
PREFER: A System for the Efficient Execution of Multi-
parametric Ranked Queries

Vagelis Hristidis
Dept. of Computer Science

and Engineering
University of California, San

Diego
La Jolla, CA92093

vagelis@cs.ucsd.edu

Nick Koudas
AT&T Labs-Research

koudas@research.att.com

Yannis Papakonstantinou
Dept. of Computer Science

and Engineering
University of California, San

Diego
La Jolla, CA92093

yannis@cs.ucsd.edu

ABSTRACT
Users often need to optimize the selection of objects by ap-

propriately weighting the importance of multiple object at-
tributes. Such optimization problems appear often in opera-
tions' research and applied mathematics as well as everyday
life; e.g., a buyer may select a home as a weighted function
of a number of attributes like its distance from o�ce, its
price, its area, etc.

We capture such queries in our de�nition of preference
queries that use a weight function over a relation's attributes
to derive a score for each tuple. Database systems cannot
e�ciently produce the top results of a preference query be-
cause they need to evaluate the weight function over all tu-
ples of the relation. PREFER answers preference queries

e�ciently by using materialized views that have been pre-
processed and stored.
We �rst show how the result of a preference query can be

produced in a pipelined fashion using a materialized view.
Then we show that excellent performance can be delivered
given a reasonable number of materialized views and we pro-

vide an algorithm that selects a number of views to precom-
pute and materialize given space constraints.
We have implemented the algorithms proposed in this pa-

per in a prototype system called PREFER, which operates
on top of a commercial database management system. We

present the results of a performance comparison, compar-
ing our algorithms with prior approaches using synthetic
datasets. Our results indicate that the proposed algorithms
are superior in performance compared to other approaches,
both in preprocessing (preparation of materialized views) as
well as execution time.

1. INTRODUCTION
Users and applications often need to optimize the selec-

tion of entities by ranking them according to the importance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD ’2001 Santa Barbara, California USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00.

(weight) of multiple entity attributes (parameters). Such
optimization problems appear often in operations' research
and applied mathematics as well as everyday life. How-

ever, only few current applications provide multiparametric
ranked queries (for example buying a used car in the au-
totrader section of www.personallogic.com Web site, where
one can express desired weights for multiple parameters of
a car) and for all such Web applications we are aware of,
multiparametric ranked queries are evaluated on small data

sets only. Unfortunately, database technology cannot pro-
vide acceptable response time and throughput when such
queries are evaluated on large data sets. The reason is that
the conventional evaluation techniques for such queries re-
quire the retrieval and ordering of the entire dataset, with
the obvious negative consequences on the time to deliver the

�rst result tuples, which, indeed, are typically the only ones
a user is interested in. PREFER is a layer on top of commer-
cial relational databases and allows the e�cient evaluation
of multiparametric ranked queries.
For example consider a database containing houses avail-

able for sale. The properties have attributes such as price,

number of bedrooms, age, square feet, etc. For a user, the
price of a property and the square feet area may be the most
important issues, equally weighted in the �nal choice of a
property, and the property's age may also be an important
issue, but of lesser weight. The vast majority of e-commerce
systems available for such applications do not help users in

answering such queries, as they commonly order according
to a single attribute. Manual examination of the query re-
sults has to take place subsequently. In our running exam-
ple, the user will have to order the properties according to,
say, price and then manually examine the square feet area

and the property's age. One may have to inspect a lot of
houses until the best combination of important attributes is
found, since the cheap houses will most probably be old and
small.
As yet another example, consider a user querying the Za-

gat1 online database containing restaurant information in

New York City. If one is interested in a pricey restaurant and
wishes to achieve a balance between Zagat's rating and the
distance to the restaurant, one has to \explore" the database
issuing selection queries repeatedly. The Zagat database is
also available on hand held devices such as the PalmPilot.
Issuing multiple queries or browsing through a large result

1
www.zagat.com

Figure 1: Preference Queries

collection on a hand held device is an even bigger incon-
venience especially if connectivity is supported through a

wireless link.
In the above examples each user has a preference about

the importance (or weight) of the attributes associated with
the entities (houses and restaurants) searched. In this paper,
without loss of generality, we focus on queries over a single
relation R(A1; A2; : : : ; An). The user provides a preference

a1; a2; : : : ; an assigned to each attribute A1; A2; : : : ; An and
a query returns the tuples of R ordered according to the
weighted preference function a1A1+a2A2+ : : :+anAn. We
refer to such queries as preference queries. The functionality
of preference queries is exposed to the user by interfaces such
as the one of Figure 1. For each attribute, the interface

provides a slider bar that the user adjusts along with the
attribute value speci�ed in the selection. The position of the
slider bar expresses the attribute preference ai that the user
assigns to the speci�c attribute Ai. One can also specify
the number of tuples desired in the query answer. Once
the �rst set of tuples is returned the user has the ability to

receive the next bunch of tuples, again ordered by weighted
preference.
Unfortunately database systems do not support the ef-

�cient evaluation of preference queries, where \e�ciency"
primarily refers to response time and throughput. The ap-

plication has to retrieve the whole database, apply the pref-
erence function to each tuple, and sort accordingly. Hence,
in the common case that the user wants to retrieve just a
few tuples, the application will have to retrieve the poten-
tially thousands or millions tuples of the database; such an
approach imposes a prohibitive penalty on the response time

and throughput of the overall system as an entire relation
has to be ordered to return just a few tuples.
The PREFER system provides excellent response time for

such queries, by using pre-materialized preference queries,
which we will refer to as views. A preference view is a rela-
tional view that is ordered according to a preference func-

tion. PREFER works as follows: Given a query and a view

it computes the smallest pre�x of the view that one has to

read in order to �nd the top tuple according to the query.
The intuition is that when the query's preference function
is \similar" to the view's preference function the required
pre�x is small. PREFER's performance scales gracefully
as more views are materialized and the chances that every
query will �nd a \similar" view increase. Indeed, PREFER

can provide guarantees on the maximum score of the tuples
of the view pre�x and consequently soft guarantees on the
size of the view pre�x that has to be accessed, by materializ-
ing a su�cient number of views. In this paper, we formalize
preference queries and make the following contributions:

� We present an algorithm that computes the Top-N re-

sults of a query by using the minimal (given that we
only retrieve the �rst tuple of the view) pre�x of a
view.

� We specify the set of queries for which a view can
provide a soft guarantee about the number of tuples
examined in order to provide the top-N tuples of the
query.

� The performance of PREFER scales with the num-
ber of views that PREFER materializes. We experi-
mentally show that we can provide guaranteed perfor-
mance to all queries by using a reasonable number of
views (between 10-100 in our experiments).

