
Optimization Properties for Classes
of Conjunctive Regular Path Queries

Alin Deutsch and Val Tannen

University of Pennsylvania,
200 South 33rd Str. 19104 Philadelphia, PA, USA

{adeutsch,val}@saul.cis.upenn.edu

Abstract. We are interested in the theoretical foundations of the opti-
mization of conjunctive regular path queries (CRPQs). The basic
problem here is deciding query containment both in the absence and
presence of constraints. Containment without constraints for CRPQs is
EXPSPACE-complete, as opposed to only NP-complete for relational
conjunctive queries. Our past experience with implementing similar algo-
rithms suggests that staying in PSPACE might still be useful. Therefore
we investigate the complexity of containment for a hierarchy of frag-
ments of the CRPQ language. The classifying principle of the fragments
is the expressivity of the regular path expressions allowed in the query
atoms. For most of these fragments, we give matching lower and upper
bounds for containment in the absence of constraints. We also intro-
duce for every fragment a naturally corresponding class of constraints
in whose presence we show both decidability and undecidability results
for containment in various fragments. Finally, we apply our results to
give a complete algorithm for rewriting with views in the presence of
constraints for a fragment that contains Kleene-star and disjunction.

1 Introduction

Semistructured data models and query languages [1] have become a very ac-
tive area of interesting research in databases. In this paper we are interested
in semistructured query languages, more precisely in theoretical foundations of
query optimization for such languages. We concentrate on two computational
problems:

– The problem of query equivalence (more generally, query containment), with
or without integrity constraints.

– The problem of rewriting queries to make (some) use of views, again with
or without integrity constraints.

For queries on relational, complex values, dictionary and OO data, these
problems can be solved nicely and uniformly with a strengthening of the classi-
cal ideas on tableaux and chase. (See the chase extension in [23] and the chase
& backchase technique for rewriting with views in [9].) Although the problems
have theoretically intractable lower bounds, these bounds are in terms of query

G. Grahne and G. Ghelli (Eds.): DBPL 2001, LNCS 2397, pp. 21–39, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

22 Alin Deutsch and Val Tannen

and constraint size. It turns out that these techniques are in fact practical for
practical-size queries and constraints [22]. Our experience with implementing
them suggests that a necessary condition for practicality is the ability to de-
cide containment in polynomial space. Can this be done for semistructured lan-
guages?

At the theoretical core of such languages lie the conjunctive regular path
queries (CRPQs) of [13,6]. Here is an example:

Q(Y, Z)← start (a∗|b).c X , X a.b∗ Y , X c∗ Z

This is interpreted in a graph whose edge labels are taken from a set containing
a, b, c while start is a constant node. The query returns the set of pairs (Y, Z) of
nodes such that for some node X there are paths start→ X, X → Y , X → Z
whose labels belong to the regular languages (a∗|b).c , a.b∗ , c∗ respectively.

However, containment of general CRPQs is EXPSPACE-complete [6,13]!
Therefore, in this paper we pay attention to restricted fragments of CRPQs.
This is an approach validated by practice: typical users exploit only a fraction
of the expressive power of regular expressions. This is based on the experiences
of users of the semistructured query language StruQL [12], but also of the XML
query language XML-QL [8], and it is supported by the restrictions on path
expressions imposed by the XPath standard [27]. Here is a very simple example
of query optimization in such a fragment. Consider the query

A(N)← start ∗ X , X name.John Y, X ∗ .tells.name N

which returns the names of persons who find out a secret from somebody con-
nected directly or indirectly to John. Assume that the following view is materi-
alized

Divulge(V, W)← start ∗ U, U name V , U tells W

and the following integrity constraint holds

(tellAll) ∀X, Y [X ∗ .tells. ∗ Y → X tells Y]

saying that our database models a society in which whenever two of its members
share a secret, eventually everybody connected to them shares that secret. Under
this constraint, the query A can be equivalently rewritten to use Divulge:

A′(N)← Divulge(X, Y) , X John Z, Y name N.

Depending on the storage schema, A′ may be cheaper to evaluate. In the ex-
tended version [11] we show a detailed example of how the methods we develop
in this paper succeed in finding this rewriting.

To study various fragments of CRPQs we develop a novel technique. [6,13]
use automata-theoretic techniques but here we will try something different: re-
ductions to problems formulated in the relational setting. The fragments for
which we prove upper bounds and decidability results are such that we can
translate queries and dependencies into relational versions, over a special rela-
tional schema. For example, the query Q shown above translates to the following
union of relational conjunctive queries:

Q′(y, z) = C1(y, z) ∪ C2(y, z)

C1(y, z) ← a∗(start, w1) , c(w1, X) , a(x, w2), b∗(w2, y) , c∗(x, z)

C2(y, z) ← b(start, w1) , c(w1, X) , a(X, w2) , b∗(w2, y) , c∗(x, Z)

Optimization Properties for Classes of Conjunctive Regular Path Queries 23

We think of C1, C2 as ordinary relational conjunctive queries over a schema
containing a, a∗, b∗, c, c∗. A priori a and a∗ etc., are independent binary relation
symbols, but we interpret them only in relational instances in which certain rela-
tional constraints hold. The constraints are first-order and they say, for example,
that a∗ is transitive, reflexive, and includes a. Of course, transitive closure itself
cannot be expressed in first-order logic. It is therefore remarkable that first-order
reasoning suffices for some of the semistructured language fragments we consider
in this paper. However, we also provide undecidability results that together with
the aforementioned EXPSPACE lower bound [6] show some of the theoretical
limits of what can be done about optimization in semistructured languages.

Organization of the Remainder of This Paper. In section 2 we define the
classes (language fragments) of queries and dependencies under study here, as
well as their translation into relational correspondents. In section 3 we summa-
rize our results and discuss some related work. Section 4 contains our results
on upper bounds for pure query containment while section 5 contains the corre-
sponding lower bound results. Section 6 presents our results on deciding (or not!)
containment of queries in the presence of dependencies. Section 7 extends the
chase & backchase technique [9] to two of the fragments we study. We conclude
in section 8.

Due to space limitations, we have relegated some proofs and a worked ex-
ample to the full paper [11], which also contains the extension to unions and
disjunction of the chase. Although this extension, in the form that we need, has
not—apparently—been published previously, it will not surprise anyone with an
understanding of the classical chase.

