‘ Paper Number: #174‘

Merging results from Multi-parametric Ranked Queries

Vagelis Hristidis Yannis Papakonstantinou
University of California, San Diego University of California, San Diego
vagelis@cs.ucsd.edu yannis@cs.ucsd.edu
Abstract

Many Web sources rank objects according to multiple attributes. As the number of such sources
increases, so does the number of meta-brokers, which provide integrated access to the sources. Meta-
brokers answer to user queries by accessing the sources and merging the source responses. We study
the fundamental problem of how a metabroker can deliver a prefix of the user query result (i.e., the top
results of the user query) by accessing only a minimum prefix of the result of each source. The challenge
is that the sources support different ranking functions from each other and from the ranking that the
user query requests. We present an algorithm that inputs the query ranking function and the ranking
functions of the sources and computes the minimum prefix required by each source in order to deliver a
prefix of the query result. We consider ranking functions that are either linear functions of the object
attributes or linear combinations of the attributes’ logarithms or cosine functions. Our algorithm can be
used in many applications, such as data streaming and multimedia, that need to efficiently merge ranked
lists.

1 Introduction

An increasing number of Web applications allow queries that rank the source objects according to a function of
their attributes [CG96, Fag96, GM97]. For example, consider the used car section of www.personallogic. com.
The underlying database contains attributes such as the price, year, and mileage of the listed used cars. The
user expresses his preference by picking weights for each car attribute from a menu of possible weights. Then
the system orders the used cars according to a function of the user-provided weights and outputs the top
results to the user. Other Web applications allow their users to rank their source objects according to a
few “canned” ranking functions. For example, many Web-based brokers (e.g., Schwab, E-Trade) allow the
user to declare his/her investment goals and then return to the user a list of mutual funds that is ranked
in accordance to the goals. For example, if the user declares that he/she is an aggressive long-term investor
the system ranks the mutual funds using a function that gives high weight to the growth rate, low weight to
the volatility, and very low weight to the produced income. Note that the source objects may be relational
tables, documents, images, or other types of data where ranked search makes sense.

As this type of Web sources increases, so does the number of meta-brokers [GM97, GCMP97] (also called
meta-searchers). A meta-broker uses multiple underlying sources to answer to user queries by merging the
results that these sources produce (see Figure 1). For example, a used car meta-broker allows the user to
provide the weight he assigns to the price, year, and mileage of the car. Then the meta-broker contacts
multiple used car sites, obtains car records and merges them into a single answer list.

An example of such a Web site is mySimon.com, which is a meta-searher for various products like books,
computers, etc. It sends the user’s query to multiple underlying sources (online retailers) and then merges
the results ordered by an attribute of the products. Notice that our algorithm is more general in that it
allows the objects to be ordered according to a function of their attributes. Consider for example two online
bookstores that rank their resulting books according to their price and their delivery time, measured in
number of days from today. The first bookstore assigns a weight of 0.8 to price and 0.2 to delivery time and
the second 0.9 and 0.1 respectively. Now suppose a user request from the meta-broker to rank the books
assigning weight 0.7 to price and 0.3 to delivery time. The naive algorithm would get all results from both
sources, evaluate the user’s preference function for each book and output the ranked results. On the other

User query

Merged results

User

source's
results
forwv,.

QUEryY W

Source's
results

for vy

Source 5 Source 5, Source S,

Figure 1: Meta-broker Architecture

hand our algorithm only retrieves a prefix of the results from each source and combine these books to output
the top results at the meta-broker. It then keeps retrieving, merging and outputting results in a pipelined
manner.

The key efficiency problem is how to output the top-K results of the user query, where K is a user-
provided number, by accessing the minimum prefix of the result list that each source produces. This is a
hard problem because the sources typically use different ranking functions from each other and from the
function requested by the user. The meta-broker needs to efficiently access the sources and merge the results.

This paper solves the minimum prefix problem for the case where the ranking functions are (i) linear
combinations of the source attributes, or (ii) linear combinations of the logarithms of the source attributes,
or (iii) cosine functions (in the spirit of cosine functions used in document retrieval).