� We present an approximation algorithm that selects
the \best views" when there is a limitation on the

number of views (and disk space) we can use. We
show experimentally that 10-20 views can provide ex-
cellent performance guarantees for most of the possible
queries.

� We present a detailed experimental evaluation compar-
ing our proposed algorithms with current state of the

art and show that our approach provides good scal-
ability both in terms of data set size as well as the
number of attributes.

� We have developed our algorithms in a prototype sys-
tem called PREFER 2 on top of a commercial database
management system, demonstrating the practical util-
ity of our overall approach.

This paper is organized as follows: Section 2 reviews re-
lated work. Section 3 presents de�nitions. In Section 4 we
present algorithms that derive the answer of a preference
query given the result of another preference query that has
been already computed and materialized. Section 5 presents
algorithms to optimize watermark values (watermark will be

de�ned below) and subsequently provide guarantees on the
amount of work needed to answer preference queries. In
section 6 we present results from a prototype implementa-
tion of the proposed techniques comparing them with state
of the art analyzing the performance and the implication of
various parameters. Finally section 7 concludes the paper

and discusses related problems for further study.

2PREFER is available on the web, at
www.db.ucsd.edu/PREFER.

2. RELATED WORK
Personalization and customization of software components

(e.g., myexcite.com) can be thought of as simple expressions

of preferences. Agrawal and Wimmers in their pioneering
work [2] put the notion on preferences into perspective and
introduce a framework for their expression and combina-
tion. Their work is fairly conceptually layering the theo-
retical foundations to a preference framework. Our work,
essentially deals with the algorithmic issues associated with

the implementation of speci�c features of this framework.
We adopt terminology in alignment with the framework of
Agrawal and Wimmers [2]
Combining and ranking di�erent models was used in the

context of multi-media systems by Fagin [7, 9, 8]. Our work

is related to that of Fagin since we are also concerned with
the e�cient computation of the extreme values of functions.
Our optimization objectives and techniques are fundamen-
tally di�erent from that of Fagin however.
A signi�cant number of works has been published the last

�ve years on answering queries using views. The earlier

works focused on conjunctive queries and views (e.g., [1])
and subsequent works extended into more powerful queries,
views, and view set descriptions [6, 15, 13]. Rewriting ag-
gregate queries using views has also been addressed [5, 4].
The nature of those algorithms is logic-based rather than
quantitative, as is the case with our algorithms for using a

view to answer a query, since the nature of the queries is
very di�erent.
The work closest to the one presented herein, is the work

by Chang et. al., [3]. In this work an indexing technique,
called the Onion Technique was introduced to facilitate the
answer of linear optimization queries. Such queries are sim-

ilar to preference selection queries since they retrieve tuples
maximizing a linear function de�ned over the attributes of
the tuples of a relation R. The basic observation of this tech-
nique is that the points of interest lie in the convex hull of
the tuple space. Thus, the Onion technique in a preprocess-

ing step computes the convex hull of the tuple space, storing
all points of the �rst hull in a �le and proceeds iteratively
computing the convex hulls of the remaining points; it stops
when all points in the tuple space have been placed to one
of the convex hull �les. Query processing is performed by
evaluating the query and scanning each of these �les, start-

ing from the one storing the exterior convex full (since it
is guaranteed to contain the �rst result), stopping when all
desired results have been produced.
The onion technique su�ers from two major drawbacks.

Computing convex hulls is a computationally intensive task

with complexity O(n
d
2), where n is the number of tuples in

R and d is the number of attributes, making the technique

impractical for large relations with more than two attributes.
Moreover the technique is very sensitive in performance to
the granularity of the attribute domains. If an attribute
has very small domain, it is likely that all tuples lie in the
same convex hull, thus a linear scan of the entire data set
is required to produce the results. The performance of the

technique is highly dependable on the characteristics of the
dataset and no guarantees in performance can be provided.
We evaluate the performance of this technique in Section 6

3. NOTATION AND DEFINITIONS
This section de�nes queries, views, and other relevant no-

tation in the context of PREFER. Let R be a relation with

k attributes (A1; : : : ; Ak) and let [mi;Mi] be the domain of
attribute Ai, 1 � i � k;mi;Mi 2 R

+. The notation Ai(t)
refers to the value of attribute Ai in the tuple t.
Every query q consists of a preference function fq(:) and a

single relation R. The preference function fq(t),
Q

k

i=1
[mi;Mi]

! R
+ de�nes a numeric score for each tuple t 2 R. The

output of the query q is the query result sequence Rq =

[t1q ; t
2
q; : : : ; t

n

q] of the tuples of R such that fq(t
1
q) � fq(t

2
q) �

: : : � fq(t
n

q). Note that we use the notation t
i

q to denote the
tuple in the i-th position in the result sequence of q. Views
are identical to queries; we use the term view when we refer
to a query whose result has been materialized in advance
in the system and we use the term ranked query (or query)
when we refer to a query that the user submitted and the

system has to reply to.
In this paper we focus on queries (and views) that use lin-

ear preference functions of the form f(t) =
P

k

j=1
vjAj(t),

because they provide an excellent tradeo� between ability to
specify the order using multiple parameters and, at the same
time, can be very e�ciently pipelined using the techniques

we present in this paper. The vector ~v = (v1; : : : ; vk) is
called the preference vector of the query (view) and each co-
ordinate of the vector is called attribute preference. We use
fv(:) to indicate that fv is a preference function with pref-
erence vector ~v. Moreover we denote as Rv a ranked view
which is ranked according to fv. Without loss of general-

ity, we assume that attribute preferences are normalized in
[0; 1] and that

P
k

j=1
vj = 1. This assumption is not restric-

tive, as whatever the range of attribute preferences would
be, they can always be normalized instantly by the system.
Moreover, we choose to adopt such a normalization since we
believe it is in agreement with the notion of preference. The

total preference of a user is 1 and the preference on individ-
ual attributes is expressed as an additive term towards the
total preference.

4. HOW TO PIPELINE A RANKED QUERY
USING A RANKED VIEW

The algorithm presented next uses a view sequence Rv,
which ranks the tuples of a relation R according to a pref-
erence vector ~v, in order to e�ciently pipeline the output

sequence Rq of a user query q, which ranks the tuples of the
relation R according to the user's preference vector ~q. The
key to the algorithm is the computation of a pre�x R1

v of
Rv that is su�cient to assure that the �rst tuple t1q of the
sequence Rq is in R1

v. Once the �rst tuple of Rq has been
retrieved the algorithm proceeds to compute the pre�x R2

v,

to deliver the second tuple of Rq , and so on, leading to an
e�cient pipelined production of the query result.
The algorithm is presented in three steps. First we de-

�ne the �rst watermark point, whose de�nition involves only
fq(:), fv(:) and t

1
v and provides a bound on the view prefer-

ence score fv(t
1
q) of the top result t

1
q of the query.

