
Containment and Integrity Constraints for XPath

Fragments

Alin Deutsch � Val Tannen

University of Pennsylvania

Abstract

XPath is a W3C standard that plays a crucial role in several in
uential query,
transformation, and schema standards for XML. Motivated by the larger challenge
of XML query optimization, we investigate the problem of containment of XPath
expressions under integrity constraints that are in turn formulated with the help
of XPath expressions. Our core formalism consists of a fragment of XPath that we
call simple and a corresponding class of integrity constraints that we call simple

XPath integrity constraints (SXIC). SXIC's can express many database-style con-
straints, including key and foreign key constraints speci�ed in the XML Schema
standard proposal, as well as many constraints implied by DTDs. We identify
a subclass of bounded SXIC's under which containment of simple XPath expres-
sions is decidable, but we show that even modest use of unbounded SXIC's makes
the problem undecidable. In particular, the addition of (unbounded) constraints
implied by DTDs leads to undecidability.

We give tight �p

2
bounds for the simple XPath containment problem and tight

NP bounds for the disjunction-free subfragment, while even identifying a PTIME
subcase. We also show that decidability of containment under SXIC's still holds if
the expressions contain certain additional features (e.g.., wildcard) although the
complexity jumps to �p

2
even for the disjunction-free subfragment.

We know that our results can be extended to some but not all of the XPath
features that depend on document order. The decidability of containment of
simple XPath expressions in the presence of DTDs only remains open (although
we can show that the problem is PSPACE-hard) as well as the problem for full-

edged XPath expressions, even in the absence of integrity constraints.

1 Introduction

We have a general interest in the algorithmic foundations of XML query optimiza-
tion. The core problem considered here is query equivalence (more generally|query

containment) under integrity constraints. There is a large body of research on us-
ing constraints in query optimization in traditional databases. Such results do not

�Contact author, Univ. of Pennsylvania, 200 S. 33rd St., Philadelphia, PA 19104,
adeutsch@saul.cis.upenn.edu

1

apply directly to XML queries because of the transitive closure (Kleene star) oper-
ator in path expressions, which is not �rst-order expressible. Signi�cant work that
does handle the Kleene star operator has been done on containment of semistructured
queries [11, 4, 5]. But these results do not apply directly here because the XML mod-
els are trees rather than arbitrary graphs. Nonetheless, the present work bene�ts from
ideas introduced in all these previous papers.
Integrity constraints are a fundamental mechanism for semantic speci�cation in tra-

ditional databases. For XML, the design of speci�cation formalisms for integrity
constraints is still an ongoing e�ort, from DTDs [13], to recent work on keys [3] and
database-style constraints [10, 9] and the current XML Schema standardization ef-
fort [15].
Several of these formalisms build on the XPath standard [14] or on closely related

languages. XPath is also central to XML transformation and query language standards
(XSLT [17], respectively XQuery [16]). Consequently, understanding the foundations
of XPath query optimization is an important step in tackling the more general problem
of XML query optimization.
Here is an example of XPath expression

P
def

= ==(ajb)=c[@m = "0" and :==d and : = ==:[@o]==:]=@n

To describe the meaning of this notation recall that an XML document represents a
rooted tree whose nodes include elements and attributes [13]. Given a context node x in
the document tree, the meaning [[p]]x of an XPath expression p is the set of nodes that
can be reached from x when \navigating" the tree according to p. Then one needs to
explain how navigation composes for the various operators that appear in the XPath
de�nition. For example, [[p1=p2]]x is the union of all [[p2]]y for all y that are element
children of the nodes in [[p1]]x. Similarly for [[=p2]]x except y ranges over the element
children of the root node (x is not used!). For p1==p2 and ==p2 replace \children" with
\descendants". Moreover, we have [[:]]x = fxg while [[n]]x and [[@n]]x consist of the
element children, respectively attributes, of node x that have tag, respectively name,
n. Finally, [[p[q]]]x selects those nodes y in [[p]]x such that [[q]]y holds true.
Accordingly, P above returns the set of attributes named n of all elements tagged