2 Related Work

Recently the problem of rank merging has received a lot of attention. [GM97] defined the term “user query is
manageable by source” to indicate that a ranked user query issued to the metabroker can be answered using
only a prefix of the source data. [GM97] made the same architectural assumptions with our work (known
source ranking functions, metabroker retrieves a prefix from each source) but did not focus on any specific
class of ranking functions. Consequently, [GM97] did not provide a prefix computing algorithm. Our work
focuses on a specific class of functions described in Section 3 and fully solves the problem for this class of
functions.

Our work assumes that the source ranking functions are known. This is an assumption that does not
generally apply today to Web sources and search engines. Such systems typically do not disclose their
ranking functions. However, our work can be materialized on top of a class of works that propose ways to
get information about the source ranking functions by asking some training queries as in [VGJL95] or by
calibrating the document scores of the sources using statistics as in [CLC95]. We can employ similar training
techniques to learn the source ranking functions if they are not given. Equally important for our work are
recent initiatives, such as [GCMP97], that allow search engines to export their ranking functions.

Multimedia sources have also received significant attention in the context of ranked queries. [Fag96] and
[CG96] propose rank merging solutions for such sources, where objects are ranked according to how well they
match the query values. The solutions in [Fag96], [CG96] and [FLNO1] are based on a richer architectural
framework than the one we assume in our work. In particular, our algorithm does not require any random
accesses to the sources, which is a very important property as explained in [FLNO1]. Other random access
assumptions have been made in [Fag96] and [CG96].

A considerable amount of work ([FLNO01], [GBKO01], [GBKO00], [NR99]) is available for combining ranked
lists of attributes in order to efficiently retrieve the top results according to an aggregate function of the

attributes. In these works a sorted list is used for each attribute in order to efficiently retrieve the top-K
ranked results from a single source. Our work is more general because we access multiple sources that order
their objects according to functions of their attributes, instead of ranking by one attribute each time.

Our solution is built on an appropriate adaptation of the “watermark” concept, which was introduced
in [HKPO1], where the goal was to create and use materialized views of a relation in order to answer ranked
queries efficiently and in a pipelined manner. The key difference between [HKPO01] and the current work
is that [HKPO01] did not consider merging data of multiple sources. Besides the different functionality, the
current work also considers a wider class of functions than the purely linear ones considered by [HKPO1].

3 Notation and Definitions

Consider a set of sources Si,...,S,. Each source S; exports a relation R;. The exported relations have the
same schema or at least some common attributes. A metabroker M over Si,...,S, exports the relation
R =Ry UR>U...UR, if all relations have the same schema. If the sources do not have the same schema,
R is defined as follows:

e The set of attributes (Ay,..., A,) of R is the union of the sets of attributes of Ry, ..., Ry.

e If the relation R;(A;,,...,A;,) has a tuple t = [4;, : a;,,..., A
tuple t' =[A; : aq,..., Ay : ar] where

: a;,,] then the relation R has a

im

—aj =a;,if Aj = A;, and
— a,j :NULL, lfA] ¢ {Ail,.--,Aim}

Let us assume that R has k attributes (A, ..., Ag). Let [m;, M;] be the domain of attribute 4;, 1 < i <
k,m;, M; € R*. The notation A;(t) refers to the value of attribute A; in the tuple ¢.

The user issues queries that order the tuples of R according to a weighted preference function. We
refer to such queries as preference queries. Every query ¢ consists of a preference function f(.) and a single
relation R. The preference function f(¢), Hle[mi, M;] - R defines a numeric score for each tuple t € R.
The output of the query is the query result sequence R, = [t;,tg,...,tg] of the tuples of R such that
f(th) > f(2) > ... > f(t7). Note that we use the notation ¢} to denote the tuple in the i-th position in the
result sequence of q.

In this paper we focus on queries that use three kinds of preference functions:
o linear, fy(t) = Yh_ v A;(t)

e logarithmic, fz(t) = 3% vjlog(A;(t)) and

j=1
e cosine, fz(t) = m 2?21 v; A;(t), where |f] denotes the Euclidean norm of vector .