3 Then Sec-

tion 4.1 provides the algorithm that pipelines the query out-
put, given an \oracle" that provides watermark points. The
algorithm is applicable to any function for which one can

3The �rst watermark provides the tightest pre�x of Rv given
knowledge of t1v only. One can produce tighter pre�xes by
using more tuples from Rv but this comes at the cost of in-
creased watermark point computation and retrieval of more
tuples of Rv.

construct such an \oracle". Section 4.2 provides the com-

putation of the watermark in the case of queries and views
speci�ed by linear functions. Finally Section 4.3 presents an
example of using this algorithm.

Definition 1 (First Watermark). Consider

� the view v consisting of the function fv applied on the

relation R, and

� the query q consisting of the function fq applied also

on the relation R

The �rst watermark of the user query q in the view Rv is

the maximum value T 1
v;q 2 R

+ with the property:

8t 2 R; fv(t) < T
1
v;q) fq(t) < fq(t

1
v) (1)

The de�nition leads to an e�cient computation of the wa-
termark (see Section 4.2) since it involves only tuple t1v. Ac-
cording to the de�nition, if a tuple t in the view Rv is below
the �rst watermark T 1

v;q (that is, fv(t) < T 1
v;q) then t cannot

be the top result t1q of the query, since at least t
1
v is higher in

the query result (according to the property fq(t) < fq(t
1
v)).

This implies that fv(t
1
q) � T 1

v;q. Hence, in order to �nd
t1q one has to scan Rv from the start and retrieve the pre-
�x [t1v ; t

2
v; : : : ; t

w�1
v ; twv), where twv is the �rst tuple in Rv

with fv(t
w

v) < T 1
v;q, i.e., t

w�1
v is the last tuple of Rv that is

above the watermark. The top query tuple t1q is the tuple

tjv; 1 � j � w � 1 that maximizes fq(t
j

v). Furthermore, the
pre�x [t1v; t

2
v; : : : ; t

w�1
v] allows us to potentially locate a few

more (besides t1q) of the top tuples of the query result, as
the following theorem shows:

Theorem 1. Let [t1q; t
2
q ; : : : ; t

w�1
q] be the ranked order,

according to q, of the tuples [t1v; t
2
v; : : : ; t

w�1
v] that are above

the �rst watermark. Let s be the index of t1v in this order,

i.e., t1v � tsq. Then t1q; : : : ; t
s

q are the tuples with the highest

rank in the answer of q.

Proof: Clearly fq(t
1
q) � : : : � fq(t

w�1
q). Moreover due

to the watermark property (Equation 1) 8t; fv(t) < T 1
v;q)

fq(t) � fq(t
s

q). The theorem follows, since fq(t
s

q) � fq(t
s�1
q) �

: : : � fq(t
1
q).

The theorem guarantees that the top-s tuples, according

to fq(:), in the pre�x [t1v; t
2
v; : : : ; t

w�1
v] are also the top-s

tuples in the answer of q. That is, it is impossible for a
tuple below the watermark to be one of the top-s tuples.

4.1 The Core of the Pipelining Algorithm
The algorithm PipelineResults in Figure 2 inputs Rv and

computes in a pipelined fashion the N tuples with the high-
est score according to q. The algorithm assumes the exis-

tence of a function DetermineWatermark() (see Section 4.2)
to e�ciently compute the watermark value in Rv. Let s be
the number of tuples output after computing the �rst wa-
termark. If s � N then our objective has been achieved.
Otherwise we output the sequence of the top-s tuples and
we mark those tuples as processed in Rv. Then we repeat

the process and determine a new watermark value, to derive
a new sequence of tuples with the highest scores according
to q from the unprocessed tuples in Rv. In each iteration
we locate the �rst tuple in Rv which is not marked as pro-
cessed. Let this tuple be ttopv . This is the tuple with the
top score according to v among the unprocessed tuples of

Rv. We repeat the watermarking process using ttopv . A new

sequence of tuples having the highest score according to q

among the remaining tuples will be determined and output.

Algorithm PipelineResults(Rv,q,v, N)f

Let top = 1
while (less than N tuples in the output) f

Let T top

v;q = DetermineWatermark(ttopv)

Scan Rv and determine the first tuple tw
with fv(tw) < T top

v;q

For all tuples t 2 [t1v; t
w�1
v] compute and sort by fq(t)

Let s be the index of ttopv in the sorted order

Output the tuples t1q : : : t
s

q and mark them in Rv

as processed

Find the top unprocessed tuple tiv in Rv

Let top = i

g

g

Figure 2: Algorithm to output the �rst N tuples
according to q

4.2 Determining the Watermark
We will now use Equation 1 to determine the watermark

value T 1
v;q in the case of linear functions fq and fv. We as-

sume that view Rv is ordered by decreasing values of the
score of fv. Thus we will determine the tuple t0 that maxi-
mizes fv(t

0) while satisfying fq(t
0) < fq(t

1
v). Since we know

the values of t1v, ~q � (q1; : : : ; qk) and ~v � (v1; : : : ; vk),

we need to come up with bounds for the values of t �
(A1(t); : : : Ak(t)) using the known parameters to maximize
fv(t

0) while satisfying the inequality of Equation 1 for all
t 2 R. We will subsequently use these bounds to derive
the watermark. Let us express fq(t) =

P
k

i=1
qiAi(t) as a

function of fv(t) =
P

k

i=1 viAi(t). Thus,

fq(t) =

kX
i=1

qiAi(t) = fv(t) +

kX
i=1

(qi � vi)Ai(t) (2)

By substituting Equation 2 into Equation 1 we get

8t 2 R; fv(t) � T
1
v;q) fv(t) +

kX
i=1

(qi � vi)Ai(t) � fq(t
1
v)

(3)

Consider that the highest possible fv(t) is achieved for t0. It
is:

fv(t
0

) +

kX
i=1

(qi � vi)Ai(t
0

) � fq(t
1
v) (4)

We will treat Equation 4 as equality; since the left side of
Equation 4 is linear on fv(t

0), the corresponding inequality

is trivially satis�ed. Since out objective is to determine the
maximum fv(t

0) value that satis�es Equation 4, which is
linear in fv(t

0), we will determine bounds for each attribute
Ai(t

0) in a way that the left part of Equation 4 is maximized.
We determine the bounds for each attribute Ai(t

0), by the
following case analysis. Recall also that each attribute Ai

has domain [mi;Mi].