c which are children of an element tagged a or b and have an attribute named m of
value "0", a descendant element tagged d and some ancestor with an attribute named
o. There is much more about XPath and its semantics that can be found in [14, 18].
The space limitations prevent more detailed explanations here. Additional operators
are described below. [8] contains precise semantic de�nitions for the XPath fragments
we analyze.
We also consider a class of XML integrity constraints that combine the logical shape

of the classical relational dependencies [1] with a controlled amount of disjunction and
with atoms de�ned by the XPath expressions themselves. Here are a few examples of
constraints

(oneAddress) 8x8s18s2 [==person x ^ x :=address s1 ^ x :=address s2 ! s1 = s2]

(someAddress) 8x [==person x ! 9y x :=address y]

(idref) 8x [==person=@spouse x ! 9y ==person y ^ y :=@ssn x]

(keys;p) 8x; y; s [==person x ^ ==person y ^ x :=@ssn s ^ y :=@ssn s! x = y]

2

(grandpa) 8x; y; z; u [x :=(sonjdaughter) y ^ y :=(sonjdaughter) z ^ x :=@ssn u

! z :=@grandparent u]

DTDs imply some of these constraints. Consider the DTD entry <!ELEMENT person

(address?,...)> stating (among other things) that person-elements have at most
one address-element nested within them. We express this as (oneAddress) above.
With address+ instead of address? we assert the existence of at least one address-
subelement, thus implying (someAddress). (idref) above expresses more than a DTD
can: it says that the spouse-attribute of person-elements agrees with the value of the
ssn-attribute of some person-element. The constraint (keys;p) captures the fact that
the ssn-attribute is a key for person-elements (this is not DTD expressible, but can
be stated in XML Schema and in [10, 3, 9]). (grandpa) expresses another useful kind
of constraint which is reminiscent of relational inclusion dependencies [1] but goes
beyond the formalisms of [10, 3, 9] or XML Schema.
As we can see, inspired loosely by path speci�cation in UNIX-like �le directory

systems, XPath was designed to be a (1) compact and (2) expressive notation. Its
full-
edged de�nition has many features inspired by practical considerations. The
techniques that we bring to bear in this paper can tackle many of the features of full-

edged XPath, but not all. Our approach (explained in section 4) limits the XPath
expressions we can analyze formally to a subclass we call simple and some signi�cant
extensions thereof, handled separately because they feature distinct complexities of
the containment problem.

2 Simple XPath

Simple XPath expressions are generated by the following grammar (n is any tag or
attribute name, v any variable name, and s any string constant):

(simple xpath) p ::= p1jp2 j =p j ==p j p1=p2 j p1==p2 j p[q] j : j n j @n j @ � j $v := @n j

text() j id(p) j id(s)

(qualifier) q ::= q1 and q2 j q1 or q2 j p j p = s j @n = $v j $v1 = $v2

Simple XPath expressions feature both an extension and restrictions from the XPath
standard. The extension is their ability to bind variables. Variables are introduced by
the $ sign, and only for attribute values. The meaning of $v := @n is that of binding
variable v to the string value of the current node's n-attribute. The test @n = $v in
a quali�er is satis�ed if the value of the current node's n-attribute equals the value
v was previously bound to. $v1 = $v2 is satis�ed if v1; v2 were bound to the same
string value. Our ability to bind variables goes beyond the XPath speci�cation, which
intends variables to be bound in the outside context (usually represented by XPointer,
XSLT or XQuery expressions), and only allows for testing their values inside XPath
expressions. However, for practical purposes this does not result in an e�ective increase
in expressive power, since XPath expressions are not meant to be used standing alone,
but rather embedded in expressions of the three standards mentioned above. In the
case of XQuery for instance (which is what we ultimately want to optimize), an XPath
expression that binds variables is just syntactic sugar for a query with several XPath