2 Queries and Constraints

Databases. Let L be a set of labels. For technical reasons we assume that L is
infinite, but of course only a finite number of labels will occur in a given database,
query, or constraint. A semistructured database is a finite directed graph whose
edges are L-labeled. Equivalently, we can be given a set N (the nodes of the
graph) and a finite set of labels from L, each interpreted as a non-empty binary
relation on N .

A word about constants denoting nodes. The upper bound and decidabil-
ity results do not, as stated, assume the presence of such constants. Equalities
between distinct constants cause the usual problem [2] and our results can be
extended straightforwardly to deal with this. For clarity of exposition we have
omitted this extension. On the other hand, some of our examples and even some
of the constructions used in lower bounds and undecidability results do use con-
stants denoting nodes. Such use is in fact inessential and is made for the same
reasons of clarity.

Queries: CRPQs. A conjunctive regular path query (CRPQ) [13,6] has the
general form

Q(x1, . . . , xn) ← A1 , . . . , Am (1)

24 Alin Deutsch and Val Tannen

Here the atoms (conjuncts) Ai are either equalities y = z or regular path atoms
of the form y R z where R is a regular expressions defined by 1

R ::= l | | R∗ | R1.R2 | (R1|R2) (2)

∗ def= ∗

where l ranges over labels in L and means any (single) label. Of course, each
distinguished variables xj must also occur in the right hand side. As indicated,
we follow [13] in using the shorthand ∗ for ∗.

If B is a semistructured database, an atom x R y is satisfied by a valuation
that maps x, y to nodes s, t in B if there is a path from s to t in B which spells
out a word in the language denoted by the regular expression R. We extend this
definition of atom satisfaction to give semantics to whole CRPQs in the way
that is usual for conjunctive queries. Query containment is also defined as usual.

Unions of CRPQs. In spite of being called “conjunctive”, CRPQs contain
implicit forms of disjunction, most glaringly because of the | operator in regular
expressions. In fact, we are naturally led to consider unions of CRPQs as the
class of queries of interest. It is easy to see that the EXPSPACE upper bound
on containment [13,6] still holds for unions of CRPQs.

Containment and Dependencies. Much of the early relational database the-
ory dealt with conjunctive (tableau) queries and embedded dependencies [2] which
are logical assertions of the special form

∀x [C1(x)→ ∃y C2(x, y)] (3)

where C1, C2 are conjunctions of relational atoms or (in C2) equalities 2. Such
dependencies are tightly related to containment assertions [28]. Given two (type-
compatible) conjunctive queries Q1, Q2 it is easy to construct an embedded
dependency that is equivalent (in each database instance) to the containment
Q1 ⊆ Q2. It is equally easy to construct an equivalent containment assertion
from any given embedded dependency.

In this paper we will consider several classes of queries, and for each of them
we will identify a class of dependencies (constraints) that has this kind of tight
correspondence with the containment of queries from the associated class.

Add Disjunction: DEDs. Generalizing from conjunctive queries to unions
of conjunctive queries, we consider the associated class of disjunctive embedded
dependencies (DEDs) which are logical assertions of the form

∀x [C1(x)→
m∨

i=1

∃yi C2,i(x, yi)] (4)

where C1, C2,i are as in (3). We don’t need disjunction in the premise of the impli-
cation because it is equivalent to conjunctions of DEDs. We have the following
1 We ask the reader to distinguish between the | in regular expressions and the meta

use of | as part of the BNF for the syntax.
2 The notation x abbreviates x1, . . . , xn.

Optimization Properties for Classes of Conjunctive Regular Path Queries 25

tight correspondence: the containment of two unions of conjunctive queries is
equivalent to a finite number of DEDs, and a single DED is equivalent to the
containment of a conjunctive query into a union of conjunctive queries.

A DED is full if it does not have existentially quantified variables. The
chase [3] can be extended to DEDs, giving a decision procedure for contain-
ment of unions of conjunctive queries under a set of full DEDs (see [15] for a
partial treatment and the extended version of this paper [11] for a sketch of the
results we use.)

Semistructured Constraints: DERPDs. As with DEDs, we define the class
of dependencies that corresponds to unions of conjunctive regular path queries
(CRPQs). We call such dependencies disjunctive embedded regular path depen-
dencies (DERPDs) and they are defined as assertions that have the same logical
form as DEDs, see (4), but in which C1, C2,i are conjunctions of regular path
atoms x R y or equalities. The definition for satisfaction of a given DERPD in
a given semistructured database follows from the usual meaning of logical con-
nectives and quantifiers and from the satisfaction for regular path atoms given
earlier.

When the regular expressions are restricted to single labels in L, CRPQs are
equivalent to the usual conjunctive queries and DERPDs to just DEDs seen over
a relational schema consisting of binary symbols from L.

Examples. DERPDs can express a large variety of constraints on semistructured
data. As we saw, they generalize most relational dependencies of interest. In
addition we can express constraints similar to the ones DTDs [26] specify for
XML. The first two below say that “any person has exactly one social security
number”. The third says that “telephone numbers can only be of two (if any)
kinds, voice or fax” while the fourth is a kind of generalized join-like dependency.

∀x [start ∗ . person x → ∃y x ssn y]

∀x∀y1∀y2 [start ∗ . person x ∧ x ssn y1 ∧ x ssn y2 → y1 = y2]

∀x∀y∀z [x telNo y ∧ y z → y voice z ∨ y fax z]

∀x∀y∀z [x child y ∧ y child z → z grandparent x]

Fragments: F -Queries and F -Dependencies. Since containment of CRPQs
is EXPSPACE-complete [6] we study fragments of the language defined by re-
stricting the regular expressions allowed in atoms (conjuncts). The simplest frag-
ment, allowing just labels and concatenation, is equivalent to conjunctive queries
over binary relations. Between these and general CRPQs we consider the frag-
ments described by the table below. For any fragment F , we call the correspond-
ing queries F -queries. Applying the same restriction to the atoms that appear in
dependencies, we define corresponding classes of DERPDs, calling the respective
constraints F -dependencies. The correspondence discussed above, between con-
tainment assertions and dependencies, continues to hold for each fragment F .
The fragments called W and Z have technical importance but their definitions
did not suggest anything better than choosing these arbitrary names.

