Univ. of Pennsylvania Technical Report No. MS-CIS-01-21

1

We have a general interest in the algorithmic foundations of XML query optimization. The
core problem considered here is query equivalence (more generally—query containment) under
integrity constraints. There is a large body of research on using constraints in query optimiza-
tion in traditional databases. Such results do not apply directly to XML queries because
of the transitive closure (Kleene star) operator in path expressions, which is not first-order
expressible. Significant work that does handle the Kleene star operator has been done on
containment of semistructured queries [11, 4, 5]. But these results do not apply directly here

Containment and Integrity Constraints for XPath
Fragments

Alin Deutsch * Val Tannen

University of Pennsylvania

Abstract

XPath is a W3C standard that plays a crucial role in several influential query, trans-
formation, and schema standards for XML. Motivated by the larger challenge of XML
query optimization, we investigate the problem of containment of XPath expressions un-
der integrity constraints that are in turn formulated with the help of XPath expressions.
Our core formalism consists of a fragment of XPath that we call simple and a corre-
sponding class of of integrity constraints that we call simple XPath integrity constraints
(SXIC). SXIC’s can express many database-style constraints, including key and foreign key
constraints specified in the XML Schema standard proposal, as well as many constraints
implied by DTDs. We identify a subclass of bounded SXIC’s under which containment of
simple XPath expressions is decidable, but we show that even modest use of unbounded
SXIC’s makes the problem undecidable. In particular, the addition of (unbounded) con-
straints implied by DTDs leads to undecidability.

We give tight II5 bounds for the simple XPath containment problem and tight NP
bounds for the disjunction-free subfragment, while even identifying a PTIME subcase.
We also show that decidability of containment under SXIC’s still holds if the expressions
contain certain additional features (e.g.., wildcard) although the complexity jumps to II5
even for the disjunction-free subfragment.

We know that our results can be extended to some but not all of the XPath features
that depend on document order. The decidability of containment of simple XPath ex-
pressions in the presence of DTDs only remains open (although we can show that the
problem is PSPACE-hard) as well as the problem for full-fledged XPath expressions, even
in the absence of integrity constraints.

Introduction

*Contact author, Univ. of Pennsylvania, 200 S. 33rd St., Philadelphia, PA

adeutsch@saul.cis.upenn.edu

because the XML models are trees rather than arbitrary graphs. Nonetheless, the present
work benefits from ideas introduced in all these previous papers.

Integrity constraints are a fundamental mechanism for semantic specification in traditional
databases. For XML, the design of specification formalisms for integrity constraints is still an
ongoing effort, from DTDs [17], to recent work on keys [3] and database-style constraints [10, 9]
and the current XML Schema standardization effort [19].

Several of these formalisms build on the XPath standard [18] or on closely related languages.
XPath is also central to XML transformation and query language standards (XSLT [21],
respectively XQuery [20]). Consequently, understanding the foundations of XPath query opti-
mization is an important step in tackling the more general problem of XML query optimization.

Here is an example of XPath expression

P % //(alb)/c[@m =70" and .//d and .= //.[@0]//.]/@n

Meaning of XPath expressions. To describe the meaning of this notation recall that an
XML document represents a rooted tree whose nodes include elements and attributes [17].
Given a contert node z in the document tree, the meaning [p]z of an XPath expression p
is the set of nodes that can be reached from z when “navigating” the tree according to p.
Then one needs to explain how navigation composes for the various operators that appear
in the XPath definition. For example, [p1/pz2]z is the union of all [pz]y for all y that are
element children of the nodes in [pl]z. Similarly for [/p2]z except y ranges over the element
children of the root node (z is not used!). For pi//p: and //pa replace “children” with
“descendants”. Moreover, we have [.Jx = {z} while [n]z and [@n]z consist of the element
children, respectively attributes, of node z that have tag, respectively name, n. Finally, [p[¢]]=
selects those nodes y in [p]x such that [¢]y holds true.

Accordingly, P above returns the set of attributes named n of all elements tagged ¢ which are
children of an element tagged a or b and have an attribute named m of value ”0”, a descendant
element tagged d and some ancestor with an attribute named o. There is much more about
XPath and its semantics that can be found in [18, 22]. Additional operators are described
below.

