
The Enosys Markets Data Integration Platform:
Lessons from the Trenches

Yannis Papakonstantinou Vasilis Vassalos
 {yannis,vasilis}@enosysmarkets.com

ABSTRACT
Enosys Markets offers a state-of-the-art data
integration software platform to support the
development of the next generation of eBusiness
applications that deliver value by providing new levels
of function for customer relationship management, e-
commerce, supply chain management, and decision
support. These applications require that data be
integrated from information sources that exist both
within and across organizational boundaries. The
Enosys Markets data integration architecture and
product family provides a complete end-to-end XML-
based solution for integrating and querying distributed
information sources. It incorporates advanced research
into XML and database technology. We present the
product architecture and components, discuss the key
technical challenges, and outline the technical
concepts and innovations employed in the Enosys
platform.

Keywords
Mediators, semistructured data, XML, query forms,
reports, distributed querying, heterogeneous databases,
integration.

1. THE DATA INTEGRATION
PROBLEM
eBusiness applications that support more efficient,
tightly integrated business processes demand access
and integration of up-to-date information from a
multitude of distributed and heterogeneous
information systems. Information integration is a
significant challenge: the relevant data are split across
multiple information sources, often owned by different
organizations. The sources represent, maintain, and
export the information using a variety of formats,
interfaces and semantics. Many challenges arise:

• Data of different sources change at different
rates, making the data warehousing approach to
integration hard to develop and maintain. The
Enosys platform resolves this challenge by being
based on the on-demand mediator approach,
according to which data are collected
dynamically from the sources, in response to
application requests, as further explained below.

• The mediator has to decompose application
requests into an efficient sequence of requests
targeted to the sources. These requests have to be
compatible with the query capabilities of the
underlying sources.

• Different types of information reside in different
systems, have different structure, and are usually
in heterogeneous formats. The mediator has to
enable and facilitate the resolution of the
heterogeneities.

• Different applications often need different views
of the data. Hence, view construction must be
facilitated.

The Enosys Markets data integration platform
addresses the above challenges using a XML-based
mediator architecture, which enables applications to
access and integrate information using a high-level,
declarative XML query language.

2. PLATFORM ARCHITECTURE
The Enosys Markets Integration Platform is based on
the wrapper-mediator architecture, as shown in the
figure. The wrappers, also called XMLizers, access
multiple, distributed, heterogeneous information
sources and export Virtual XML views of them. The
XMediator exports the Virtual Integrated XML (VIX)
database, which consists of all the individual views
exported by the wrappers. Then virtual integrated
XML views can be built on top of the VIX database.
The views organize information from the distributed
sources into XML objects that conform to the
application’s needs. For example, to a marketplace
application the integrated XML view can provide
front-end access to an integrated catalog, where the
heterogeneities between the suppliers’ products are

resolved, and the products are integrated and classified

XSDesign
HTML Forms

& Reports
Custom

Application

Parse
Rewrite

Decompose
Execute

Virtual Integrated XML (VIX) Database
VIX View VIX View VIX View

XM
ed

ia
to

r

XCacheDB

RDBMS Files Legacy

XMLizer XMLizer XMLizer

Management
Console

Metadata
Management
Tools

Query/View
Builder

XML Query XML Query

according to the needs of the marketplace. Each
product object contains catalog data along with
attributes from the pricing, delivery, CRM, and other
databases. The views provide distribution
transparency, i.e., the originating sources and methods
of access are transparent to the application.

The virtual database and views enable the front-end
applications, which may be the Enosys Markets
XSDesign web form generator or custom applications,
to seamlessly access distributed heterogeneous
information sources as if they were a single XML
database. In particular, the application can issue an
XML query against either the XML database or the
views. The query typically selects information from
the views and structures it in ways that are convenient
for the application. For example, a HTML application
will create queries that structure the XML results in a
way that easily translate into the target HTML pages.1

When the application issues an XML query to a VIX
database or view, the platform decomposes the XML
query into requests that are directed to the sources.
The source responses are assembled into the XML
query result that is sent to the source.

When the sources correspond to slow and static
sources one may prefer to cache the XML view of
those sources into the XCacheDB, which is the Enosys
Markets XML database. Typically, the data of slow
and static sources are collected, integrated, and cached
in advance, while the components originating at fast
dynamic sources are collected dynamically. It is
transparent to the application which pieces of the view
originate from dynamic sources and which ones
originate from XCacheDB.

2.1 Feature overview
The data integration server is accessible to
applications through a query language API and a
DOM-based (Document Object Model) API.
XCacheDB is an XML database, primarily used for
caching purposes. XSDesign offers a web-base front-
end generator for the easy construction of
web/HTML-based query form and report templates.
Finally, the platform includes management tools that
enable the user to easily create and manage front-ends,
view definitions, queries, and source connections.
Each of the key components is described below.

3. DATA INTEGRATION SERVER
XMLizers: The XMLizers turn structured and semi-
structured data into virtual XML views. Enosys
Markets currently offers XMLizers for relational
databases (any JDBC compliant database), HTML
repositories, SOAP services, and files (comma/tab
delimited files).

1 Indeed, Enosys Markets has deployed Web-based

applications where, for efficiency reasons, the XML
queries generate XHTML.

Additional XMLizers can easily be written for other
data sources. Furthermore, existing investments in
XML information exchange (e.g., use of adapters by
WebMethods or SeeBeyond) provide excellent
leverage for the development of these XMLizers.

XMediator: The XMediator accesses the virtual view
exported by the XMLizers and provides a virtual
integrated XML view to the applications. The
integrated view appropriately transforms and
integrates the XML views of the information sources
into XML that that conforms to the target applications.