26 Alin Deutsch and Val Tannen

Fragment name Regular expressions syntax

conj. queries R→ l | R1.R2

(∗) R→ l | ∗ | R1.R2

(∗, |) R→ l | ∗ | R1.R2 | (R1|R2)

(∗,) R→ l | | ∗ | R1.R2

(l∗) R→ l | l∗ | R1.R2

(∗, , l∗, |) R→ l | ∗ | | l∗ | R1.R2 | (R1|R2)

W R→ l | | S∗ | R1.R2 | (R1|R2)

S → l | | S1.S2

Z R→ S | S∗

S → l | S1.S2 | (S1|S2)

CRPQs R→ l | | R∗ | R1.R2 | (R1|R2)

Containment of Upper bound

conjunctive queries NP [7]

(∗)-queries NP [13] or

corollary 1

unions of conj. queries Πp
2 [24]

unions of (∗, |)-queries ↑
unions of (∗,)-queries ↑
unions of (l∗)-queries ↑
unions of (∗, , l∗, |)-queries Πp

2 theorem 2

unions of W queries ?

unions of Z queries ↑
unions of CRPQs EXPSPACE

[13,6]

Containment of Lower bound

conjunctive queries NP [7]

(∗)-queries ↓

unions of conj. queries Πp
2 [24]

(∗, |)-queries Πp
2 remark 2

(∗,)-queries Πp
2 theorem 3

(l∗)-queries Πp
2 theorem 3

(∗, , l∗, |)-queries ↓
W queries PSPACE theorem 4

Z queries EXPSPACE

CRPQs [6] and remark 3

↓

Fig. 1. Upper and lower bounds for containment

First-Order Relational Translation. At the core of our technique is a trans-
lation of semistructured queries and dependencies into first-order logic, namely
into (unions of) conjunctive queries and DEDs over a special relational schema
that includes l and l∗ as well as and ∗ as separate binary relation symbols.
A priori these symbols are independent, but we will try to capture some of the
Kleene star semantics through relational dependencies.

Optimization Properties for Classes of Conjunctive Regular Path Queries 27

Our translation is designed for the (∗, , l∗, |)-fragment only. It relies essen-
tially on the fact that in this fragment concatenation and | are not nested inside
Kleene stars.

The first thing we do is translate away |. Using the equivalence (a|b).c =
(a.c)|(b.c) we move | in the outermost position in the (∗, , l∗, |)-regular expres-
sions. Then, we note that Q← . . . , x R1|R2 y, . . . is equivalent to Q1∪Q2 where
Qi ← . . . , x Ri y, For dependencies, we note that x R1|R2 y is equivalent to
x R1 y ∨ x R2 y after which logical equivalences bring the disjunctions out. A
disjunction in the premise of the implication in a dependency is equivalent to a
conjunction (a set) of dependencies. To summarize:

Remark 1. By translating away the |, any (∗, , l∗, |)-query becomes an equiva-
lent union of (∗, , l∗)-queries. Similarly, any (∗, , l∗, |)-dependency becomes an
equivalent set of (∗, , l∗)-dependencies.

Next, we translate any (∗, , l∗)-queries and dependencies into (relational)
conjunctive queries and DEDs over the special schema

L-Rel def= {l | l ∈ L} ∪ {l∗ | l ∈ L} ∪ { , ∗} ∪ {N}

in which all symbols are binary relations with the exception of N which is unary
(the need for N is explained below).

The translation T (Q) of a (∗, , l∗)-query Q is defined by translating its
conjuncts according to the rules (for each binary r in L-Rel)

T (x r y) = r(x, y)

T (x R1.R2 y) = T (x R1 v), T (v R2 y)

The variable v is (implicitly) existentially quantified and so it must be fresh
each time its rule is applied. For example, Q(x, y) ← x a.∗ .b y, translates to
Q′(x, y)← a(x, z), ∗(z, u), b(u, y).

The translation T (d) of a (∗, , l∗)-dependency d is defined similarly. The
presence of concatenation in the conclusion of the implication in d will add exis-
tentially quantified variables, while the presence of concatenation in the premise
of the implication in d will add universally quantified variables.

Example of Translation. Let d be the dependency

∀x∀y [x (a|b).∗ y → ∃z y ∗.(a|b) z]

It translates to the following set of two DEDs

∀x∀y∀u [x a u ∧ u ∗ y → [∃z1∃v1 y ∗ v1 ∧ v1 a z1] ∨ [∃z2∃v2 y ∗ v2 ∧ v2 b z2]]

∀x∀y∀u [x b u ∧ u ∗ y → [∃z1∃v1 y ∗ v1 ∧ v1 a z1] ∨ [∃z2∃v2 y ∗ v2 ∧ v2 b z2]]

Now, T (Q) is a relational query and T (d) is a relational dependency, both
over the schema L-Rel. However, we will use them not over arbitrary instances of
L-Rel but only over instances that satisfy specific sets of relational dependencies.
To deal with the various fragments, we consider two such sets

28 Alin Deutsch and Val Tannen

The Σ∗ Dependencies:

(nodel) ∀x∀y [l(x, y)→ N(x) ∧N(y)] (node∗) ∀x∀y [∗(x, y)→ N(x) ∧N(y)]
(base) ∀x∀y [l(x, y)→ ∗(x, y)] (refl∗) ∀x [N(x)→ ∗(x, x)]
(trans∗) ∀x∀y∀z [∗(x, y) ∧ ∗(y, z)→ ∗(x, z)]

where l ranges over L. (This is an infinite set of dependencies but of course only
finitely many matter for a given database, query, or dependency.) Here we see
how we use N : we want the chase with (refl∗) to apply only to variables x that
are already present.

The Σl∗ Dependencies: are obtained by replacing ∗ with l∗ in Σ∗ above.
The intention behind these dependencies is to narrow the gap between the

semistructured meaning of the Kleene star and the arbitrary interpretation that
could be given to the relational schema L-Rel. We can associate directly to each
semistructured database a relational L-Rel-instance that satisfies Σ∗ ∪Σl∗ (call
it a Σ∗ ∪ Σl∗ -instance). But this will not cover Σ∗ ∪ Σl∗ -instances containing
pairs of distinct nodes which are not connected by any path with labels from
L. Of course, it is not possible to close the gap this way, since transitive closure
is not first-order definable. It is therefore remarkable that first-order reasoning
suffices for some of the semistructured language fragments we consider in this
paper.

Full Dependencies. Relational dependencies (3) and DEDs (4) are called full
when they do not have existentially quantified variables. In the case of DERPDs
fullness must be more complicated because concatenation in regular expressions
introduces an implicit existential. Here we take a very simple approach.

Let d be an (∗, , l∗, |)-dependency and let T (d) be the set of DEDs into which
d translates. We say that d is a full dependency if each DED in T (d) is full.