We chose these functions because they are widely used in Web, streaming and multimedia applications
that require ranking and they can be efficiently pipelined using the techniques we present in this paper.
The vector ¥ = (v1,...,v;) is called the preference vector of the query (view) and each coordinate of the
vector is called attribute preference. We use f,(.) to indicate that f, is a preference function with preference
vector U. Without loss of generality, we assume that attribute preferences are normalized in [0, 1] and that

25:1 v; = 1. This assumption is not restrictive, since whatever the range of attribute preferences would be,
they can always be normalized instantly by the system. Moreover, we choose to adopt such a normalization
since we believe it is in agreement with the notion of preference. The total preference of a user is 1 and the
preference on individual attributes is expressed as an additive term towards the total preference.

Each source S; supports a set (); of preference queries over the exported relation R;. We will focus on
the case where each source exports a single ranking function. The metabroker supports preference queries
over R that have the same kind of preference function with the underlying sources, which also have the same
kind of preference functions with each other. We need efficient pipelined execution of the queries on R. In
particular we want to be able to derive the top-m tuples [t} tg”] from relation R according to query ¢

I
by reading a minimal subset of each relation R;.

4 How to Pipeline a Ranked Query at the Metabroker

The PipelinedMerge algorithm presented next efficiently queries the underlying sources Si,...,S, and
merges their results, when a query ¢ is presented to the metabroker. It outputs the results in a pipelined
manner, i.e. without retrieving the complete result sequences from the sources. We assume that each source
S; exports exactly one query v;. The key to the algorithm is the computation of a prefix R},l_ of the result
sequence R, of source S; that is sufficient to assure that the first tuple of R; according to f; is in R}) The
Watermark vector definition presents the intuition behind the PipelinedM erge algorithm described next.

Definition 1 (First Watermark Vector) Consider

e a set of sources Si,...,Sn consisting of the functions fy,,...,fs, applied on relations Ry,..., R,
respectively,

o the query q consisting of the function f, applied on the relation R and
e a tuple t°P € R

The first watermark vector (TLoP ..,Tg:?q) has the following property:

V1,47 "

Viel,...,n,Vt € Ry, fo,(t) < TP = folt) < fo(t'P) (1)

When we refer to a source S; we simply use the term “watermark of S;” instead of “the i-th coordinate of
the first watermark vector”. According to the definition, if a tuple ¢ in the source S; is below the watermark
value T10% (that is, f,,(t) < TL%%) then ¢ cannot be the top result ¢} of the query, since at least ¢'°? is higher
in the query result (according to the property f,(t) < fq(t*°?)). This implies that f,(¢}) > T!%?. Hence, in

order to find ¢} one has to scan R; from the start and retrieve the prefix [t, 7 ,...,t%~", %), where t¥ is
the first tuple in R; with f,,(t}) < Tgfﬁ, ie., tv“’lfl is the last tuple of R; that is above the watermark.

We present the PipelinedMerge algorithm in two steps. The first step, which is presented in this
section, merges the results from the sources in a pipelined manner, given an “oracle” that provides the first
watermark vector. The algorithm applies to all types of functions for which such a watermark oracle is feasible
as discussed in Section 5. Section 5 provides the computation of the watermark (DetermineW atermark
function in Figure 2) for the class of functions described in Section 3.

The algorithm PipelinedM erge is described in Figure 2. It inputs:

e the preference function f,,,..., fy, for each source

e the result sequences R,,,...,R,, that the sources produce for these functions
e the user’s preference function f; and

e the number N of desired results

In each iteration, WINDOW stores all tuples ¢ that are candidates to have the maximum f;(¢) value among
all tuples in R that have not yet been output. Notice that we choose as t!°P the tuple with the maximum f,
value from the remaining tuples in WINDOW instead of the next unprocessed tuple in each result sequence
R,, separately. This choice optimizes the algorithm as the windows of tuples selected from each source will
be smaller, since the watermark values that depend on #°P will be greater. We repeat the steps of the
PipelinedMerge algorithm until the user’s number of requested results N are output. The theorem below
explains why in each iteration we output the first s tuples from WINDOW and not just the first.