3

expressions that don't: the XQuery body For=a[@n = $v]==b[@m = $v] $x is equivalent
to For =a=@n $v; $v==b $x; $x=@m $w; Where $v = $w:

The most notable restrictions to the full-
edged standard [14] are the absence of
the navigation axes following, following-sibling, preceding, preceding-sibling. This is
because for the time being we disregard the document order, seeing the XML document
as an unordered tree, in which these axes have no meaning 1. Some of these restrictions
are lifted in section 5, where we handle following-sibling and preceding-sibling.
Moreover, we disallow for the moment navigation steps via the child axis from or

to elements of unspeci�ed tag. This can be done either by using the wildcard �
for going to a child of unspeci�ed tag name, or inversely, by using the parent axis
to get to a parent of unspeci�ed tag name, and �nally, by using the ancestor axis,
which performs an implicit parent navigation step, followed by an ancestor-or-self

step. This is why *,parent,ancestor,ancestor-or-self are missing from our grammar.
We treat these separately in section 3 because it turns out that the corresponding
containment problem has higher complexity.
We also rule out negation from quali�ers, for the same reason for which negation

causes problems in the classical relational dependency theory [1].
Simple XPath integrity constraints (SXICs). We consider dependencies of the
general form

8x1 : : : 8xn [B(x1; : : : ; xn)!

l_

i=1

9zi;1 : : : 9zi;ki Ci(x1; : : : ; xn; zi;1; : : : ; zi;ki)] (1)

where B;Ci are conjunctions of atoms of form v p w where p is a simple XPath
expression or equality atoms of the form v = w, where v; w are variables or constants.
We demand of course that v; w be of compatible type. v may be missing from a path
atom if p's context node is the root of the document (i.e. if p begins with = or ==).
All constraints shown in section 1 are SXICs. We have seen that some of them are

not expressible by DTDs, while others are implied by them. But in general DTDs and
SXICs are incomparable. DTD features that cannot be expressed by SXICs are the
order of sibling elements, and the fact that an element admits subelements of given
tags only.
Satisfaction of SXICs. We say that the binding of v to a node a, and of w to a

node b satis�es a path atom v p w if b is equal to some node in the set returned by p
when starting from context node a. We de�ne equality as equality of the string values
for text and attribute nodes, while an element node is equal only to itself. Equality
atoms are satis�ed according to this de�nition. An SXIC of general form (1) is satis�ed
if for any type-consistent binding of the variables x1; : : : ; xn that satis�es all atoms
in B, there is some 1 � i � l and some extension of this binding to the variables
zi;1; : : : ; zi;ki such that all atoms of Ci are satis�ed by the extended binding.
Containment under SXICs. Given a set C of SXICs, and simple XPaths P1; P2,

we say that P1 is contained in P2 under C (denoted P1 �C P2) if every node in the set
returned by P1 is equal (in our sense) to some node in the set returned by P2 whenever

1Note that this view is actually consistent with the XPath 1.0 speci�cation [14], which de�nes
the semantics of XPath expressions as being a set of nodes. The upcoming XPath 2.0 is expected to
introduce list semantics, which we do not consider here.

4

both are applied to any XML document which satis�es all SXICs in C. (This de�nition
is more
exible than just asking for containment of the node sets returned by P1; P2,
because it does not distinguish between attribute and text nodes of distinct identity
but equal string value.)
Bounded SXICs. This subclass of SXICs allows the same generality as all SXICs in

the left-hand-side B of the implication, but it restricts the form of the right-hand-side
of the implication. Namely, the XPath atoms occuring in the conjunctions Ci must
have one of the following forms:

v = w v :=@n w v :=@ � w v :=n w v :==: w ==: w =n w

Moreover, while all occurrences of v; w can be universally quanti�ed, there are restric-
tions on the cases when they may be existentially quanti�ed. In order to state these
restrictions, we introduce the notion of bounded-depth variable: we say that variable
w is bounded-depth if it appears on either side of the implication in an atom =n w,
or in atoms v :=n w or w :=n v, with v bounded-depth. The restrictions on existential
quanti�cation are given below:

� w must be universally quanti�ed in v :=@n w, v :=@ � w and v :==: w

� v or w may be existentially quanti�ed in v :=n w only if they are bounded-depth.