3 Summary of Results

Containment for F -Queries. We summarize in figure 1 our new results on the
complexity of deciding containment for queries in the various fragments, putting
them in the context of known results.

The upper bounds are for containment of unions of F -queries, with the re-
markable exception of the (∗)-fragment for which containment of (∗)-queries is in
NP, just like containment of conjunctive queries. This was already shown in [13].
Motivated by the study of containment under dependencies, the new technique
introduced here reproves, along the way, this NP bound, see corollary 1 3.

Our new upper bound result is that containment of unions of (∗, , l∗, |)-
queries is in Πp

2 (theorem 2). It can be seen from the lower bounds table that
this is a tight bound.
3 Although we do not consider it explicitly here, the fragment obtained by adding just

to labels and concatenation is easily seen to yield no surprises: containment is still
in NP.

Optimization Properties for Classes of Conjunctive Regular Path Queries 29

We have tried to state our lower bound results in their strongest form, for
F -queries rather than unions of F -queries. It is not surprising to see a Πp

2 lower
bound in the presence of |. This does not follow directly from [24] but we have

Remark 2. The Πp
2 -hardness proof in [24] for the lower bound on containment

of unions of conjunctive queries can be adapted to containment of F -queries
provided that F includes |.

It is surprising however what happens in the absence of |. While containment
of (∗)-queries is in NP, we show in theorem 3 that containment of (l∗)-queries
is Πp

2 -hard. Moreover a simple variation of the same proof applies to the (∗,)-
fragment. Therefore, we find that the increase in complexity does not stem from
the mere presence of the Kleene star in the query, but from the interaction
between l and l∗ or between and ∗.

A more liberal nesting of regular expressions within the Kleene star increases
complexity. If we allow concatenation inside the Kleene star, we get the W-
fragment, for which we show in theorem 4 a PSPACE lower bound on contain-
ment. We don’t know (mainly because of difficulties with a relational translation)
if this bound is tight, which is why we put a question mark in the corresponding
upper bound entry. If in addition we allow disjunction within the Kleene star,
we obtain the Z-fragment which is as bad as general CRPQs:

Remark 3. The EXPSPACE-hardness proof in [6] applies to containment of Z-
queries.

Containment of Under what constraints Decidable?

conjunctive queries full relational dependencies YES ([3])

unions of conjunctive queries full DEDs YES ([11])

unions of (∗, |)-queries full (∗, |)-deps. YES (theorem 5)

unions of (∗,)- queries full V-deps. YES (theorem 6)

(∗,)-query in union of (∗,)-queries full DEDs over special models NO (theorem 7)

(l∗)-query in union of (l∗)-queries full DEDs NO (theorem 8)

Fig. 2. Results for containment under dependencies

Containment under Dependencies. The chase technique in classical rela-
tional theory gives us the decidability of containment of conjunctive queries un-
der full dependencies [2]. Decidability extends straightforwardly to containment
of unions of conjunctive queries under full DEDs (see the full paper [11]).

This nice situation for relational languages contrasts with the situation for
semistructured languages, as summarized in figure 2. The general problem stud-
ied is containment of unions of F -queries under full F -dependencies. It turns
out that even containment of (l∗)-queries under just full DEDs is undecidable
(theorem 8).

30 Alin Deutsch and Val Tannen

There is some good news, as our technique carries through in theorem 5 to
prove decidability for the (∗, |)-fragment.

We leave open the general problem corresponding to the (∗,), but we have
two partial results that suggest that the problem might be complicated. We show
decidability in the case of a restricted class of (∗,)-dependencies, that we call
V-dependencies (definition in section 6). And we show undecidability with just
DEDs in the case of a class of special models (also defined in section 6).

In our two undecidability proofs, just like in the proof of theorem 3, we make
essential use of of the interaction between l and l∗ or between and ∗.

Rewriting with Views under Dependencies. Given a set V of views, a
set D of dependencies expressing integrity constraints, and a query Q, we are
interested in finding “rewritings” Q′ which mention some of the views (but may
still contain labels from Q) and are exactly equivalent to Q.

We do not study this problem in its full generality, but rather we look at
extending to some of the F -fragments the chase&backchase (C&B) algorithm
that we introduced in [9]. This algorithm relies on the chase with dependencies.
In view of the undecidability results we have obtained for other F -fragments, we
have looked at rewriting with views only for the (∗)- and (∗, |)-fragments.

In theorem 9 we show that (essentially) the C&B algorithm is complete for
the (∗)-fragment, in the sense that it finds all rewritings that are minimal in a
precise sense.

For the (∗, |)-fragment we extend the original C&B algorithm to account for
disjunction, and we prove that this extended version is also complete.

Related Work. Perhaps the closest in spirit is [4], which gives an EXPTIME-
complete decision procedure for containment of queries and constraints expressed
in a different fragment of CRPQs, which corresponds to description logics. This
fragment allows unrestricted regular expressions in the conjuncts, but restricts
the shape of the query graph (thus being incompatible with our classification
principle for query fragments). The corresponding dependencies allow unre-
stricted regular path expressions and even cardinality constraints, but have re-
stricted shape and in particular cannot express functional dependencies. As a
matter of fact, [14] shows that, when adding functional dependencies to a gen-
eralization of description logics called the Guarded Fragment of first order logic,
satisfiability (and hence containment) becomes undecidable. None of our query
fragments is contained in description logics.

The class of (∗)-queries was introduced in [13] (under the name of “simple
StruQL0 queries”) as a class of semistructured queries using transitive closure
and whose containment problem is in NP. The decision procedure was based on
an automata-theoretic argument which was applicable to CRPQs with arbitrary
regular path expressions.

[19,20] study the expressivity and satisfiability of queries over tree structures,
in formalisms that are equivalent to MSO. Classes of tree structures are given
as grammars, which can be viewed as constraints on their structure in a broader
sense.

Optimization Properties for Classes of Conjunctive Regular Path Queries 31

[5] gives a complete algorithm for finding rewritings of regular path queries
(i.e. single-conjunct CRPQs) with views defined by regular path queries. The
path expressions allowed in the conjunct are unrestricted, but no constraints are
taken into account, and only complete rewritings are obtained (that is, rewritings
mentioning only views). [17] addresses the problem of finding arbitrary rewritings
of regular path queries, and [16] gives an algorithm for the related problem of
answering regular path queries using incomplete views.