Theorem 1 Consider

o the tuples [tL, ..., t% 1] ranked according to f, that are above the watermark of t},
o [ty,...,t¥="] which is the ranked order, according to q of [t,,...,t¥™']
e s which is the index of t,, in [t},...,t¥""], i.e., t, =t}

Then té, ..., by are the tuples with the highest rank in the answer of q.

Algorithm PipelinedMerge(Ry,,..., Ry, »fqsfvis---» fons N){
for i=1 to n do{
Retrieve first tuple t!?” from R,, and compute f,(t!’?)
}
Let t'? be the tuple t. that has the maximum f, (%)
while (less than N tuples in the output) {
Let (Tgff;, ... ,T,f;"y”q) = DetermineWatermarkVector (t!°P,vy,...,vn,q)
for i=1 to n do {
Scan R,, and determine the first tuple f,, with fy, (t,) < T;%h

Add all non-processed tuples up to {,, to temporary relation WINDOW
}
Sort WINDOW by f, and let s be the index of t!°? in WINDOW
Output and delete the first s tuples from WINDOW
if WINDOW is empty then
Add to WINDOW the first unprocessed tuple from each source
Sort WINDOW by f,
Let t'°P be the first tuple in WINDOW.

}

Figure 2: Algorithm to output the first N tuples according to ¢

Proof: Clearly fq(t;) >...> fq(t;”’l). Moreover due to the watermark property (Equation 1) V¢, f,(t) <
T, , = fq(t) < fo(t5). The theorem follows, since f,(t5) < fy(t5™") < ... < fy(t]). |

Theorem 2 (Correctness) Algorithm PipelinedMerge outputs the correct ranked results.

Proof: First we prove that the top tuple according to f, of a single source S; is contained in the window
of tuples from R; ending at the last tuple that has a smaller or equal f,, value to the watermark value
thff]. From the definition of the watermark vector we see that all tuples ¢ below the watermark value have
fq(t) < fy(t°P). That is, none of these tuples could be the top one according to f,. Hence the top tuple
according to f, is in the retrieved window.

So in each iteration of the PipelinedMerge algorithm (each iteration of the while loop) the top tuple
according to g from each source is contained in the tuples that are added to WINDOW. Hence the top tuple

according to f, over the union of all relations will be in WINDOW and will be output.

Theorem 3 There is no other pipelined algorithm that retrieves the same tuples from relations Ry, , ..., Ry,
with PipelinedMerge algorithm in each iteration and outputs more or the same results in every iteration
(and there is at least one iteration that it outputs more).

Proof: Assume that there was such an algorithm A’. Assume that at some iteration A’ outputs one
more tuple ¢’ than PipelinedMerge algorithm and exactly the same number of tuples in the previous
iterations. Given that PipelinedMerge algorithm outputs all tuples t for which f,(t) > f,(t'°?), it follows
that f,(t') < f,(t'°P). Also notice that ¢!°P is the same tuple in both algorithms since the same number of
tuples have been output in all previous iterations. But nothing can guarantee that there is no tuple ¢t in a
source that has not been retrieved yet and has f,(t") > f,(t') (recall that since we pick the tuple with the
biggest f, value as t;,p, the Watermarks provide the tightest bounds for all f;’s). So Algorithm A’ is not
correct. [|

Example Let us present an example of the algorithm’s operation. Assume ¢ is a query with ¢ =
(0.1,0.6,0.3) and there are two sources S; and S, that produce the result sequences R,, and R,, respectively.
Their preference vectors are v; = (0.2,0.4,0.4) and v3 = (0,0.5,0.5) respectively. The query and the sources

tuple | Al | A2 | A3 || fu, (2) | fo(®)
to 10 | 17 | 20 16.8 17.2
t1 20 | 20 | 11 16.4 17.3

tuple | Al | A2 | A3 || fu,(2) | fo(®)
i3 17 | 18 | 12 15 16.1
ty) 10 | 12 11 10.1

te 5101 5 9 9
tq 12 5| 5 6.4 5.7 ts 15]10] 8 9 9.9
(a) Ry, (b) R,,

Figure 3: Sources S1, S and scores of each tuple based on f,,, fy, and f;

have linear preference functions. Let mq = ma = mg = 5 and M; = My = M3 = 20. The sequences R,, and
R,, are shown in Figure 3.