Ai(t
0

) =

8
>>><
>>>:

min(
fv(t

0)�
Pk
j<>i vjmj

vi
;Mi) qi > vi <> 0

Mi qi > vi = 0
0 qi = vi

max(
fv(t

0)�
Pk
j<>i vjMj

vi
; mi) qi < vi

(7)

Figure 3: Bounds for Ai

� (qi � vi) > 0 and vi <> 0: In this case we have

Ai(t
0

) =
fv(t

0)�
P

k

j<>i
vjAj(t

0)

vi
�

fv(t
0)�
P

k

j<>i
vjmj

vi
(5)

We set Ui =
fv(t

0)�
Pk
j<>i vjmj

vi
. Since Ai(t

0) �Mi, we

have that Ai(t
0) = min(Ui;Mi).

� (qi � vi) > 0 and vi = 0: then Ai(t
0) =Mi

� (qi � vi) = 0: we can ignore this term

� (qi � vi) < 0 and vi <> 0: In this case we have that:

Ai(t
0

) =
fv(t

0)�
P

k

j<>i
viAj(t

0)

vi
�

fv(t
0)�
P

k

j<>i
vjMj

vi
(6)

We set Li =
fv(t

0)�
Pk
j<>i vjMj

vi
. Since Ai(t

0) � mi, we

have that Ai(t
0) = max(Li;mi).

Figure 3 summarizes the results of our analysis for each at-
tribute value Ai(t

0). Notice that we use the notation Ai(t
0)

to denote the bound for the value of attribute Ai. Also no-
tice that when (qi � vi) > 0 we determine an upper bound
for the value of Ai(t

0) whereas when (qi � vi) < 0 we deter-

mine a lower bound. The main di�culty in solving Equation
4 directly, lies on the existence of min and max terms, with
two operands each, in the expressions derived for the at-
tribute bounds (Figure 3). Each min (equivalently max)
term however, is linear on fv(t

0) thus it is easy to deter-
mine for which range of fv(t

0) values, each operand of min

(equivalently max) applies, by determining the fv(t
0) value

that makes both operands equal. Assume the expression for
attribute bound Ai(t

0) contains a min or a max term. Let
ei be the value for fv(t

0) that makes both operands of min

or max equal. As fv(t
0) varies, we now know exactly which

operand in each min or max term we should use to deter-

mine a bound on the attribute value. Since both Ui and Li
terms are linear on fv(t

0), we observe weather fv(t
0) lies on

the left or right or ei. There are at most k attribute bound
expressions and thus 1 � i � k. Possible values of fv(t

0)

range between
P

k

i=1
vimi and

P
k

i=1
viMi. If we order the

ei's, we essentially derive a partitioning of the range of pos-

sible values of fv(t
0) in k+1 intervals, Ii; 1 � i � k+1. For

each value of fv(t
0) in these intervals the expressions used to

compute each attribute bound are �xed and do not involve
min or max.
We construct a table E having k+1 columns, denoting the

value intervals for fv(t
0) and k rows, denoting the expres-

sions for each attribute bound. For each entry E(i; j); 1 �

i � k; 1 � j � k+1 in this table we record the exact expres-

sion that we will use to determine the bound for attribute
Ai. If an attribute bound expression is not a function of
fv(t

0) we can just record the value in the suitable entry as
a constant. Once the table is populated, for each value of
fv(t

0) we know the attribute bound formulas that comprise
the left hand side of Equation 4. Thus we have k+1 possible

expressions for the left side of Equation 4. Each expression,
Ej ; 1 � j � k + 1 is produced by:

Ej = fv(t
0

) +

kX
i=1

(qi � vi)E(i; j) (8)

Theorem 2. Setting Ej = fq(t
1
v); 1 � j � k + 1 and

solving for fv(t
0) determines the watermark value.

Proof: For each j two possibilities exist: (a) the fv(t
0) value

computed does not fall in the j-th interval. In this case, the
expression for Ej cannot yield fq(t

1
v) since Ej produces an

upper bound for fq(t) by construction, (b) fv(t
0) falls in the

j-th range. Since Ej = fq(t
1
v) is a linear function and has

a unique solution in range j, fv(t
0) is the watermark T 1

v;q.
Note that the range of possible values for fv(t

0) is the same
with the range of possible values for Ej , thus j will always
be identi�ed. 2
Algorithm DetermineWatermark is shown in Figure 4.

The algorithm assumes that table E has been computed in
a preprocessing step. The algorithm uses O(k2) space and
determines the watermark solving k equations in the worst
case.

Algorithm DetermineWatermark(tuple t1v) f

for j from k + 1 downto 1 f

Solve Ej = fq(t
1
v) and determine watermark

if watermark 2 Ij return watermark

g

g

Figure 4: Algorithm DetermineWatermark

4.3 An Example
Let us present an example of the algorithm's operation.

Assume q is a query with ~q = (0:1; 0:6; 0:3) and Rv a view
with ~v = (0:2; 0:4; 0:4). Let m1 = m2 = m3 = 5 and M1 =
M2 = M3 = 20. The sequence Rv is shown in Figure 5.
To populate table E we use the equations of Figure 3 to
calculate the bounds for each attribute Ai. Thus:

A1(t) = max(
fv(t

0)�16

0:2
; 5), A2(t) = min(

fv(t
0)�3

0:4
; 20),

A3(t) = max(
fv(t

0)�12

0:4
; 5).

Next we calculate e0is that make the terms in min or max
expressions equal.

e1 = 17; e2 = 11; e3 = 14 (9)

We are now ready to �ll table E. The table is presented in
Figure 6. Recall that t1v is the �rst tuple of Rv. Now we
solve Equation 4 for each of the 4 intervals starting with
the last one. In interval I4, solving Equation 4 results in

fv(t
0) = 8:8 which is not in I4 and it is rejected. In I3 we

tupleID A1 A2 A3 fv(t) fq(t)

1 10 17 20 16.8 17.2
2 20 20 11 16.4 17.3

3 17 18 12 15.4 16.1
4 15 10 8 10.2 9.9
5 5 10 12 9.8 10.1
6 15 10 5 9 9
7 12 5 5 6.4 5.7

Figure 5: View Rv and scores of each tuple based on
fv and fq

T 1
v;q 5..11 11..14 14..17 17..20

A1 5 5 5 fv(t
0)�16

0:2

A2
fv(t

0)�3

0:4
20 20 20

A3 5 5
fv(t

0)�12

0:4

fv(t
0)�12

0:4

Figure 6: Table E

get fv(t
0) = 14:26 , which is valid. To output the �rst tuple

for fq we scan Rv up to the �rst tuple with score greater
than or equal to fv(t

0) = 14:26. This is tuple t3v with score
15:4. So the minimum pre�x of Rv that we have to consider
in order to get the �rst result for query q consists of all tuples

t 2 [t1v; t
3
v]. We order these three tuples by fq and output

t2v and t1v. Now in order to get further results we locate
the �rst unprocessed(not yet output) tuple in Rv, which is
t3v and use it instead of t1v in Equation 4. The algorithm
continues like this. If we repeat the above steps, we get the

following results. fv(t
0) = 13:1, so the pre�x now becomes

just t3v, which we output. Next we use t4v in Equation 4
and get fv(t

0) = 8:26, so the pre�x is [t4v ; t
6
v]. We sort these

tuples and output t5v and t4v. Next we use t
6
v in Equation 4

and get fv(t
0) = 7:66, so our fourth pre�x is just t6v, which

we output. Finally output t7v, which is the last unprocessed

tuple in Rv.