4 Upper Bounds

(∗)-Queries. Recall that a (∗)-query is a CRPQ whose atoms allow only regular
expressions built from labels, ∗, and their concatenation. For example, Q(x, y)←
x a. ∗ .b y, y c x is a (∗)-query, as opposed to Q′(y)← x a.b∗.c y (because of b∗)
and Q′′(y)← x a|b y (because of |).

We have shown in section 2 how to translate any (∗)-query into a conjunctive
query T (Q) over the schema L-Rel. While not obvious, it turns out that reasoning
about T (Q) under the set of dependencies Σ∗ introduced in section 2 suffices
(see [11] for proof):

Proposition 1. Let Q1, Q2 be two (∗)-queries. The containment Q1 ⊆ Q2 is
valid if and only if Σ∗ |= T (Q1) ⊆ T (Q2).

Next, we observe that the dependencies in Σ∗ are full hence the chase with them
terminates, giving a decision procedure for Σ∗ |= T (Q1) ⊆ T (Q2) [3,2] We denote
with chaseΣ∗(Q) the result of chasing the query Q with the dependencies in Σ∗.

Theorem 1. The (∗)-query Q1 is contained in the (∗)-query Q2 if and only if
there exists a containment mapping (see [2]) from T (Q2) into chaseΣ∗(T (Q1)).

Corollary 1. (see also [13]) (∗)-query containment is NP-complete.

Proof: First notice that the size of T (Q) is linear in that of Q. The time to chase
is polynomial in the size of the queries, but exponential in the maximum size of a
dependency and the maximum arity of the relations in the schema [3]. However,
the dependencies in Σ∗ have fixed size and the maximum arity of a relation in
the schema is 2. The upper bound follows noting that the containment mapping
can be found in NP. For the lower bound, note that the proof of NP-hardness for
containment of conjunctive queries in [7] holds even if all relations are binary. •

Example. Consider Q1(x1, x3) ← x1 a x2, x2 b.c x3 and Q2(y1, y2) ← y1 ∗
.a. ∗ y2. It is easy to see that Q1 is contained in Q2. We show how we in-
fer this using theorem 1. The translation to conjunctive queries yields TQ1 =
T (Q1) and TQ2 = T (Q2), with TQ1(x1, x3)← a(x1, x2), b(x2, u1), c(u1, x3) and
TQ2(y1, y2) ← ∗(y1, v1), a(v1, v2), ∗(v2, y2). Note that there is no containment
mapping from TQ2 to TQ1 as the latter contains no ∗-atoms to serve as image for
the former’s ∗-atoms. But by chasing TQ1 with (nodea) and then with (refl∗), we

32 Alin Deutsch and Val Tannen

x yu4

u3

u2

u1

ll*
a

a

b

c

c

b
l

ll

u5

x v1 y
a

Q(x,y) Q’(x,y)

c

b

v3

v2

lll*

l

Fig. 3. Counterexample queries for proposition 2

obtain Q′(x1, x3) ← N(x1), N(x2), ∗(x1, x1), a(x1, x2), b(x2, u1), c(u1, x3), thus
creating an image for TQ2’s conjunct ∗(y1, v1). We continue chasing with (baseb

∗),
then (basec

∗) and (trans∗), obtaining Q”(x1, x3) ← N(x1), N(x2), ∗(x1, x1),
a(x1, x2), b(x2, u1), c(u1, x3), ∗(x2, u1), ∗(u1, x3), ∗(x2, x3). Now {y1 �→ x1, y2 �→
x3, v1 �→ x1, v2 �→ x2} is a containment mapping from T (Q2) into Q”. There
are further applicable chase steps, omitted here as they only add new atoms and
hence do not affect the existence of the containment mapping. •

Unions of (∗, , l∗, |)-Queries. The idea we have just used to handle (∗)-queries
is easily extended to (∗, |)-queries (giving a Πp

2 procedure), but how about other
fragments? Can we deal with (l∗)-queries using their relational translation and
the set Σl∗ of dependencies defined in section 2? The answer is negative, which
is surprising given the syntactic similarity of the (∗)- with the (l∗)-fragment.

Proposition 2. There exist (l∗)-queries Q, Q′ such that Q ⊆ Q′ but Σl∗ �|=
T (Q) ⊆ T (Q′).

Proof: Here are the queries (see figure 3 for possibly helpful graph represen-
tations of Q, Q′):
Q(x, y)← x a u1, x a u2, u1 c u3, u1 b u4, u2 b u5, u2 c u4, u3 l.l y, u4 l.l∗ y, u5 l y

Q′(x, y)← x a v1, v1 b v2, v1 c v3, v2 l y, v3 l.l.l∗ y

To see that Q is contained in Q′, observe that ll∗ = l∪lll∗ and Q is equivalent
to the union of queries Q1 ∪ Q2 where Q1, Q2 are obtained by replacing the
conjunct u4 ll∗ y with u4 l y, respectively u4 lll∗ y in Q. But both Q1, Q2 are
contained in Q′, as witnessed by the containment mappings {v1 �→ u1, v2 �→
u4, v3 �→ u3} and {v1 �→ u2, v2 �→ u5, v3 �→ u4}. Intuitively, for any instance I,
and any mapping from Q to I, depending on whether u4 l.l∗ y in Q is satisfied
by a path of length 1 or at least 2, v1 c v3 in Q′ is satisfied by the same path
which satisfies either u1 c u3 or u2 c u4, respectively.

On the other hand, according to the chase theorem [2], T (Q) is not contained
in T (Q′) under Σl∗ because there is no containment mapping from T (Q′) into
chaseΣl∗ (T (Q)). (Intuitively, what Σl∗ does not capture is the minimality of l∗:
it only states that l∗ contains the reflexive transitive closure of l, but it doesn’t
rule out pairs of nodes that aren’t reachable via a path of l-edges. Instances
containing such a pair (s, t) are counterexamples for the containment: conjunct

Optimization Properties for Classes of Conjunctive Regular Path Queries 33

u4 ll∗ y in Q is satisfied by the endpoints of the path r
l→ s

l∗→ t
l→ q even if s

has no outgoing l-edge, while v3 lll∗ y in Q′ is not.) •
A simple variation of the counterexample above applies to (∗,)-queries. In

any case, if the same idea would have applied it would have given us NP al-
gorithms, and we show in theorem 3 that containment for both the (l∗)- and
the (∗,)-fragment is Πp

2 -hard! Therefore, we will take another route towards a
containment test.

We start from the observation that Σ∗ ∪Σl∗ is sufficient in deciding contain-
ment of Q1 in Q2 in the restricted case in which Q1 contains no Kleene star (no
∗ or l∗), and Q2 is a (∗, , l∗)-query. We call Q1 star-free.