First we retrieve the first tuple from each sequence and find the one that has the maximum f, value.
It is fy(t2) > f,(ts), so t'°7 = t,. We calculate the watermark vector (T}% = TtoP) = (14.26,15.33). The
calculation of the watermark is described in Section 5. Hence 5 and t; are added to WINDOW because
fu (t1) > TP . We sort the WINDOW by f, and output #; and #s, which have bigger or equal f, values
than #'°7. Next we add two fresh tuples ¢ and t3, because WINDOW is empty, and #3 becomes t/°?. We
calculate the watermark vector (T}, = Tl) = (13.1,13.5). So no tuples are added to WINDOW and t3 is
output. Now #*°P = t4. The algorithm continues and outputs #4, ts5, ts and t7.

5 Watermark Calculation

In this section we present algorithms for the calculation of the watermark vector for the three types of prefer-
ence functions described in Section 3. Each coordinate of the watermark vector is calculated independently
from the others. Thus we describe the DetermineW atermark algorithm, which is the main component
of the DetermineW atermarkVector algorithm used in PipelinedM erge algorithm. Notice that we assume
that all sources rank their objects using the same kind of preference functions as the query, but with different
preference vectors.

The calculation of the watermark vector is feasible when the preference functions of the query and the
sources are monotone for each attribute value. That is, for all f € {fy, fois-- -5 fon }> F(A1(t1), ..., Ax(t1)) <
f(A1 (tg), Cay Ak(tQ)) when Ai(tl) < Ai(tg) foriel,... k.

The inputs of the DetermineW atermark algorithm are the user function f;, a source’s function f, and
a tuple t?°P. Consider that the highest possible f,(t) is achieved for an imaginary tuple #'. Thus we will
determine the maximimum f,(¢') value while satisfying the following equation and thus the watermark.

fa@') < fo(tP) (2)

5.1 Watermark computation for Linear functions

We will now use Equation 1 to determine the watermark value ng)g’ in the case of linear functions f; and f,.
We assume that view R, is ordered by decreasing values of the score of f,. Thus we will determine the tuple
t' that maximizes f,(¢') while satisfying f,(t') < f,(t'°?). Since we know the values of t!°?, = (qi, ..., qi)
and ¥ = (vy,...,v;), we need to come up with bounds for the values of ¢ = (A;(t),...Ax(t)) using the
known parameters to maximize f,(t') while satisfying the inequality of Equation 1 for all ¢ € R. We will
subsequently use these bounds to derive the watermark. Let us express fy(t) = Ele q;A4;(t) as a function

of f,(t) = 32 | v;A;(t). Thus,

k k
Fo) =Y @i Ai(t) = fult) + Y (g — v:) As(D) (3)
i=1 i=1
By substituting Equation 3 into Equation 1 we get
k
Vt € R, fo(t) ST = folt) + Y (g — vi) Ai(t) < fy(£°P) (4)
i=1

Fot)=3"% vym;
mm(*) Evi<>l i , Mz) qi >v; <>0
M; i >v; =0
Ai(tl) — Oz qi " :zvi (8)
Fo)=S"% uiM;
max(“@ %’io’%) q; < ;

Figure 4: Bounds for A;

Consider that the highest possible f,(¢) is achieved for ¢'. It is:

k

fu(t') + Z(Qz —) Ai(t') < fy () (5)

i=1

We will treat Equation 5 as equality; since the left side of Equation 5 is linear on f,(¢'), the corresponding
inequality is trivially satisfied. Since out objective is to determine the maximimum f,(¢') value that satisfies
Equation 5, which is linear in f,(t'), we will determine bounds for each attribute A;(¢') in a way that the
left part of Equation 5 is maximized. We determine the bounds for each attribute A;(¢'), by the following
case analysis. Recall also that each attribute A; has domain [m;, M;].

e (g; —v;) > 0 and v; <> 0: In this case we have that

Ay =)= E;:fivjAj(t') L Fol) - §5<>i”jmj ©

f (t')fzk vjm;
- L2 ~ 2 Since A;(t") < M;, we have that A;(t') = min(U;, M;).