5. VIEW SELECTION
PREFER materializes in advance multiple views in order

to provide short response time to client queries. In its sim-
plest version the view selection module (see Figure 8) inputs
from the user the relation R and the size l of the maximum

view pre�x that the PipelineResults Algorithm may have to
retrieve in order to deliver the �rst result of an arbitrary
preference query on R. The view selection module outputs
and materializes a set of view sequences V such that for ev-
ery query q there is at least one identi�able view Rv 2 V

that \covers" q, i.e., when Rv is used to answer q at most
l tuples of Rv are needed to deliver the �rst tuple of q. In
Section 6 we show experimentally that the number of views
needed to cover the whole space of possible queries is in the
order of 10 to 100 in typical cases. However, if space limita-
tions require that we build at most n views, a modi�ed view

selection algorithm is used in order to cover the maximum
amount of queries with n views; since the problem of �nd-
ing such a maximum coverage, as we will show, is NP-hard,
PREFER uses a greedy algorithm that provides an approx-
imate solution. The details and the properties of the view
selection algorithm are described in Section 5.2. Note that,

in a similar fashion, PREFER can select views that guar-

antee the retrieval of the �rst m query results by retrieving

at most l tuples. We describe the generalization to top-m
tuples in Section 5.1.1.
We present next the key de�nitions of \coverage" of a

query by a view. Section 5.1 provides algorithms that de-
cide coverage and compute (precisely and approximately)
the space covered by a view. Section 5.2 uses the cover-

age algorithms in a view selection algorithm that either (i)
produces a set of views that covers the space of all possible
queries (referred to as query space), or (ii) produces the best
approximate set of n views that cover as much query space
as possible.

Definition 2. The ranked materialized view Rv covers

the query q for its topm results using l tuples, if the PipelineRe-

sults Algorithm generates the top-m result tuples of q by us-

ing at most the top-l tuples of Rv. We will say that q is

covered by Rv using l tuples to indicate that the �rst result

tuple of q requires at most l tuples of Rv to be retrieved.

We will often also say Rv covers q when the number l of
tuples needed is obvious from the context.

Definition 3. The space SlRv � [0; 1]k covered by the

view sequence Rv using l tuples is the set of all query pref-

erence vectors ~q such that the �rst result of q can be derived

using only the top-l tuples of Rv.

5.1 Deciding Coverage and Computing the Space
Covered by A View

We describe next two key algorithms of the view selection
module:

1. the view cover decision algorithm is given a sequence
Rv, a number l, and a query q and decides in O(1) time
whether q is covered by Rv using l tuples.

4 Notice that
the algorithm uses only the l-th tuple of Rv.

2. the view cover algorithm inputs a view sequence Rv

and a number l and returns the k-dimensional space
SlRv .

For both algorithms the key point is the following: Since
we want to guarantee that at most l tuples from Rv will
be read whenever a query q uses Rv we have to place the

�rst watermark at tlv. By the watermark properties and a
mathematical manipulation similar to the one of page 4.2
we derive the inequality

fv(t
l

v) +

kX
i=1

(qi � vi)Ai(t
l

v) � fq(t
1
v) (10)

In Equation 10 the only unknowns are the components of the
vector (q1; : : : ; qk), for which

P
k

i=1
qi = 1. Hence the view

cover decision algorithm requires that we simply plug the
vector (q1; : : : ; qk) in Equation 10. The view cover problem

requires solving Equation 10, which is a linear function. Its
solution SlRv is in general a convex polytope [12]. In general
computing the exact solution of Equation 10 is not an easy
computational task. We reduce the computational costs in-
volved by computing an optimistic approximation of the so-
lution however. More speci�cally, we compute the minimum

4Obviously the PipelineResults Algorithm could be used as
the view cover decision algorithm but its complexity is O(l).

and maximum values of each qi that tightly bound the solu-

tion polytope, deriving an axis-aligned Minimum Bounding

Hyperrectangle (MBH). Determining the MBHl

Rv
of the so-

lution of Equation 10 can be performed very e�ciently; it
consists of determining the solutions to the following k con-
straint optimization problems:

min qi s:t

8<
:

fv(t
l

v) +
P

k

i=1(qi � vi)Ai(t) � fq(t
1
v)P

k

i=1
qi = 1

qi � 0

(11)

max qi s:t

8<
:

fv(t
l

v) +
P

k

i=1
(qi � vi)Ai(t) � fq(t

1
v)P

k

i=1
qi = 1

qi � 0

(12)

Each constraint optimization problem is linear and can be
solved in polynomial time using standard o� the shelf op-
timization methods such as Simplex. Simplex is a widely
used method, requiring O(k2) space to derive a solution.
Even for very large k it usually reaches the solution in a few

iterations.

5.1.1 Guarantees For Multiple Results
Providing guarantees for multiple results from Rv can

take place in a similar fashion. One can repeat the above
process for the second desired watermark position. If the
corresponding convex polytopes intersect, all the queries
falling inside the intersection, satisfy both guarantees. Let

`i; 1 � i � N be the positions of watermark T i

v;q we wish to
guarantee. Repeating the procedure above for each `i, will
provide a sequence of minimum bounding hyperrectangles
MBHi. If

T
N

i=1
MBHi is not null, then every query falling

in, satis�es all guarantees. If
T
N

i=1
MBHi is null, then we

are certain that such a guarantee cannot be provided by Rv

for any query. Since MBH is an optimistic approximation
of the solution convex polytope, if a pair of MBH's does not
intersect, then the corresponding convex solutions don't in-

tersect either. However, it is possible to have an non null
intersection of all the MBHs but a null intersection of the
corresponding convex solutions. This introduces an error
which we evaluate in Section 6.

