluation is the choice of the size and shape of
fragments produced. At the one extreme, one may choose each node of the data model to be a fragment and
encode the relevant token in the node itself. This approach, described in [32], is elegant but it is very inefficient
in the number of round-trips that will be needed between the client and the server. Moreover, it penalizes the
server with unacceptable overhead in creating tokens.

Instead, the Mediator employs a complex algorithm for client-server interaction control (CLSIC), as shown
in Figure 1(b). The CLSIC algorithm is reponsible for choosing the size (and shape) of the fragment that will be
returned to the client. The algorithm takes as input configuration parameters provided by the client.

The Mediator execution engine supports CLSIC through a pipelined, iterator-based execution model, which
additionally allows the computation state of operators to be exported and imported. Each operator can respond to
a call for the “next” tuple (as we discuss in the next section, XAlgebra is tuple-oriented.) Moreover, each operator
enables the production of tokens by being able to produce information about its state on command. This state
information is encoded by CLSIC in tokens. Each operator is able to reproduce a prior state and continue its
computation from that point on. Upon receipt of a token, CLSIC produces and imposes the appropriate state on
each operator.

Note that, depending on the capabilities of the underlying sources for on-demand evaluation, the Mediator
(and the corresponding XMLizer) sets up and invokes appropriate access methods of these sources, such as SAX
calls or SQL cursors. For example, assume that a query produces customer elements, from a customer table
of an underlying relational source. When the client issues the query, the corresponding XMLizer establishes a

�Such applications are often implemented using technologies such as Java Server Pages.
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cursor and passes this cursor to the Mediator, together with the first fragment of the result, e.g., the first 100
tuples. The Mediator encodes the cursor state information in the token. When the client asks for the 101st
customer element, the Mediator passes the cursor information back to the XMLizer and asks for the “next”
tuple. Note also that the optimization target of the rewriting optimizer can be set to either speed up response
time to navigation commands or to speed up production of the full result.

3.2 Principles of XAlgebra

XAlgrebra is a fine-grained algebra used to represent and manipulate queries in the Mediator. XAlgebra is
functional, and algebra expressions are fully composable. XAlgebra is also tuple-oriented, meaning that the
result of most operators is a set of tuples, and draws on the relational and nested relational algebras [21]. Tu-
ple orientation allows the construction of an iterator-based execution model, which extends the iterator model
of relational databases and enables navigation-driven partial evaluation, as described in the previous section.
Moreover, it enables the inclusion in the algebra of powerful operators for join and grouping operations, which
are much easier specified in terms of tuples and tuple partitions [2, 12]. Finally, it fits better with the underlying
relational databases that make an important category of sources for an integration platform. On the flip side,
typing becomes more difficult as both tuples and lists need to be typed.

A logical query plan is simply an XAlgebra expression. The input and output of most operators is a set of
tuples ��� � � � �� � � � � ��. Each tuple �� � ������ � ��	�

�
� � � � � ����� � ��	��� consists of variable-value pairs,

also referred to as bindings. We say that the variable ����� is bound to the value ��	�� in the tuple �� if the pair
����� � ��	�� appears in ��. All input (resp. output) tuples of an operator have the same list of variables and no
variable appears more than once in a tuple. Each value ��	�� can either be a constant, NULL, a single element, a
list of elements or a set of tuples. Support for NULL bindings enables easier handling of semistructured data as
well as easier implementation of “traditional” operators that are defined using NULLs, such as outerjoins.

XAlgebra contains different implementations of the same logical operation (e.g., grouping, join) as separate
operators. This allows the rewriting optimizer to consider the choice of the particular implementation together
with other optimization opportunties.

4 Related Work

Data integration has been an important database topic for many years. Most of the early works focused on the
integration of structured sources - primarily relational databases. A survey and summary of such works can be
found in [47, 22, 31]. In the 90’s the scope of data integration systems was extended to include the integration
of autonomous and non-structured sources and the “mediator” concept was created [49]. EXIP follows the
architecture of earlier virtual view mediators, such as TSIMMIS [20], YAT [9], HERMES [46], Garlic [7], and
the Information Manifold [29].

XAlgebra is the cornerstone of query processing in EXIP, similarly to the roles that algebras play in relational
[21] and object-oriented databases [12]. Algebras were also designed for the nested relational [42] and complex
value models [1]. Recently XML Query Algebras have been proposed as the underlying infrastructure of XML
databases and mediators [19, 9, 32]. The common characteristic of those algebras is that the operators input
and output sets of tuples. This should be contrasted with functional programming-based XML algebras, such as
[4] and [14], which serves as the core of the semantics of the emerging XQuery W3C XML querying standard
[8]. In those approaches the operators input and output lists of XML elements. The tuple orientation, which is
also present in object-oriented algebras, allows one to carry proven aspects of relational, nested relational and
object-oriented algebras into XML processing. For example, it facilitates the specification of a join operator
similar to the one of relational algebra. The XAlgebra relates most to the OQL algebra [12] and the XMAS
algebra [32].
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The component of the rewriting optimizer that is responsible for capability-sensitive decomposition is based
on the conceptual background set up in [36, 48, 41], which, in turn, are related to the background created by
works on answering queries using views either in the relational model (see [26] for a comprehensive survey) or
semistructured/XML models [38, 18]. The system architecture of that component is related to the ones of [24, 9]
in the sense that it is built around a rewriting optimizer, such as the one of Starburst [23].

Many of the query processing challenges of the Mediator’s query processor are also faced by systems that
export an XML view of a single relational source [43, 44, 16, 15].

On the commercial front, other data integration companies and corresponding systems have emerged during
the last few years, such as Callixa (www.callixa.com) and Metamatrix (www.metamatrix.com). More
recently, the adoption of XML and its perfect fit to integration applications has led to the emergence of other
XML-based information integration companies, such as Xyleme [50] and Nimble [13].
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