We also consider a class of XML integrity constraints that combine the logical shape of the
classical relational dependencies [1] with a controlled amount of disjunction and with atoms
defined by the XPath expressions themselves. Here are a few examples of constraints

(oneAddress) VxVs1Vsa [//person x Az ./address si Az ./address s — s1 = s3]

)

(someAddress) Yz [//person x — Ty x ./address y]

(idref) Vz [//person/Qspousex — Iy //.yAy ./Qx z]

(keys,p) Vz,y,s [//person z A [[person y Az ./Qssn sAy ./Qssns— =1y
)

(grandpa) Vz,y,z,u [z ./(son|daughter) y Ay ./(son|daughter) z Az ./Qssn u — z ./Qgrandparent u]

DTDs imply some of these constraints. Consider the DTD entry <!ELEMENT person (address?,...)>
stating (among other things) that person-elements have at most one address-element nested
within them. We express this as (oneAddress) above. With address+ instead of address?
we assert the existence of at least one address-subelement, thus implying (someAddress).
(¢dref) above holds whenever a DTD describes the spouse-attribute of person-elements to
have type IDREF (the wildcard * in @x is used to say that there is some attribute of un-
specified name, in an element y of unspecified tag, agreeing on its value with the value of
the spouse-attribute). The constraint (keys,) captures the fact that the ssn-attribute is a
key for person-elements (this is not DTD expressible, but can be stated in XML Schema and
in [10, 3, 9]). (grandpa) expresses another useful kind of constraint which is reminiscent of

relational inclusion dependencies [1] but goes beyond the formalisms of [10, 3, 9] or XML
Schema.

As we can see, inspired loosely by path specification in UNIX-like file directory systems, XPath
was designed to be a (1) compact and (2) expressive notation. Its full-fledged definition has
many features inspired by practical considerations. The techniques that we bring to bear in
this paper can tackle many of the features of full-fledged XPath, but not all. Our approach
(explained in section 4) limits the XPath expressions we can analyze formally to a subclass we
call simple and some significant extensions thereof, handled separately because they feature
distinct complexities of the containment problem.

2 Simple XPath

Simple XPath expressions are generated by the following grammar (n is any tag or attribute
name, v any variable name, and s any string constant):

(simple zpath) p = palp2 | /p | //p | p1/p2 | p1//p2 |pPlg]|.|n|@n|Q@x | $v:=Qn |
text() | id(p) | id(s)
(qualifier) ¢ == g1 and ¢2 | q1 or g2 |p|p=s|Qn=%v | $v; = $us

Simple XPath expressions feature both an extension and restrictions from the XPath standard.
The extension is their ability to bind variables. Variables are introduced by the $ sign, and
only for attribute values. The meaning of $v := @n is that of binding variable v to the string
value of the current node’s n-attribute. The test @n = $v in a qualifier is satisfied if the value
of the current node’s n-attribute equals the value v was previously bound to. $v; = $vs is
satisfied if vy,v2 were bound to the same string value. QOur ability to bind variables goes
beyond the XPath specification, which intends variables to be bound in the outside context
(usually represented by XPointer, XSLT or XQuery expressions), and only allows for testing
their values inside XPath expressions. However, for practical purposes this does not result
in an effective increase in expressive power, since XPath expressions are not meant to be
used standing alone, but rather embedded in expressions of the three standards mentioned
above. In the case of XQuery for instance (which is what we ultimately want to optimize), an
XPath expression that binds variables is just syntactic sugar for a query with several XPath
expressions that don’t: the XQuery body For/a[@n = $v]//b[@m = $v] $z is equivalent to
For /a/@Qn $v, $v//b 3z, $2/Qm $w, Where $v = $w.

The most notable restrictions to the full-fledged standard [18] are the absence of the navigation
axes following, following-sibling, preceding, preceding-sibling. This is because for the time
being we disregard the document order, seeing the XML document as an unordered tree, in
which these axes have no meaning !. Some of these restrictions are lifted in section 7, where
we handle following-sibling and preceding-sibling.

Moreover, we disallow for the moment navigation steps via the child axis from or to elements
of unspecified tag. This can be done either by using the wildcard * for going to a child of
unspecified tag name, or inversely, by using the parent axis to get to a parent of unspecified
tag name, and finally, by using the ancestor axis, which performs an implicit parent navigation
step, followed by al ancestor-or-self step. This is Why *,parent,ancestor,ancestor-or-self are
missing from our grammar. We treat these separately in section 3 because it turns out that
the corresponding containment problem has higher complexity.

1 Note that this view is actually consistent with the XPath 1.0 specification [18], which defines the semantics
of XPath expressions as being a set of nodes. The upcoming XPath 2.0 is expected to introduce list semantics,
which we do not consider here.

We also rule out negation from qualifiers, for the same reason for which negation causes
problems in the classical relational dependency theory [1].

Simple XPath integrity constraints (SXICs). We consider dependencies of the general
form

!
Vzi ...V, [B(Z1,...,Zn) — \/ 2,1 - - 32k Ci@1,- -3 oy 2315+ 5 %3 ;)] (1)
i=1
where B, C; are conjunctions of atoms of form v p w where p is a simple XPath expression or
equality atoms of the form v = w, where v, w are variables or constants. We demand of course
that v, w be of compatible type. v may be missing from a path atom if p’s context node is the
root of the document (i.e. if p begins with / or //).