5.2 Selecting Views To Materialize
The simplest version of the view selection algorithm covers

every possible query with at least one view Rv. That is, the

view selection algorithm generates a set of views V such that
the union of the query spaces covered by the views covers
the whole space [0; 1]k, i.e., [Rv2VS

l

Rv
= [0; 1]k. In prac-

tice, the algorithm considers a discretization of the [0; 1]k

space by using a user-provided discretization parameter d.
Then the space has f#(x1; : : : ; xk)jxi = rid; ri 2 Z; xi 2

[0; 1];
P

k

i=1
xi = 1g points and the view selection algorithm

keeps introducing views until no point is left uncovered. The

O(1) view cover decision algorithm is used to check whether
a given view Rv covers a query q.
In reality space constraints may exist and only a �nite

number of views, C can be actually materialized. Thus, the
choice of a \good" set of ranked views to materialize is an
important issue. This gives rise to the following constraint

optimization problem.

Problem 1. (View Selection Under Space
Constraint) Given a set of views R1

v; : : : ; R
s

v that covers

the space [0; 1]k select C views that maximize the number of

points in [0; 1]k covered.

Algorithm ViewSelection()f

while (not all preference vectors in [0; 1]k covered)

f Randomly pick v 2 [0; 1]k and add it to the list

of views, L

g

GREEDY 0

for l = 1 to C f

select v 2 L that covers the maximum uncovered

vectors in [0; 1]k

GREEDY GREEDY
S

MBHl

g

g

Figure 7: Ranked View Selection Under Space Con-
straint

Problem 1 is an instance of the maximum coverage prob-

lem [11], as the following reduction shows: The space of all
possible preference vectors, [0; 1]k, can be considered as the
reference set. Each of the views is a \subset" of [0; 1]k con-

taining a number of preference vectors. We wish to select C
\subsets" to maximize the number of elements of the refer-
ence set that are covered. The maximum coverage problem
is NP-Hard as set cover can be easily reduced to it. However,
it can be approximated e�ciently as the following theorem
shows:

Theorem 3 (Greedy Approximation). The Greedy
Heuristic is an 1� 1

e
approximation for maximum coverage.

Proof: See [11].

The Greedy heuristic works iteratively by picking the next
view from the collection R1

v; : : : ; R
s

v that covers the maxi-
mum number of uncovered elements of [0; 1]k. Figure 7 sum-
marizes our approach.

5.3 Selecting A Ranked View for a Preference
Query

Query processing, once C views have been materialized
proceeds as follows. The MBH's of the views are stored in a
data structure supporting \point in hyperrectangle" queries,
such as an R-tree [10, 14]. At query time, we use the data
structure to identify the MBH and subsequently the ranked
views whose MBH's contain the point. An extra check is

performed (using the view cover decision algorithm) to �nd
the ranked views that actually cover the given query. The
reason for the extra check is that the MBHl

Rv
is only an

approximation of the convex polytope SlRv and it is possible

that q 2 MBH l

Rv
but q 62 SlRv . This is a side e�ect of

the approximation of the exact solution. On the average,
the ratio of the polytope's volume to the MBH's volume is
close to the ratio of the volume of a k-dimensional sphere of
diameter d over a k-dimensional cube of side d. We evaluate

the e�ectiveness of the approximation in Section 6 and we
�nd that on the average 3% of the queries (for the range of
parameters of our experimentation) fall in the MBH but not
in the convex polytope.
When the overall number of views that we materialized is

bounded, it is likely that not all points of [0; 1]k are covered.

Thus it is possible to generate preference vectors that are

Select
Mat.View

Query

MBH1MBH2MBH3

R-
tree

Execute
Pipelining
Algorithm

•Query

•Materialized
View id

Materialized
 Views

Output
results

Execution
Process

Create
Mat.Views
and R-tree

•Relation

•Guarantees
requested

•Discretization
of view
preference
vectors

Preprocessing
stage

Figure 8: System Architecture

not covered by any of the stored views. For such queries, we
cannot provide performance guarantees based on our con-
struction. We execute them by choosing the ranked view

with an MBH nearest to the preference vector, as a heuris-
tic.

5.4 PREFER System Architecture
The overall system architecture is shown in Figure 8. Us-

ing algorithm V iewSelection we select a number of views

and we materialize them. A relational DBMS is used for
storing the views. The user interacts with PREFER through
an applet which connects to the database through JDBC.
The MBH's of the views are stored in an R-tree and given a
preference vector, we identify using the R-tree the MBH that
encloses it. The MBH points to a materialized view, which

we subsequently use to apply our algorithms to identify and
retrieve the results and ship it to the user.
A preference query can be trivially answered using a DBMS,

by evaluating the preference function on each database tuple
and sorting the tuples by their score. We allow this option in
PREFER and one can observe in real time the performance

bene�ts of our approach.

6. EXPERIMENTAL RESULTS
To evaluate PREFER's algorithms for the e�cient execu-

tion of preference selection queries, we carried a detailed per-
formance evaluation. First we measured the running time
of our algorithms during their preprocessing step, where the
materialized view selection is performed. Then we evaluate

query performance as di�erent parameters vary. We de�ne
query performance as the fraction of queries that satisfy the
user-provided guarantee on the size of the view pre�x that
PREFER has to retrieve from the view in order to retrieve
a user-provided number of top query results. We present a
comparison of our algorithms with other proposed state-of-

the-art solutions and �nally compare with the time required
by a commercial database management system to complete
the same task.
The experiments use two synthetic datasets; the relation

attributes of the �rst dataset are independent while the at-
tributes in the second dataset are correlated. The database

consists of a relation houses with six attributes, namely:

attributes Top-1 tuple

Discretization 0.1 Discretization 0.05

3 25min 88min

4 60min 370min

5 190min 1800min

attributes Top-10 tuples

Discretization 0.1 Discretization 0.05

3 30min 93min

4 65min 380min

5 210min 2000min

Figure 9: View Selection Algorithm Running Time

HOUSEID, PRICE, BEDROOMS, BATHROOMS, SQ FT
and YEAR. We performed experiments that used three, four
or �ve of the attributes (HOUSEID is not a preference at-
tribute). The cardinality of the �ve preference attributes is
1000000 , 10 , 8 , 3500 and 50 respectively for the random

dataset and 1 , 500000 , 5 , 5 , 1500 and 50 respectively for
the correlated dataset. PRICE, BEDROOMS and SQ.FT
were used for experiments involving three attributes; BATH-
ROOMS was added as the fourth attribute and YEAR as
the �fth. For the random dataset, the attribute values are

chosen with a uniform distribution over their domain. In
the correlated dataset, we used correlation patterns that we
discovered in real datasets containing house information (we
did not use these datasets because they were relatively small
in size). The correlation coe�cient between BEDROOMS
and the rest of the attributes, is between 0.35 and 0.73, and

the correlation of the other attribute pairs is at similar lev-
els.
We use a discretization of 0:1 for the domain from which

we draw view and query preference vectors (0 through 1, in
increments of 0:1), except for when the experiment involves
only three attributes in which case we use a granularity of

0:05 in order to have a sizeable number of possible prefer-
ence vectors and stress the view selection algorithm. The
computing environment consisted of a dual Pentium II with
512MB RAM running Windows NT Workstation 4.0, where
all experiments were executed, and a PII 256MB RAMWin-
dows NT Server 4.0, where the datasets were stored in an

Oracle DBMS. PREFER is implemented in Java. The two
computers were connected through a LAN.
The preprocessing phase of our algorithms, essentially the

solution to the optimization problems of Equation 12, was
carried out using the simplex method. We used a widely

available implementation of the Simplex method as a black
box. Such methods are well studied in the literature and
highly optimized for performance.