We set U; =
e (g; —v;) > 0and v; = 0: then A;(t') = M;
e (¢; — v;) = 0: we can ignore this term
e (g; —v;) <0 and v; <> 0: In this case we have that:
k k
. fv(tl) - Ej<>i UiAj(tl) > fv(tl) - Zj<>i v; M;

Vg Vg

Fot) =% iy
is>i . Since A;(t") > m;, we have that A;(t') = max(L;,m;).

vi

We set L; =

Figure 4 summarizes the results of our analysis for each attribute value A;(#'). Notice that we use the
notation A4;(t') to denote the bound for the value of attribute A;. Also notice that when (¢; — v;) > 0
we determine an upper bound for the value of A;(t') whereas when (¢; — v;) < 0 we determine a lower
bound. The main difficulty in solving Equation 5 directly, lies on the existence of min and max terms, with
two operands each, in the expressions derived for the attribute bounds (Figure 4). [HKPOI] presents an
efficient methodology for solving this kind of equations. We include this methodology in the Appendix for
completeness.

5.2 Watermark computation for Logarithmic functions

We follow a procedure similar to the one for linear functions. First we express f,(t) = Ele qilog(A;(t)) as

a function of f,(t) = Zle vilog(A;(t)). Thus,

k

k
fo(t) = Z qilog(Ai(1)) = (1) +_(ai — vi)log(Ai(t)) (9)

i=1

o (t)— : il J
min(f © ZJOIU o9),log(Mi)) g >v; <>0
(1)) — lOQ(Mi) g >v;=0
log(As() = ; ()
v t'— k _’Ujlo MJ'
maw(f = ij,jl d)JOQ(mi)) 7 < v
Figure 5: Bounds for log(A4;)
By substituting Equation 9 into Equation 1 we get
k
Vi€ R, fu(t) STUF = fuolt) + Y (ai — vi)log(Ai(t)) < fy(£°P) (10)
i=1
Let ¢’ be the tuple that maximizes f,(.) while satisfying Equation 1.
k
fult) + Z(qi — v;)log(Ai(t")) < fo(t'°P) (11)
i=1

Now the key idea is to upper bound the (g; — v;)log(A;(t')) terms. We perform a worst-case analysis by
producing the A;(¢') values that maximize the left hand side, i.e., turn Equation 11 into an equality. The
resulting bounds are shown in Figure 5. The algorithm continues as in the linear functions’ case.

Notice that we assume that m; and M; are not less than 1, which is very reasonable since applications that
use logarithms typically have integer attribute values. Consider for example an attribute being the number
of occurences of a keyword in a document, in which case the logarithm would prevent someone from writing
a word a huge number of times on a Web page in order to receive high ranking. The watermark is then
computed by plugging the bound values to Equation 11. Notice that the equation will contain min and
maz functions that contain the unknown f,(¢'). An algorithm that solves this equality in an efficient way is
shown in the Appendix .

5.3 Watermark computation for Cosine functions

The calculation of the watermark for a cosine function differs from the linear and logarithmic cases because
we can not have a separate term in the preference function for each attribute. The reason for this is the |f]

term in f(t) = t.“ T Z] 1 VjA;(t). This means that we need to calculate an upper bound for f,(¢) — f,(t)
as a whole. Hence Equation 1 can be written as:

Fo) + (£o() = fu(#)) < fo(#"P) (13)

where t' is the tuple that maximizes f,(t') while satisfying Equation 13 . Now we need to find an upper
bound for f,(t') — f,(t') to plug it in Equation 13.

gt §f ¢ q§ @
Fot') = fult) = ==
! T TN G

) (14)