Proposition 3. The star-free query Q1 is contained in the (∗, , l∗)-query Q2 if
and only if there is a containment mapping from T (Q2) to chaseΣ∗∪Σl∗ (T (Q1)).

A proof sketch is given in the full paper [11]. Next we show how to use
proposition 3 to decide containment even if Q1 is a proper (∗, , l∗)-query.

In the rest of this section l will denote either a label in L or the symbol
. Observe that for any l ∈ L ∪ { }, l∗ =

⋃
0≤p lp, where lp is short for the

concatenation of p successive l’s. More generally, let Q(l∗1, . . . , l
∗
n) be a (∗, , l∗)-

query in which (l∗1, . . . , l
∗
n) are all the occurrences of starred symbols (the li’s

are not necessarily distinct). Such a query is equivalent to an infinite union of
star-free queries:

Q(l∗1 , . . . , l∗n) =
⋃

0≤p1,...,0≤pn

Q(lp1
1 , . . . , lpn

n)

The key to our containment test is that this infinite union can be replaced with a
finite one. For any (∗, , l∗)-query Q let sfs(Q) be the star-free size of Q, defined
as the count of all occurrences of non-Kleene-starred labels in Q. For example,
for Q(x, y)← x a.b∗ y , y ∗ .c z we have sfs(Q) = 2.

Proposition 4. Let Q1, Q2 be two (∗, , l∗)-queries and let k
def= sfs(Q2) + 1.

Then, Q1 ⊆ Q2 if and only if
⋃

0≤p1≤k,...,0≤pn≤k

Q1(lp1
1 , . . . , lpn

n) ⊆ Q2

The proof is given in the full paper [11]. We can now give our decision pro-
cedure for containment of unions of (∗, , l∗, |)-queries, which has four steps:

Step 1: We first translate away the |, obtaining finite unions U1, U2 of (∗, , l∗)-
queries.

Step 2: Next we use proposition 4 to obtain from U1 a finite union of star-free
queries SF1, which must be checked for containment in U2

4.

Step 3: Containment of SF1 in U2 is decided using the following easy result:
4 An alternative way of obtaining SF1 is by chasing the queries in U1 with
∀x∀y [l∗(x, y) → x = y ∨ ∃z l(x, z) ∧ l∗(z, y)] (and similarly for ∗). This would
result in a non-terminating chase, which we however could stop after sufficiently
many steps.

34 Alin Deutsch and Val Tannen

Proposition 5. The union of star-free queries
⋃n

i=1 Qi is contained in the
union of (∗, , l∗)-queries

⋃m
j=1 Q′

j if and only if for every 1 ≤ i ≤ n there is
a 1 ≤ j ≤ m such that Qi ⊆ Q′

j.

Step 4: Finally, checking each star-free Qi for containment in Q′
j is done using

proposition 3.
The upper bound for this algorithm is straightforward, proven in [11]:

Theorem 2. Containment of unions of (∗, , l∗, |)-queries is in Πp
2 .

5 Lower Bounds

(l∗)-Queries, (∗,)-Queries. The | operator corresponds to the union and con-
tainment for unions of conjunctive queries is Πp

2 -complete [24]. But it turns
out that even in the absence of | we have Πp

2 -hardness results, with completely
different proofs:

Theorem 3. Containment of (l∗)-queries is Πp
2 -hard. Containment of (∗,)-

queries is Πp
2 -hard.

As we pointed out in figure 1, the Πp
2 lower bound for containment of

(∗, , l∗, |)-queries follows (independently) from three sources: the two lower
bounds in the previous theorem and the one in remark 2.

W-Queries. The following result shows that a more liberal nesting of regular
path expressions within the Kleene star is problematic in terms of complexity
of containment. If we allow concatenations of labels within the Kleene star, we
obtain the W-fragment, whose lower bound for containment is PSPACE (a proof
is in the full paper [11]):

Theorem 4. Containment of W-queries is PSPACE-hard.

As pointed out in remark 3, a bit more nesting yields EXPSPACE-hardness!

6 Containment under Dependencies

The (∗, |)-Fragment. This is where our technique of relational translation
is most effective. First recall that by translating | away, any union of (∗, |)-
queries is equivalent to a union of (∗)-queries. Recall also that any set C of
(∗, |)-dependencies is translated into a set T (C) of DEDs. By definition, “the
dependencies in C are full” means that the DEDs in T (C) are full.

Since the DEDs in Σ∗ are all full, the fact that containment of unions of (∗, |)-
queries under full (∗, |)- dependencies is decidable follows from our extension of
the chase to DEDs [11] and the following result:

Theorem 5. Let C be a set of full (∗, |)-dependencies, and U1, U2 two unions
of (∗, |)-queries. Let the equivalent unions of (∗)-queries be

⋃n
i=1 Qi, respectively⋃m

j=1 Q′
j. Then U1 is contained in U2 under C if and only if for every 1 ≤ i ≤ n

there exists 1 ≤ j ≤ m such that T (Qi) is contained in T (Q′
j) under Σ∗∪T (C).

Optimization Properties for Classes of Conjunctive Regular Path Queries 35

The proof exploits the work we already did in section 4 and is omitted.

The (∗,)-Fragment. As stated, this problem is open. However, we have two
variations of it, one decidable, the other one, surprisingly, not.

Variation 1: V-Dependencies. Consider a subclass of full (∗,)-dependencies,
called V-dependencies, which disallow

– occurrences of the wildcard in the premise of the implication, and
– occurrences of ∗ in the conclusion of the implication (see formula (4)).

Theorem 6. Containment of unions of (∗,)-queries under full V-dependencies
is decidable.

The proof is omitted. The decision procedure is basically the same as the
one for deciding containment of unions of (∗, , l∗)-queries without dependencies:
consider only a finite union of star-free queries, and check containment chasing
with Σ∗ and (as only difference from that case) with the translation of the V-
dependencies.

Variation 2: Attributed Models. Suppose now that we restrict the full (∗,)-
dependencies even more, forcing their atoms to be star-free. We obtain pre-
cisely the full DEDs. But assume that we allow a special class of semistructured
databases, in which the data graph can be “adorned” by attaching attributes to
its nodes. More precisely, attributed models have schema L-Rel ∪ A), where
A is a set of binary relations names, called attributes, who are disjoint from L.
The only difference between an attribute and a label is that the former is not
included in the interpretation of , while the latter is 5.