All SXIC examples in section 1 are bounded except for (someAddress), which contains
the existentially quanti�ed, non-bounded-depth variable y.
For proofs of the results stated below, we refer the reader to the full paper [8].

Theorem 2.1 Containment of simple XPath expressions under bounded SXICs is de-

cidable. If we �x the constraints, the problem is in �p
2
in the size of the expressions (if

we don't, the problem is in EXPTIME in the size of the constraints). If in addition we

consider disjunction-free simple expressions and constraints, the complexity drops to

NP. Moreover, if we also disallow attribute variables in the expressions, the complexity

drops to PTIME.

In practice, we often know that XML documents satisfy SXICs that are not nec-
essarily bounded, the most salient examples being SXICs implied by DTDs, such as
(someAddress) from the introduction. Unfortunately, we have the following result:

Theorem 2.2 Containment of simple XPath expressions under unbounded SXICs is

undecidable.

Complexity lower bounds. It turns out that for �xed SXICs, the upper bounds
in theorem 2.1 are tight:

Theorem 2.3 Just containment of simple XPath expressions (no constraints) is �p
2
-

hard. Containment of disjunction-free simple XPath expressions (again no constraints)

is NP-hard.

5

A missing piece in the puzzle is the lower bound for containment under simple
bounded SXICs when the constraints are not �xed. We conjecture EXPTIME-hardness
however, expecting that the proof of EXPTIME-hardness for the relational chase [6]
can be adapted.
DTDs and SXICs. In XML practice, constraints on the form of documents are often

speci�ed using DTDs. A natural question pertains to the status of our decidability
results in the presence of DTDs, with or without SXICs. A careful analysis of the
proof of theorem 2.2 shows the following. Let C1 be a set of bounded SXICs without
disjunction and existentials. Let D be a DTD and let C2 be a set of unbounded SXICs
implied by D. Let also X1 and X2 be two simple XPath expressions. What we prove,
in fact, is that the problem of whether X1 �C1[C2 X2 is undecidable.

Corollary 2.4 Containment of simple XPath expressions is undecidable in both fol-

lowing scenarios (1) under unbounded SXICs, and (2) in the presence of bounded SXICs

and DTDs.

Bounded XICs cover many common cases: given a DTD, it is usually possible to
rewrite constraints such as (someAddress) in bounded syntax, unless in the rest of the
DTD (which we do not specify) the address element is nested (immediately or not)
in some \X"-element that may contain a descendant \X"-subelement. Such \cyclic"
element declarations are not very common!
The problem of deciding containment of simple XPath expressions under DTDs only

(no SXICs) remains open, and the following lower bound which is in fact in the size
of the expressions, combined with the upper bound in theorem 2.1, suggests that the
techniques that we use in this paper are unlikely to help:

Theorem 2.5 Containment of simple XPath expressions in the presence of DTDs is

PSPACE-hard.

3 Beyond Simple XPaths

In this section we enrich simple XPath expressions with several navigation primitives
from the XPath standard.
Parent axis. We allow navigation to the parent of the current node. Concretely,

this amounts to adding the production p ::= parent to the grammar in section 2.
Ancestor axes. We allow navigation along the ancestor and ancestor-or-self axis.