=
I

o
i

Since (‘q‘ — \vl) is fixed for every pair of functions and % has size 1, the above expression is maximized when
t is parallel to (
tuple P is f,(t

- %‘) and its maximum value is |% - ‘—| This means that the watermark value for a

4
7 maxit il
)= fo(#7) = |k —

2500

14000]
12000
g /n < 2000
& 10000 z n
5 £ 1500 4
£ gom =
@ / 5
5 6000 E‘ 1000
2 / pod %L
= =
o 0 / & sm
=
< 200 \‘\\‘é—:!:u
o // 0 ; ; ; ‘ : : : :
0 0z 0.4 06 0.8 1 0 ! 2 3 4 5 B 7 8 B
I Number of §
Manhatan distance Hmber of Sources
|+tup—1 result —s—top-10 results 1op-100 results |—o—tup-1 result —s—top-10 results top-100 results
(a) Varying Manhattan distance (b) Varying number of sources

Figure 6: Experimental Results

6 Experimental Results

The performance of PipelinedM erge depends on the number of sources and on the similarity of the function
fq, which is used by the user query, to the functions f,,,..., f,, supported by the sources. We performed
two sets of experiments. First we measured the average prefix of the source relations as a function of the
Manhattan distance M D between the preference vectors of the user query and the source queries (M D =
Zle |g; — vy, |). For simplicity in the report, we assumed the distance of the query from each source is the
same. Then we measured again this prefix as a function of the number of sources.

The experiments use a synthetic dataset that represents house information. Each house has four at-
tributes, price, bedrooms, bathrooms, square feet with corresponding cardinalities 1000000, 10, 8 and 3500.
The attributes take random values within their domain. Every source’s relation has 50,000 tuples. We use a
discretization of 0.05 for the domain from which we draw source and query preference vectors (0 through 1,
in increments of 0.05). Since we work with four attributes the maximum Manhattan distance of the query
preference vector from each source preference vector is 2. Linear functions were used for all experiments.

Prefix size for varying distance between metabroker and sources queries. Our first experiment
assesses the average prefix size that we need to retrieve from each of the underlying sources in order to
present to the user of the metabroker the top 1, 10 and 100 results, as a function of the Manhattan distance
between the metabroker query and the source queries. Notice that the Manhattan distance between any two
source queries can be at most two times the distance between the metabroker and the source queries. We
use four sources for this experiments and the resulting graph is shown in Figure 6 (a). We see a slightly
superlinear performance deteriotation due to the fact that the preference scores have a concentration towards
the “average” score.

Prefix size for varying number of sources. The second experiment measures the average prefix size
that we need to retrieve from each of the underlying sources in order to present to the user of the metabroker
the top 1, 10 and 100 results, as a function of the number of sources that are used. The Manhattan distance
between the metabroker query and the source queries is fixed to 0.2. The result is shown in Figure 6 (b).

7 Conclusions

The increasing number of data sources and search engines that rank their objects according to a function of
their attributes creates the need to find efficient ways of combining the results from multiple such sources on
a meta-broker. We have presented an algorithm that performs the merging of ranked results from multiple
sources in a pipelined manner, in the case where the preference functions used by the sources and the user
are (i) linear, (ii) cosine, or (iii) linear combinations of the logarithms of the attributes. The algorithm can

be extended to other classes of functions as well, assuming corresponding watermark determination routines
are built for those functions.

References

[CG96]
[CLC95]
[Fag96]
[FLNO1]
[GBKO0]
[GBKOL]
[GCMPY7]
[GM9Y7]
[HKPO1]
[NR99]

[VGJLY5]

S. Chaudhuri and L. Gravano. Optimizing queries over multimedia repositories. Proceedings of ACM
SIGMOD, 1996.

J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with inference networks. Proceedings
of the 18" Annual SIGIR Conference, 1995.

R. Fagin. Combining fuzzy information from multiple systems. ACM Symposium on Principles of
Database Systems, 1996.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Algorithms for Middleware. Pro-
ceedings of ACM PODS, Santa Barbara CA, May 2001.