Theorem 7. Containment of a (∗,)-query in a union of (∗,)-queries under
full DEDs, but over attributed models, is undecidable.

The proof is omitted, but very similar to that of theorem 8.

The (l∗)-Fragment. Surprisingly, this problem is undecidable, despite the syn-
tactic similarity of the (l∗) and (∗)-fragments. We show a stronger undecidability
result, which holds even if the dependencies are star-free, thus corresponding to
purely relational full DEDs.

Theorem 8. The containment of an l∗-query in a union of l∗-queries in the
presence of full DEDs is undecidable.

Proof: By reduction from the following problem: Given context-free grammar
G = (Σ, N, S, P) where Σ is the set of terminals (containing at least two
symbols), N the nonterminals, S ∈ N the start symbol, P ⊆ N × (Σ ∪ N)∗

the productions, and L(G) the language generated by G, it is undecidable if
L(G) = Σ∗ [18].
5 This model is similar in spirit to the XML data model and XPath specification [27],

where attribute nodes are not reachable by navigation along the child axis.

36 Alin Deutsch and Val Tannen

The Reduction. Given context-free grammar G = (Σ, N, S, P), we construct
an instance of containment as follows:

Q ⊆D QS ∪Qcyc ∪
⋃

σ1 �=σ2∈Σ

Qσ1,σ2

Q()← b H∗ e (b, e constants, H �∈ Σ ∪N), QS()← b S e,
Qσ1,σ2()← x σ1 y, x σ2 y (σ1, σ2 ∈ Σ), Qcyc()← x H.H∗ x

D consists of the following full, star-free DERPDs (DEDs):

(fn) ∀x, y, z [x H y ∧ x H z → y = z], (inj) ∀x, y, z [y H x ∧ z H x → y = z]
(symb) ∀x, y [x H y →

∨
σ∈Σ

x σ y], (dp) ∀x0, . . . , xk [
∧k

i=1 xi−1 Mi xi → x0 N xk]
˙ (for every p = N →M1 . . . Mk ∈ P)

Now observe that (5) below holds for any binary queries. In addition, we claim
that (6) holds as well, by construction, implying that it is a reduction.

Q �⊆D QS ∪Qcyc ∪
⋃

σ1 �=σ2∈Σ
Qσ1,σ2

⇔ (5)

∃I [I |= D ∧Q(I) �= ∅ ∧QS(I) = ∅ ∧Qcyc(I) = ∅ ∧
∧

σ1 �=σ2∈Σ
Qσ1,σ2(I) = ∅]

⇔ (6)

∃(w ∈ Σ∗) w �∈ L(G)

The intuition behind the claim is that the instance I which is a counterexample
for containment encodes a word w from Σ∗ \ L(G).

Proof of Claim (6):⇒: Assuming the standard interpretation of H∗, Q(I) �= ∅
implies that there exists a path of H-edges from b to e in I. Qcyc(I) = ∅ implies
that all paths of H-edges are simple (no cycles). I |= (fn) ∧ (inj) implies that
there is a unique (simple) path of H-edges from b to e which we call the H-chain.
I |= (symb) says that every H-edge has in parallel with it a σ-edge for some
symbol σ ∈ Σ, and it follows from

∧
Qσ1,σ2(I) = ∅ that this edge is unique. The

H-chain thus corresponds to a string w in Σ∗, of length equal to that of the H-
chain. Each H-edge along the chain corresponds to a position in w. We make the
following subclaim: let x, y be the source, respectively target nodes of a subchain
of the H-chain, and let u be the corresponding substring of w. Let N be any
nonterminal such that there exists a derivation of u in G starting from N . Then
there is an N -edge from x to y in I. The subclaim is shown by induction on the
length of the derivation, and it uses the fact that I |=

∧
p∈P (dp). Together with

QS(I) = ∅, the subclaim implies that there is no derivation of w in G starting
from the start symbol S, in other words w �∈ L(G).
⇐: Starting from w, build the minimal model I consisting of (i) an H-chain

of length |w|, (ii) the corresponding parallel edges spelling w, and (iii) for every
subchain from node x to node y corresponding to the substring u of w, and every
nonterminal N from which there is a derivation of u in G, add an N -edge from
x to y. (i) implies (I |= (fn) ∧ (inj)) ∧ Qcyc(I) = ∅ ∧ Q(I) �= ∅, (ii) ensures

Optimization Properties for Classes of Conjunctive Regular Path Queries 37

(I |= (symb)) ∧
∧

Qσ1,σ2(I) = ∅ and (iii) guarantees I |=
∧

p∈P (dp). w �∈ L(G)
and the minimality of the model enforce QS(I) = ∅. •

7 Rewriting with Views under Dependencies

[9] introduces the chase&backchase (C&B) algorithm for rewriting queries with
views under dependencies 6. Due to space constraints we can only sketch here
the idea and we omit proofs. The strategy of the C&B algorithm is to reduce the
problem of rewriting with views to the problem of rewriting under dependencies.
If Vi is a view name and QVi the query that defines it, we capture Vi by writing
a pair of inclusion dependencies that essentially say Vi ⊆ QVi and QVi ⊆ Vi.
Denote the set of all such pairs of dependencies with DV and let us also assume
that we rewrite under an additional set D of dependencies.

The C&B algorithm on a query Q has two phases. First the chase of Q
with D ∪ DV . The dependencies in DV that apply are full, so if those in D
are full too, the chase will terminate, with a query we call the universal plan
UP because it explicitly mentions all views that can be used to answer Q. The
second phase is the backchase which considers all subqueries of the universal
plan UP (subsets of its conjuncts, mentioning all distinguished variables). The
output of the algorithm is the set of those subqueries equivalent to Q for whom
the removal of any conjunct compromises this equivalence. We call such queries
minimal rewritings of Q 7. The subqueries of the universal plan are tested for
equivalence to Q again by chasing (see [11] for an illustration on our motivating
example).

The (*)-Fragment. The C&B algorithm applies almost directly here. We
should point out that the views may not be binary relations and therefore the
rewritings we obtain will not correspond to pure (∗)-queries, but rather may con-
tain relational atoms with the view names. We have the following completeness
result for the algorithm:

Theorem 9. Let Q be a (∗)-query, V be a set of (∗)-views and D be a set of
full (∗)-dependencies. Let E = Σ∗∪T (D)∪T (DV) and let UP = chaseE(T (Q))
(the chase terminates).