The corresponding productions are p ::= ancestor j ancestor-or-self.
Wildcard Child. We further allow navigation along the child axis to elements of

unspeci�ed tag, adding p ::= � to our grammar (� is called the wildcard). Here is an
XPath expression using wildcard child navigation: P 0 def

= ==c= � [@m = "0] . It returns
the set of elements of unspeci�ed tag (indicated by the �), that have an m-attribute of
value 00000 and a parent tagged c who is a non-immediate descendant of the document
root. Note the use of the wildcard � (disallowed in simple XPath expressions).
Path equality. We extend the grammar of quali�ers with the production q ::= p1 =

p2, corresponding to path equality tests. Such tests are satis�ed if some node returned

6

by path p1 is equal to some node returned by path p2. Equality tests must of course
typecheck, and they are satis�ed for text and attribute nodes if and only if the string
values are equal. In contrast, an element node is only equal to itself. This de�nition of
element node equality follows XML-QL [7] as opposed to the ad-hoc treatment in [14].
Although none of the above extensions seems to have anything to do with disjunc-

tion, each one of them (except parent, for which we do not know what happens) when
added to the disjunction-free fragment raises the complexity (recall from theorem 2.1
that it is NP when the constraints are �xed):

Theorem 3.1 Adding any one of the following to disjunction-free simple XPath ex-

pressions makes their containment problem (no constraints) �p
2
-hard: 1. path equality

2. ancestor axis 3. ancestor-or-self axis 4. wildcard child

However, this is pretty much as far as the complexity raises:

Theorem 3.2 Consider simple XPath expressions enriched with path equality and

ancestor-or-self axis. The containment of such expressions under �xed bounded SXICs

is in �p
2
in the expression size.

In dealing with wildcard in this paper we have further restricted the constraints.
We believe however that this restriction can be lifted.
Tree SXICs. These are bounded SXICs that satisfy the following additional restric-

tions: (i) v must be universally quanti�ed in v :=n w (recall page 5). (ii) We disallow
atoms of form v :== w from the right-hand side of the implication and (iii) For any
constraint c and any of c's equality atoms of form v = w (where v; w are variables)
in the right-hand side of the implication, if v; w are bound to element nodes, c must
contain the atoms u =n v and u =m w for some variable u and tag names n;m.
Restriction (iii) ensures that in all models satisfying c, the only expressible key con-

straints are keys among sibling nodes. Recalling the examples in section 1, (oneAddress)
corresponds to this restriction, while (keys;p) does not. The intuition behind all three
restrictions is that no combination of tree SXICs can compromise the tree property of
a given document, whence their name.

Theorem 3.3 Consider simple XPath expressions enriched with parent, ancestor,

ancestor-or-self and wildcard child navigation. The containment of such expressions

under �xed tree SXICs is in �p
2
in the expression size.

4 Upper Bound Proof Techniques

For the decision procedure, we set out to leverage techniques from classical relational
theory by reducing containment under constraints to an equivalent �rst-order question.
We de�ne shortly �XML which consists of a relational schema and some �rst-order
integrity constraints on this schema. Then, we translate XPath expressions into unions
of relational conjunctive queries over the schema of �XML. Moreover, we translate
SXICs into �rst-order sentences over the same schema and of the same form as the

7

integrity constraints in �XML. Denoting the translation of a set C of SXICs with �C ,
we will reduce containment of regular XPath expressions under C to containment of
unions of relational conjunctive queries under �XML [�C .
Any XML document D corresponds to a (�nite) �XML-instance ID such that if � is a

containment or an SXIC then � holds in D if and only if its �XML translation holds in
ID. This makes our reduction by translation to a �rst-order problem sound. However,
transitive closure and \treeness" cannot be captured by the integrity constraints we
are willing to allow in �XML hence there are �XML-instances that do not correspond
to any XML document. Any decision procedure used for the �rst-order problem must
therefore be strengthened to make the entire reduction also complete.
The restriction to bounded SXICs allows us to use the classical chase-based decision

procedure [2] for the �rst-order problem that results from the translation to �XML.
Even so, the presence of disjunctions in the constraints requires an extension of the
classical technique (shown in [8]. See also the result given for a restricted kind of
disjunctive dependencies in [12]).
�XML consists of the relational schema (root; el; child; desc; tag; attr; id; text)