U. Guntzer, W. Balke, and W. Kiessling. Optimizing multi-feature queries in image databases . Proceed-
ings of Very Large Databases (VLDB), 2000.

U. Guntzer, W. Balke, and W. Kiessling. Towards Efficient Multi-Feature Queries in Heterogeneous
Environments . Proceedings of IEEE Intenational Conference of Information Technology (ITCC), 2001.

L. Gravano, C. K. Chang, H. G. Molina, and A. Paepcke. STARTS:Stanford proposal for Internet meta-
searcing. Proceedings of ACM SIGMOD, May 1997.

L. Gravano and H. G. Molina. Merging Ranks from Heterogeneous Internet Sources. Proceedings of
VLDB, Athens Greece, 1997.

V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER:A System for the Efficient Execution of
Multi-parametric Ranked Queries. Proceedings of ACM SIGMOD, Santa Barbara CA, May 2001.

S. Nepal and M. Ramakrishna. Query processing issues in image (multimedia) databases . Proceedings
of International Conference on Data Engineering, 1999.

E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird. The collection fusion problem. Proceedings of 3™¢
Text Retrieval Conference (TREC-8), 1995.

10

8 Appendix: Solving systems of inequalities with min, max terms
(from [HKPO1])

The main difficulty in solving Equation 5 directly, lies on the existence of min and maz terms, with two
operands each, in the expressions derived for the attribute bounds (Figure 4). Each min (equivalently max)
term however, is linear on f,(¢') thus it is easy to determine for which range of f,(¢') values, each operand of
min (equivalently maz) applies, by determining the f,(¢') value that makes both operands equal. Assume
the expression for attribute bound 4;(t') contains a min or a maz term. Let e; be the value for f,(¢') that
makes both operands of min or max equal. As f,(t') varies, we now know exactly which operand in each
min or max term we should use to determine a bound on the attribute value. Since both U; and L; terms
are linear on f,(t'), we observe weather f,(¢') lies on the left or right or e;. There are at most k attribute
bound expressions and thus 1 < i < k. Possible values of f,(t') range between Zle v;m; and Zle v; M;.
If we order the e;’s, we essentially derive a partitioning of the range of possible values of f,(¢') in k + 1
intervals, I;,1 < ¢ < k + 1. For each value of f,(t') in these intervals the expressions used to compute each
attribute bound are fixed and do not involve min or maz.

We construct a table E having k+ 1 columns, denoting the value intervals for f,(¢') and k rows, denoting
the expressions for each attribute bound. For each entry E(i,j),1 <i < k,1 < j < k+ 1 in this table we
record the exact expression that we will use to determine the bound for attribute A;. If an attribute bound
expression is not a function of f,(#') we can just record the value in the suitable entry as a constant. Once
the table is populated, for each value of f,(#') we know the attribute bound formulas that comprise the left
hand side of Equation 5. Thus we have k + 1 possible expressions for the left side of Equation 5. Each
expression, E;,1 < j <k + 1 is produced by:

k

Ej = f,(t") + > (¢ — vi) E(i, /) (15)

i=1
Theorem 4 Setting E; = f,(t)),1 < j <k +1 and solving for f,(t') determines the watermark value.

Proof: For each j two possibilities exist: (a) the f,(¢') value computed does not fall in the j-th interval.
In this case, the expression for E; cannot yield f,(tl) since E; produces an upper bound for f,(t) by
construction, (b) f,(t') falls in the j-th range. Since E; = f,(f1) is a linear function and has a unique
solution in range j, f,(t') is the watermark T, ,. Note that the range of possible values for f,(t') is the same
with the range of possible values for £}, thus j will always be identified.

Algorithm Determine Watermark is shown in figure 7. The algorithm assumes that table E has been
computed in a preprocessing step. The algorithm uses O(k?) space and determines the watermark solving k

equations in the worst case.

Algorithm DetermineWatermark (tuple ¢1) {
for j from k+1 downto 1 {
Solve E; = f,(t}) and determine watermark

if watermark € I; return watermark

—

Figure 7: Algorithm Determine Watermark

11