Then, for any minimal rewriting Q′ of Q with V , T (Q′) is a subquery of UP .

The (∗, |)-Fragment. In this case the query and views translate to unions of
conjunctive queries and the (∗, |)-dependencies translate to DEDs. If we plug into
the C&B method the extended chase with DEDs (see [11]), we obtain a union
of universal plans U1, . . . , Un after the chase phase. Each Ui plan is backchased
yielding a set of minimal subqueries Si. Every entry in the cartesian product
6 This is done in [9] for path-conjunctive queries and dependencies, which generalize

the relational setting to a data model with dictionaries and complex values that also
captures the OO setting.

7 Under a monotonic cost assumption minimal queries are cheaper.

38 Alin Deutsch and Val Tannen

S1× . . .×Sn corresponds to a set of queries whose union is a rewriting of T (Q).
We call this extension of the C&B algorithm the disjunctive C&B algorithm.
We say that a union of queries is reduced if all members are minimal and none
of them is contained in another member. The following result implies that the
disjunctive C&B algorithm is complete for the (∗, |)-fragment.

Theorem 10. Given a (∗, |)-query Q, and one of its reduced rewritings Q′ =
Q′

1 ∪ . . .∪Q′
m, for every 1 ≤ j ≤ m, there is some 1 ≤ i ≤ n such that T (Q′

j) is
a subquery of Ui.

8 Conclusions

In this work, we propose a classification of conjunctive regular queries (CRPQ)
and the associated constraint languages by the expressivity of the regular path
expressions allowed in the conjuncts. We have studied the complexity of contain-
ment, with or without integrity constraints for the various fragments proposed.
For certain fragments we have also studied the completeness of a specific kind
of algorithm (chase & backchase) for rewriting with views under constraints.

A subtle observation that can be made based on the results we have obtained
is that is “more” than the union (the | actually) of the labels that occur in a
given context. Indeed, one might attempt to contradict the decidability for the
(∗, |)-fragment by reducing (∗,)-queries and -dependencies to (∗, |)-queries and
-dependencies, using a translation like = l1| . . . |ln|f where l1, . . . , ln are all the
labels mentioned in the queries and dependencies and f is a fresh label. This
attempt fails because it does not capture the equivalence ∗ =

⋃
n≥0

n, which in
turn is essential for the undecidability result. Of course, the correct translation
an infinite disjunction of labels takes us out of the languages considered here.

We conclude that as a query language feature regular expressions are sur-
prisingly ”naughty”, in the sense that adding supposedly innocuous operators to
some fragments causes surprising increases in complexity. (For example, adding
either ∗ or to the fragment of conjunctive queries does not affect complexity of
containment –still NP–, but adding both raises the complexity to Πp

2 .)
We are leaving some interesting problems open. One is the upper bound on

containment in the W fragment. Another open problem is the decidability of
containment under constraints in the (∗,)-fragment. The reader can see that
several open questions can be formulated about rewriting with views in certain
fragments.

Since the submission of this work, we have applied our results to conjunctive
queries over XML documents with XPath [27] expressions in their conjuncts [10].

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufman, 1999.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

Optimization Properties for Classes of Conjunctive Regular Path Queries 39

3. C. Beeri and M. Vardi. A proof procedure for data dependencies. JACM, 31(4),
1984.

4. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the Decidability of Query
Containment under Constraints In PODS, 1998.

5. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. Rewriting of Regular
Expressions and Regular Path Queries. In PODS, 1999.

6. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. Containment of con-
junctive regular path queries with inverse. In KR, 2000.

7. Ashok Chandra and Philip Merlin. Optimal implementation of conjunctive queries
in relational data bases. In STOC, 1977.

8. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language
for XML. In WWW8, 1999.

9. Alin Deutsch, Lucian Popa, and Val Tannen. Physical Data Independence, Con-
straints and Optimization with Universal Plans. In VLDB,1999.

10. A. Deutsch and V. Tannen. Containment and Integrity Constraints for XPath
Fragments. In KRDB 2001.

11. A. Deutsch and V. Tannen. Optimization Properties for Classes of Conjunctive
Regular Path Queries. Technical Report MS-CIS-01-20, University of Pennsylvania,
2001. Available from http://db.cis.upenn.edu/cgi-bin/Person.perl?adeutsch

12. M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Strudel: A web-site
management system. In SIGMOD, 1997.

13. Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunctive
queries with regular expressions. In PODS, 1998.

14. E. Grädel. On the restraining power of guards. J. of Symbolic Logic, 64, 1999.
15. Gösta Grahne and Alberto O. Mendelzon. Tableau techniques for querying infor-

mation sources through global schemas. In ICDT, 1999.
16. G. Grahne and A. Thomo. An optimization technique for answering regular path

queries. In WebDB, 2000.
17. G. Grahne and A. Thomo. Algebraic rewritings for regular path queries. ICDT’01.
18. J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and com-

putation. Addison-Wesley, 1979.
19. Frank Neven and Thomas Schwentick. Query automata. In PODS, 1999.
20. Frank Neven and Thomas Schwentick. Expressive and efficient pattern languages

for tree-structured data. In PODS, 2000.
21. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
22. L. Popa, A. Deutsch, A. Sahuguet, and V. Tannen. A Chase Too Far? SIGMOD

2000.
23. Lucian Popa and Val Tannen. An equational chase for path-conjunctive queries,

constraints, and views. In ICDT, 1999.
24. Yehoushua Sagiv and Mihalis Yannakakis. Equivalences among relational expres-

sions with the union and difference operators. Journal of the ACM, 27, 1980.
25. P. van Emde Boas. The convenience of tilings. In A. Sorbi(Ed.) Complexity, Logic,

and Recursion Theory, pp. 331–363, 2000.
26. W3C. Extensible Markup Language (XML) 1.0. W3C Recommendation 10-

February-1998. Available from http://www.w3.org/TR/1998/REC-xml-19980210.
27. W3C. XML Path Language (XPath) 1.0. W3C Recommendation 16 November

1999. Available from http://www.w3.org/TR/xpath.
28. M. Yannakakis and C. Papadimitriou. Algebraic dependencies. JCSS, 25, 1982.

http://db.cis.upenn.edu/cgi-bin/Person.perl?adeutsch
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/xpath

	1 Introduction
	2 Queries and Constraints
	3 Summary of Results
	4 Upper Bounds
	5 Lower Bounds
	6 Containment under Dependencies
	7 Rewriting with Views under Dependencies
	8 Conclusions
	References