and of a set of �rst-order constraints outlined below. The \intended" meaning of
the relational symbols in �XML is the following. The constant root denotes the root
of the XML document, and the unary relation el is the set of its elements. child

and desc are subsets of el� el and they say that their second component is a child,
respectively a descendant of the �rst component. tag � el � string associates the
tag in the second component to the element in the �rst. attr � el � string� string
gives the element, attribute name and attribute value in its �rst, second, respectively
third component. id � string � el associates the element in the second component
to a string attribute in the �rst that uniquely identi�es it (if DTD-speci�ed ID-type
attributes exist, their values can be used for this). text � el � string associates
to the element in its �rst component the string in its second component. Some (but
not all!) of this intended meaning is captured by the following set �XML of �rst-order
constraints

(base) 8x; y [child(x; y) ! desc(x; y)]

(trans) 8x; y; z [desc(x; y) ^ desc(y; z)

! desc(x; z)]

(re
) 8x [el(x)! desc(x; x)]

(elc) 8x; y [child(x; y) ! el(x) ^ el(y)]

(eld) 8x; y [desc(x; y) ! el(x) ^ el(y)]

(elid) 8s; x [id(s; x)! el(x)]

(elr) el(root)

(line) 8x; y; u [desc(x; u) ^ desc(y; u)! x = y _ desc(x; y) _ desc(y; x)]

(choice) 8x; y; z [child(x; y) ^ desc(x; z) ^ desc(z; y)! x = z _ y = z]

(oneTag) 8x; t1; t2 [tag(x; t1) ^ tag(x; t2)! t1 = t2]

(id) 8s; e1; e2 [id(s; e1) ^ id(s; e2) ! e1 = e2]

(noLoop) 8x; y [desc(x; y) ^ desc(y; x)! x = y]

(oneParent) 8x; y; z [child(x; z) ^ child(y; z)! x = y]

(noShare) 8x; y; u; v [child(x; u) ^ child(x; v)

^desc(u; y) ^ desc(v; y)! u = v]

(oneRoot) 8x [desc(x; root)! x = root]

Observe that (base), (trans), (refl) above only guarantee that desc contains its
intended interpretation, namely the re
exive, transitive closure of the child relation.
There are many models satisfying these constraints, in which desc is interpreted as a
proper superset of its intended interpretation, and it is well-known that we have no

8

way of ruling them out using �rst-order constraints. The fact that we can nevertheless
use the constraints in �XML and classical relational (therefore �rst-order) techniques
for deciding containment under constraints comes therefore as a pleasant surprise.
DEDs. Note that except for (line); (choice), all constraints in �XML are embedded

dependencies (as [1] calls them, but also known as tuple- and equality-generating
dependencies [2]) for which a deep and rich theory has been developed. (line) contains
disjunction but so do the XPath expressions, implicitly, via the j operator. Extending
the theory to what we will call disjunctive embedded dependencies (DEDs) is fairly
straightforward as suggested already in [2]. We show this extension in [8] where DEDs
are de�ned exactly like the SXICs in formula (1) but with relational atoms instead of
XPath atoms. The main di�erence to the classical chase is that, instead of a chase
sequence, the rewrite yields a chase tree, whose leaves are conjunctive queries to which
no chase step with DED from the set D applies.
We translate regular XPath expressions into unions of relational conjunctive queries

over the schema of �XML. This translation is performed by �rst translating away
the disjunction (j in paths, or in quali�ers), thus obtaining a union of simple,
disjunction-free XPath expressions: =(sonjdaughter) translates to =son[=daughter. Next,
we translate these XPath expressions according to the operator T (c; p; s) de�ned
below. It takes a variable denoting the context node c, a disjunction-free XPath
(sub)expression p and a variable s denoting a node in the node set yielded by p, and
returns the body of a relational conjunctive query. z; u below denote fresh variables.