The transformation and integration is rapidly and
concisely specified in the XML Catalog Query
Language (XCQL). XCQL is a high-level, declarative
query and view definition language for XML. It
resembles XQuery and has additional features for
processing XML data with loose structure.
Transformations expressed in a brief XCQL view
definition can easily resolve important integration
problems, including name, value, and classification
heterogeneities. Our experience shows a 20-fold
decrease in the cost of developing source-to-target
transformations when compared to using Java.

The XMediator allows queries directly on the VIX
views. The view processor transforms the query to
replace references and conditions on views with
references and conditions on the actual data sources.
The query is then parsed into a query plan and is
optimized by the query rewriter. The decomposer
chooses an efficient way of decomposing the
optimized query plan into requests that are sent to the
information sources. The plan is finally run by the
execution engine, which sends the requests to the
wrappers, collects the information, and composes it
into the XML query result.

We discuss later the challenges faced in XMediator’s
implementation.

XCacheDB: The Enosys Integration Platform uses the
the XML Cache DataBase (XCacheDB) to cache
VIXView’s that correspond to slow or static sources.
The caching can happen on demand or at regularly
scheduled intervals. The XCacheDB is a native XML
database in the sense that it stores XML and responds
to XML queries with XML results. XCacheDB
utilizes a JDBC compliant relational database for
storage and query processing and is optimized for
Oracle8i. The developer does not need to be aware of
the underlying relational database. Nevertheless,
XCacheDB offers management functionality that
allows a developer/administrator to provide hints on
how the data should be stored. The architecture of
XCacheDB uses proprietary storage and query
processing algorithms to deliver improvements in run-
time efficiency.

4. WEB FRONT-END
The XSDesign family of tools enables the rapid
development of customized Web front-ends that make
the best use of the integrated information and can
easily incorporate domain expertise. XSDesign is

designed to be used by the business analyst and can
provide:

• Forms for parametric querying of the data
sources in the integrated view

• Summarization and navigation of large
query results

• Query assistance in formulating and refining
queries

• Advice on product selection based on
domain expertise

5. METADATA MANAGEMENT
The Enosys Markets Management Tools provide a
comprehensive systems administration and
development environment to manage the data
integration platform.

Query Builder: A query builder tool allows the
graphical creation of XCQL view definitions and
queries. The builder first imports the XML schemas of
the information sources or the existing views. The
user then uses a drag-and-drop interface and wizards
to define joins, function invocations, filtering
conditions and more on the input data. The builder
also allows the user to graphically arrange the output
data into a different XML schema by specifying
mappings to the input schemas, groupings, and
creation of new elements.

Management Console: The management console is
an integrated development environment for Web-
based applications that access multiple information
sources. The console integrates tools for view and
query construction and testing as well as for
deployment and management of the Data Integration
Server and XSDesign-powered Web front-ends.

6. CHALLENGES IN THE DATA
INTEGRATION SERVER
The data integration server faces and resolves many of
the challenges that conventional database engines
face. In addition, a novel set of challenges has
emerged, which is attributed to the distributed query
processing needs and the emphasis on the enabling of
efficient Web applications.

On-Demand Evaluation The Enosys Markets data
integration server focuses on the efficient support of
Web-based applications, where the user is typically
interested in receiving quickly the first few results and
is often impatient to check out the complete answer.
The data integration server focuses on first results’
optimization and saves the underlying relational
databases (or other sources) from having to produce
results that will not be needed eventually. Both of the
above goals are achieved by the navigation-driven on-
demand evaluation of the query; the pieces of the
query result are not materialized at the client until the
application client navigates into them. However, a
pure on-demand approach, where data are retrieved
and created only when they are definitely needed, has
a tremendous cost in roundtrips to the server and the

sources. The XMediator balances on-demand
evaluation with the overhead of roundtrips by using a
scheme where blocks of the result are created and
transferred to the client in each round. The application
can control the block size; setting the block size to a
small value results in lazy evaluation. Setting the
block size to a large number results in eager
evaluation.

Query Decomposition Typically an XMLizer can
respond to only a limited number of requests – those
requests that correspond to the abilities of the
underlying sources. The mediator has to decompose
the application queries into requests understood by the
XMLizers. This requires the formulation of calls to the
XMLizers that are as efficient as possible, yet they are
also supported by the XMLizers. For example, when
the underlying system is an SQL database, it makes
sense to push as many as possible selections and joins
to it. The challenge is tackled by the mediator’s open
rewriter module, where we incorporate rules that
specify how the queries are decomposed into requests
going to the XMLizers, in a way that is commensurate
with the XMLizers’ abilities. The rules are written in
Java.

Scalability and Reliability The data integration
server is built to scale to hundreds of concurrent
queries. The on-demand evaluation model, described
above, allows the mediator to spend a low memory
amount for each running query.

When a stateful operator of the query plan, i.e., an
operator that requires a data dependent amount of
memory, cannot find main memory to accomplish its
task, it stores part of its state on the disk, using our
own custom-made storage manager. All operators that
may store in disk (join, sort, group-by) are built to
require at most two read-write passes over the data.

Admission control guarantees that each query has a
minimum of necessary memory before it starts.

Optimization The mediator optimizes the join of data
of multiple sources by choosing the appropriate join
order and join techniques. Currently the choice is
based on qualitative factors such as the type of the
source and the existence of indices. Furthermore, the
developer can hint or force specific plans. He/she may
declare specific sources as “slow” and force the use of
specific join orders and join techniques by including
hints in the query statement or the configuration files
that include source information.

Our experience with beta customers has shown that
hints and developer intervention can go a long way in
data integration, where we typically have just a 2-way
or 3-way join across sources, rather than the much
more unmanageable 10+way joins observed in
relational databases.