View Selection Running Time. Our �rst experiment
assesses the running time that the view selection algorithm
takes to cover the space of all queries. Figure 9 presents

the running time of the algorithm for various parameters
of interest, namely number of attributes in the underlying
dataset, discretization of the domain of preference vectors
and number of result tuples (1 or 10) that we require guar-
antees for, on a 50K tuple database. The guarantee provided
in this case is 500 tuples (size of view pre�x). The times in

the �gure include the time to �nd the 500-th ranked tuple

(located with a single pass over the underlying dataset) of as

many views as were required, plus the time to solve the view
cover decision problem, as described earlier. The running
time increases with the number of attributes in the dataset,
as the preference vector space increases in size; more e�ort is
required to cover the entire space. It also increases with the
granularity of the preference vectors as the space becomes

denser in candidate query points that the algorithm has to
cover. Finally, the running time increases with the number
of result tuples we wish to provide guarantees for, as the
algorithm has to solve the view cover decision problem for
each result tuple we wish to have a guarantee for.

Query Performance as function of the Dataset size.

Figure 10 presents the results of an experiment assessing the
query performance of PREFER with respect to the dataset
size. In this experiment we used datasets with four at-
tributes. We target a guarantee that the �rst result of a
random query is identi�ed by retrieving at most 500 tuples
from the database. We vary the number of views allowed to

be materialized and we measure the fraction of the queries
that satisfy the guarantee we wish to provide. The frac-
tion of the queries is measured by exhaustively executing all
possible queries (whose vectors' components fall on the 0.1
discretization) on the views that have been materialized and
counting the number of them that satisfy the guarantee. We

observe that the view selection algorithm scales gracefully
with the dataset size. For the case of correlated data (Figure
10(a)) increasing the number of tuples in the database by
�ve times, requires only doubling the number of materialized
views to cover 100% of the possible queries. Increasing the

number of tuples �fty times, requires tripling the number of
materialized views to cover 100% of the queries. Notice how
only ten views are enough to cover 90% of the query space
for a dataset with 10,000 correlated tuples (Figure 10(a)).
Since the distribution of tuple values is skewed, the distri-
bution of scores in each view is expected to be skewed as

well. It appears that for this dataset, as the number of tu-
ples increases, the sizes of the generated covered spaces are
smaller, since the number of tuples greater than a speci�c
watermark value decreases, due to skew. Consequently, for
a �xed number of views, we expect a smaller fraction of the
preference attribute space to be covered. This explains the

smaller slopes of the curves for increasing number of tuples.
Figure 10(b) presents the results of the same experiment

on the random dataset. In the case of random data (uni-
formly distributed attribute values) the number of addi-
tional views required to assure that all queries provide guar-
antees appears to grow very slowly with database size. Since

we are dealing with uniform data the score values are ex-
pected to be evenly distributed. The fraction of tuples
greater than a speci�c watermark value essentially remains
constant (for a truly uniform distribution). The MBH sizes
are varying in size in our case, as we just deal with a sam-

ple of a uniform distribution having some random variation,
but are not drastically di�erent. As a result, the di�erence
in the fraction of space covered with the same number of
MBHs does not vary a lot as the number of tuples increases.
In Figure 10 for a �xed number of views there are two

reasons for missing the guarantee. The �rst reason is the

space that remains uncovered as a consequence of the im-
posed constraint on the number of views(essentially storage
space). The second is the approximation of the convex poly-

(a) Correlated dataset

(b) Random dataset

Figure 10: Varying the dataset size

tope solutions with MBHs during the phase that we locate
which view is relevant for an incoming query. In both cases,
the error due to the approximation with MBHs is less than

3% on the average, signifying that our use of approximations
of the solutions is not an important source of error.

Varying the number of attributes. Figure 11 presents
the results of an experiment assessing the scalability of the
view selection algorithm with respect to the number of at-
tributes in the underlying dataset, which has 500,000 tuples.

Figure 11(a) presents the results of the experiment for the
correlated dataset. The number of tuples in the datasets
is the same, so as the number of attributes increases the
distribution of distances between the tuples is expected to
increase as well. We expect that the distribution of score val-

ues in each view becomes increasingly more skewed as the
dimensionality increases, for the types of preference func-
tions we consider in this paper. The number of tuples with
scores larger than a speci�c watermark value decreases for
this dataset as the number of attributes increases, yield-
ing smaller MBHs. This explains the di�erent slopes of the

curves as the number of attributes increases. Contrasting
with �gure 11(b) which presents the results of the same
experiment for random data, we observe that the overall
trends are the same, the curves however for random data,
especially as the number of attributes increase are steeper
(have higher slope). This is expected, since the distribution

is not as skewed and as a result, a larger fraction of the

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

mat. views

%
qu

eri
es

co
ver

ed

3attr 4attr 5attr

(a) Correlated dataset (b) Random dataset

Figure 11: Varying the number of attributes

preference attribute space is covered for the same number
of materialized views. The error due to the approximation

of the solution with MBHs increases with the number of
attributes, but again is not the dominant source of error.

Query performance as a function of required guar-
antees. Figure 12 presents the results of an experiment
assessing the query performance of PREFER as a function
of the guarantees requested. We use four-attribute datasets

in this experiment. We vary the guarantees provided by the
queries, by increasing the maximum number of view tuples
read to report the �rst result of queries. Figures 12(a)(b)
show the results for the correlated dataset for two dataset
sizes, and Figures 12(c)(d) show the results for the random
datasets.

In each �gure we report two curves each for di�erent num-
ber of materialized views. We observe that in all cases, with
twenty views, the majority of queries satisfy a guarantee as
small as 500 tuples. A similar phenomenon with the im-
pact of skew exists in this case. For random data (Figure
12(c)(d)) for the same dataset size the fraction of queries

providing a speci�c guarantee is higher than in the case of
correlated data.