T (x; =p; y) = T (root; p; y)

T (x; ==p; y) = fdesc(root; z)g [T (z; p; y)

T (x; p1=p2; y) = T (x; p1; z) [T (z; p2; y)

T (x; p1==p2; y) = T (x; p1; z) [fdesc(z; u)g [T (u; p2; y)

T (x; p[q]; y) = T (x; p; y) [Q(y; q)

T (x; :; y) = fx = yg

T (x; n; y) = fchild(x; y); tag(y; n)g

T (x;@n; y) = fattr(x;00 n00; y)g

T (x;@�; y) = fattr(x; z; y)g

T (x; text(); y) = ftext(x; y)g

T (x; id(p); y) = T (x; p; z) [fid(z; y)g

T (x; id(s); y) = fid(s; y)g

T (x; ancestor-or-self; y) = fdesc(y; x)g

T (x; ancestor; y) = fchild(x; z); desc(y; z)g

T (x; �; y) = fchild(x; y)g

T (x; ::; y) = fchild(y; x)g

T (x; $v := @n; y) = fattr(x;00 n00; v); y = vg

Q(x; q1 and q2) = Q(x; q1) [Q(x; q2)

Q(x; p) = T (x; p; z)

Q(x; p = s) = T (x; p; s)

Q(x;@n = $v) = fattr(x;00 n00; v)g

Q(x; $v1 = $v2) = fv1 = v2g

Q(x; p1 = p2) = T (x; p1; z) [T (x; p2; z)

It is not hard to see that this translation captures exactly the formal semantics in
[18] over models in which desc has the intended interpretation.
Example translation. Recalling our regular XPath example P from section 1,

we �rst translate away the disjunction obtaining P1 [P2, where P1 = ==a=c[@m =

"0" and :==d and : = ==:[@o]==:]=@n and P2 = ==b=c[@m = "0" and :==d and : = ==:[@o]==:]=@n.
Next, we translate P1; P2 according to T (). For example, P1 translates to

P 0

1(x) desc(root; u1) ; child(u1; u2); tag(u2; "a"); child(u2; u3) ; tag(u3; "c"); attr(u3; "m"; "0");

desc(u3; u4); child(u4; u5); tag(u5; "d"); desc(root; u6); attr(u6; "o"; u7); desc(u6; u3);

attr(u3; "n"; x)

9

where the equalities of variables (of the form w = v) obtained during the translation
were eliminated (by substituting w for v everywhere).
SXIC Translation. Combining the T ()-translation of the XPath atoms shown above

with a straightforward translation of logical connectives and quanti�ers, we trans-
late SXICs into disjunctive embedded dependencies (DEDs) over the schema of �XML

(see [8]).
Example for deciding containment of simple XPaths. We highlight here how

we deal with the == operator. Given q1 = =A=B and q2 = ==B==:, it is easy to see that
q1 is contained in q2 over all XML documents (i.e. even in the absence of SXICs). We
show how we infer this using the classical result on the chase: given conjunctive queries
Q1; Q2 and relational dependencies D, Q1 is contained in Q2 under all D-instances
if and only if there is a containment mapping from Q2 into the result of chasing Q1

with D [1]. The translation yields q01(x) child(root; x1); tag(x1; A); child(x1; x); tag(x;B)

and q02(y) desc(root; y1); child(y1; y2); tag(y2; B); desc(y2; y). Note that there is no con-
tainment mapping from q0

2
to q0

1
as the latter contains no desc-atoms to serve as

image for the former's desc-atoms. But by chasing q0
1
with (base),(elc),(re
) we add

desc(root; x1); el(x1); el(x); desc(x; x) to q0
1
, thus creating an image for the containment

mapping fy 7! x; y1 7! x1; y2 7! xg. There are further applicable chase steps, omit-
ted here as they only add new atoms and hence do not a�ect the existence of the
containment mapping. �
[8] shows how we extend this kind of reasoning to deciding containment for the

extensions of simple XPath mentioned in section 3.