All constraints shown in section 1 are SXICs. We have seen that some of them are not ex-
pressible by DTDs, while others are implied by them. But in general DTDs and SXICs are
incomparable. DTD features that cannot be expressed by SXICs are the order of sibling
elements, and the fact that an element admits subelements of given tags only.

Satisfaction of SXICs. We say that the binding of v to a node a, and of w to a node b
satisfies a path atom v p w if b is equal to some node in the set returned by p when starting
from context node a. We define equality as equality of the string values for text and attribute
nodes, while an element node is equal only to itself. Equality atoms are satisfied according
to this definition. An SXIC of general form (1) is satisfied if for any type-consistent binding
of the variables zy,...,z, that satisfies all atoms in B, there is some 1 < ¢ < [and some
extension of this binding to the variables z; 1, ..., 2;r, such that all atoms of C; are satisfied
by the extended binding.

Containment under SXICs. Given a set C' of SXICs, and simple XPaths P;, P, we say that
P, is contained in P, under C (denoted P, C¢ P») if every node in the set returned by Py
is equal (in our sense) to some node in the set returned by P» whenever both are applied to
any XML document which satisfies all SXICs in C. (This definition is more flexible than just
asking for containment of the node sets returned by P;, P2, because it does not distinguish
between attribute and text nodes of distinct identity but equal string value.)

Bounded SXICs. This subclass of SXICs allows the same generality as all SXICs in the
left-hand-side B of the implication, but it restricts the form of the right-hand-side of the
implication. Namely, the XPath atoms occuring in the conjunctions C; must have one of the
following forms:

v = w v ./Qn w v./Qx w v./nw v.// . w /] w /nw

Moreover, while all occurrences of v, w can be universally quantified, there are restrictions on
the cases when they may be existentially quantified. In order to state these restrictions, we
introduce the notion of bounded-depth variable: we say that variable w is bounded-depth if it
appears on either side of the implication in an atom /n w, or in atoms v ./n w Or w ./n v, with
v bounded-depth. The restrictions on existential quantification are given below:

e w must be universally quantified in v ./@n w, v ./@* w and v .//. w

e v or w may be existentially quantified in v ./n w only if they are bounded-depth.

All SXIC examples in section 1 are bounded except for (someAddress), which contains the
existentially quantified, non-bounded-depth variable .

Theorem 2.1 Containment of simple XPath expressions under bounded SXICs is decidable.
If we fix the constraints, the problem is in 115 in the size of the expressions (if we don't, the
problem is in EXPTIME in the size of the constraints). If in addition we consider disjunction-
free simple expressions and constraints, the complexity drops to NP. Moreover, if we also
disallow attribute variables in the expressions, the complexity drops to PTIME.

In practice, we often know that XML documents satisfy SXICs that are not necessarily
bounded, the most salient examples being SXICs implied by DTDs, such as (someAddress)
from the introduction. Unfortunately, we have the following result:

Theorem 2.2 Containment of simple XPath expressions under unbounded SXICs is undecid-
able.

Complexity lower bounds. It turns out that for fixed SXICs, the upper bounds in theorem
2.1 are tight:

Theorem 2.3 Just containment of simple XPath expressions (no constraints) is I15-hard.
Containment of disjunction-free simple XPath expressions (again no constraints) is NP-hard.

A missing piece in the puzzle is the lower bound for containment under simple bounded SXICs
when the constraints are not fixed. We conjecture EXPTIME-hardness however, expecting
that the proof of EXPTIME-hardness for the relational chase [6] can be adapted.

DTDs and SXICs. In XML practice, constraints on the form of documents are often specified
using DTDs. A natural question pertains to the status of our decidability results in the
presence of DTDs, with or without SXICs. A careful analysis of the proof of theorem 2.2
shows the following. Let Cy be a set of bounded SXICs without disjunction and existentials.
Let D be a DTD and let Cs be a set of unbounded SXICs implied by D. Let also X; and
X5 be two simple XPath expressions. What we prove, in fact, is that the problem of whether
X1 Cc,uc, X2 is undecidable.

Corollary 2.4 Containment of simple XPath expressions is undecidable in both following
scenarios (1) under unbounded SXICs, and (2) in the presence of bounded SXICs and DTDs.

Bounded SXICs cover many common cases: given a DTD, it is usually possible to rewrite
constraints such as (someAddress) in bounded syntax, unless in the rest of the DTD (which we
do not specify) the address element is nested (immediately or not) in some “X”-element that
may contain a descendant “X”-subelement. Such “cyclic” element declarations are not very
common!

The problem of deciding containment of simple XPath expressions under DTDs only (no SXICs)
remains open, and the following lower bound which is in fact in the size of the expressions,
combined with the upper bound in theorem 2.1, suggests that the techniques that we use in
this paper are unlikely to help:

Theorem 2.5 Containment of simple XPath expressions in the presence of DTDs is PSPACE-
hard.