Comparison With The Onion Technique. Figure 13
presents an experimental comparison or PREFER against
the Onion technique, which was briey described in Sec-

tion 2. We implemented the Onion technique and we report
on the number of tuples retrieved from the database, for a
database with 50K tuples and 3 attributes, increasing the
number of query results requested. We vary the number of
results requested and the number of views materialized in
our technique. The Onion technique requires approximately

2.5 hours to construct the index for such a relation(50K
tuples and 3 attributes). The time is exponential to the
number of attributes. This was the maximum experiment
we could run with the Onion technique that would require
a reasonable amount of time for preprocessing.
For this experiment we construct materialized views by

imposing a guarantee of 500 tuples only for the �rst query
result (the guarantee is not that important in this case , since
we don't cover the whole query space.) Thus the views are
constructed in a way that no guarantees are provided for

additional results with our technique and, so, we level the
query performance playground in order to fairly compare

with Onion, which is focused on the �rst result as well. Fig-
ure 13(a) presents the results for the correlated dataset. The
proposed technique is superior to the Onion technique even
with a single view available, for all requested results. We
also observe that the performance of our technique deteri-
orates slightly as the number of requested tuples increases.

This is not the case for the Onion technique. The perfor-
mance deteriorates rapidly and when more than 20 results
are requested it has to scan the entire dataset. This is be-
cause this dataset is decomposed into 20 convex hulls by
the Onion technique. It is interesting to notice that in this
experiment the views are constructed with a guarantee of

500 tuples only for the �rst result. Even in this case, the
proposed technique is capable of outperforming the Onion
technique for all requested results. Figure 13(b) presents
the results for the random dataset. We observe that when
only one view is available, the Onion technique is better
for the �rst result, but its performance deteriorates rapidly

for additional results. Moreover as the number of views in-
creases, our technique becomes much better for all results
retrieved, even though the views where constructed without
guarantees for additional results. For more than 10 results,
the Onion technique essentially performs a scan of the entire

dataset, because there are only 10 convex hulls in the Onion
index.

Query running time comparison to a commercial
DBMS.We present results of an experiment that compares
the average time that PREFER needs to output the top re-
sults of a query, as the number of results varies, to the time

that a commercial DBMS requires for the same task. We
use a 50000 tuples correlated dataset with four attributes
for this experiment. To measure the time of the DBMS,
we issue a SQL query containing the preference function in
the ORDER BY clause (required to order the result by the
score of the preference function) and measure the time to

output the top results. PREFER contains 34 materialized
views, that are chosen using algorithm View Selection for a
guarantee of 500 tuples, in a pre-processing step. This set
of views covers the whole preference vector space for that
guarantee. The results of the experiment are shown in Fig-

ure 14.

One can observe that the performance bene�ts are very
large. Even for 500 results requested, PREFER still requires
half the time of a straightforward SQL based approach. No-
tice, that the time required by the DBMS is almost the same
for all results as the entire relation has to be ranked before
a single result is output.

7. CONCLUSIONS
The widespread use of the world wide web as a front end

to database systems creates new opportunities for enhanced
query capabilities. In this direction we have introduced al-
gorithms to enhance database selection queries with user

preferences. Our algorithms make use of multiple database
views and are able to provide performance guarantees for
the types of selection queries considered in this paper. We
presented a methodology to derive the answer of a pref-
erence selection query from a materialized view containing
the output of another preference selection query. We have

presented algorithms to select the best views to materialize
given a constraint on the available space and have imple-
mented our algorithms on a prototype system called PRE-
FER on top of a commercial relational database manage-
ment system demonstrating the practical utility of our ap-
proach. Our results demonstrate that when compared with

other approaches proposed for this problem, one can achieve
great savings both in construction time as well as execution
time, using our proposed algorithms.
Many research issues remain for exploration. Consider-

ing other important database operations in conjunction with

the preference framework would be of great interest. Query
optimization of such operators as well as various dynamic
aspects of their execution are important issues for further
study. We plan to investigate these questions in our future
and ongoing work.

8. ACKNOWLEDGMENTS
We wish to thank Divesh Srivastava and Pavel Velikhov

for very useful discussions.

9. REFERENCES
[1] Y. S. A. Levy, A. Mendelzon and D. Srivastava.

Answering Queries Using Views. PODS, pages 95{104,
1995.

[2] R. Agrawal and E. Wimmers. A Framework For
Expressing and Combining Preferences. Proceedings of

ACM SIGMOD, pages 297{306, June 2000.

[3] Y. chi Chang, L. Bergman, V. Castelli, C. Li, M. L.
Lo, and J. Smith. The Onion Technique: Indexing for
Linear Optimization Queries. Proceedings of ACM

SIGMOD, pages 391{402, June 2000.

[4] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting
Aggregate Queries Using Views. PODS, pages
155{166, 1999.

[5] H. V. j. D. Srivastava, S. Dar and A. Levy. Answering
Queries with Aggregation Using Views. Proceedings of
VLDB, pages 318{329, 1996.

[6] O. Duschka and M. Genesereth. Answering Recursive
Queries Using Views. PODS, pages 109{116, 1997.

[7] R. Fagin. Combining Fuzzy Information from Multiple

Systems. PODS, pages 216{226, June 1996.

[8] R. Fagin. Fuzzy Queries In Multimedia Database

Systems. PODS, pages 1{10, June 1998.

[9] R. Fagin and E. Wimmers. Incorporating User
Preferences in Multimedia Queries. ICDT, pages
247{261, Jan. 1997.

[10] A. Guttman. R-trees : A Dynamic Index Structure for
Spatial Searching. Proceedings of ACM SIGMOD,
pages 47{57, June 1984.

[11] D. Hockbaum. Approximation Algorithms for

NP-Hard Problems. ITP, 1997.

[12] C. Papadimitriou and K. Steiglitz. Combinatorial

Optimization: Algorithms and Complexity. Dover.

[13] Y. Papakonstantinou and V. Vassalos. Query
Rewriting For Semistructured Data. Proceedings of
ACM SIGMOD, pages 455{466, 1999.

[14] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+
-tree : A Dynamic Index for Multi-dimensional Data.
Proceedings of VLDB 1987, pages 507{518, Sept. 1987.

[15] V. Vassalos and Y. Papakonstantinou. Expressive
Capabilities, Description Languages and Query
Rewriting Algorithms. JLP, 2000.

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000

guarantee

%
qu

eri
es

co
ver

ed

10 views 20 views

(a) Correlated dataset, 50K tuples

(b) Correlated dataset, 500K tuples

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000

guarantee(#tuples)

%
qu

eri
es

co
ver

ed

10 views 20 views

(c) Random dataset, 50K tuples

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000 20000 25000 30000 35000 40000

guarantee

%
qu

eri
es

co
ver

ed

10 views 20 views

(d) Random dataset, 500K tuples

Figure 12: Varying guarantees

(a) Correlated dataset

(b) Random dataset

Figure 13: Comparison with the Onion Technique

Figure 14: Execution Times