5 Extensions and further work

Order. Our decision procedure for containment extends straightforwardly if we add
the preceding-sibling and following-sibling navigation steps to the fragments of XPath
we show in section 3, and the complexity results carry over to this extension. All we
need to do is capture the preceding-sibling relation with �rst-order statements such
as (see [8] for details):

(transps) 8x; y; z [preceding-sibling(x; y) ^ preceding-sibling(y; z)! preceding-sibling(x; z)]

(minps) 8x; y [preceding-sibling(x; y)! 9z child(z; x) ^ child(z; y)]

If the XPath expressions contain following and preceding as well, our algorithm re-
mains sound, but we do not know if it is complete for deciding containment.
What we do not capture. The order-related features we do not capture in this

way are index and range quali�ers. The expression =a[2] uses the index quali�er 2 to
return the second a-child of the root. =a[range 2 to 4] returns the second, third and
fourth a-child.
Other open problems. In addition to what we pointed out above, we have the

containment of full-
edged XPath expressions, both under the set semantics given in
XPath 1.0, and the list semantics coming up in XPath 2.0.
Another, maybe more important problem is that of extending optimization of XPath

expressions to optimization of XQueries [16]. The latter lets variables range over node
sets de�ned by XPath expressions. Two extensions are needed here: the output of

10

XQueries is not a node set, but rather full XML. Also, XQueries have list semantics.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] C. Beeri and M. Y. Vardi. A proof procedure for data dependencies. Journal of the ACM,
31(4):718{741, 1984.

[3] P. Buneman, S. Davidson, W. Fan, C. Hara, and W.-C. Tan. Keys for xml. In WWW10, 2001.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini. Queries and constraints on semi-structured
data. In CAiSE, pages 434{438, 1999.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. Containment of conjunctive regular
path queries with inverse. In KR, 2000.

[6] A. K. Chandra, H. R. Lewis, and J. A. Makowsky. Embedded implicational dependencies and
their inference problem. In Proceedings of STOC, pages 342{354, 1981.

[7] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for XML. In
WWW8, 1999.

[8] A. Deutsch and V. Tannen. Containment for Classes of XPath Expressions Under Integrity
Constraints. Technical Report MS-CIS-01-21, University of Pennsylvania, 2001. Available from
http://db.cis.upenn.edu/cgi-bin/Person.perl?adeutsch

[9] W. Fan and L. Libkin. On XML Constraints in the Presence of DTDs. In PODS, 2001.

[10] W. Fan and J. Sim�eon. Integrity Constraints for XML. In SIGMOD, 2000.

[11] D. Florescu, A. Levy, and D. Suciu. Query containment for conjunctive queries with regular
expressions. In PODS, 1998.

[12] G. Grahne and A. Mendelzon. Tableau techniques for querying information sources through
global schemas. In ICDT, 1999.

[13] W3C. Extensible Markup Language (XML) 1.0. W3C Recommendation 10-February-1998.
Available from http://www.w3.org/TR/1998/REC-xml-19980210.

[14] W3C. XML Path Language (XPath) 1.0. W3C Recommendation 16 November 1999. Available
from http://www.w3.org/TR/xpath.

[15] W3C. XML Schema Part 0: Primer. Working Draft 25 February 2000. Available from
http://www.w3.org/TR/xmlschema-0.

[16] W3C. XQuery: A query Language for XML. W3C Working Draft 15 February 2001. Available
from http://www.w3.org/TR/xquery.

[17] W3C. XSL Transformations (XSLT) Version 1.0. W3C Recommendation 16 November 1999.
Available from http://www.w3.org/TR/xslt.

[18] Phil Wadler. A Formal Semantics of Patterns in XSLT. In Proceeding of the Conference for

Markup Technologies, 1999.

11