3 Beyond Simple XPaths

In this section we enrich simple XPath expressions with several navigation primitives from the
XPath standard.

Parent axis. We allow navigation to the parent of the current node. Concretely, this amounts
to adding the production p ::= parent to the grammar in section 2.

Ancestor axes. We allow navigation along the ancestor and ancestor-or-self axis. The
corresponding productions are p ::= ancestor | ancestor-or-self.

Wildcard Child. We further allow navigation along the child axis to elements of unspecified
tag, adding p ::= * to our grammar (x is called the wildcard). Here is an XPath expression using
wildcard child navigation: P’ ' //c/«[@m = 0] . It returns the set of elements of unspecified
tag (indicated by the x), that have an m-attribute of value “0" and a parent tagged ¢ who is a
non-immediate descendant of the document root. Note the use of the wildcard * (disallowed
in simple XPath expressions).

Path equality. We extend the grammar of qualifiers with the production ¢ := p1 = po,
corresponding to path equality tests. Such tests are satisfied if some node returned by path
p1 is equal to some node returned by path p.. Equality tests must of course typecheck, and
they are satisfied for text and attribute nodes if and only if the string values are equal. In
contrast, an element node is only equal to itself. This definition of element node equality
follows XML-QL [7] as opposed to the ad-hoc treatment in [18].

Although none of the above extensions seems to have anything to do with disjunction, each
one of them (except parent, for which we do not know what happens) when added to the
disjunction-free fragment raises the complexity (recall from theorem 2.1 that it is NP when
the constraints are fixed):

Theorem 3.1 Adding any one of the following to disjunction-free simple XPath expressions
makes their containment problem (no constraints) I15-hard: 1. path equality 2. ancestor azis
3. ancestor-or-self axis 4. wildcard child

However, this is pretty much as far as the complexity raises:

Theorem 3.2 Consider simple XPath expressions enriched with path equality and ancestor-
or-self axis. The containment of such expressions under fized bounded SXICs is in 115 in the
expression size.

In dealing with wildcard in this paper we have further restricted the constraints. We believe
however that this restriction can be lifted.

Tree SXICs. These are bounded SXICs that satisfy the following additional restrictions: (i)
v must be universally quantified in v ./n w (recall page 4). (ii) We disallow atoms of form
v .// w from the right-hand side of the implication and (iii) For any constraint ¢ and any
of ¢’s equality atoms of form v = w (where v,w are variables) in the right-hand side of the
implication, if »,w are bound to element nodes, ¢ must contain the atoms « /n v and u /m w
for some variable « and tag names n,m.

Restriction (iii) ensures that in all models satisfying ¢, the only expressible key constraints
are keys among sibling nodes. Recalling the examples in section 1, (oneAddress) corresponds
to this restriction, while (keys,) does not. The intuition behind all three restrictions is that

no combination of tree SXICs can compromise the tree property of a given document, whence
their name.

Theorem 3.3 Consider simple XPath expressions enriched with parent, ancestor, ancestor-or-self
and wildcard child navigation. The containment of such expressions under fixed tree SXICs is
in I3 in the expression size.

4 Decision Technique: First-Order Translation

For the decision procedure, we set out to leverage techniques from classical relational theory by
reducing containment under constraints to an equivalent first-order question. We define shortly
Y Which consists of a relational schema and some first-order integrity constraints on this
schema. Then, we translate XPath expressions into unions of relational conjunctive queries
over the schema of ¥, Moreover, we translate SXICs into first-order sentences over the same
schema and of the same form as the integrity constraints in ¥y, . Denoting the translation
of a set C' of SXICs with X, we will reduce containment of simple XPath expressions under
C to containment of unions of relational conjunctive queries under gy, U 3.

Any XML document D corresponds to a (finite) Xy -instance Ip such that if ¢ is a contain-
ment or an SXIC then ¢ holds in D if and only if its Y« translation holds in Ip. This makes
our reduction by translation to a first-order problem sound. However, transitive closure and
“treeness” cannot be captured by the integrity constraints we are willing to allow in Yy
hence there are Yxr-instances that do not correspond to any XML document. Any decision
procedure used for the first-order problem must therefore be strengthened to make the entire
reduction also complete.

The restriction to bounded SXICs allows us to use the classical chase-based decision proce-
dure [2] for the first-order problem that results from the translation to Yxy.. Even so, the
presence of disjunctions in the constraints requires an extension of the classical technique
(shown in [8]. See also the result given for a restricted kind of disjunctive dependencies in
[12]).

Y consists of the relational schema (root,el, child, desc, tag, attr, id, text) and of a set
of first-order constraints outlined below. The “intended” meaning of the relational symbols
in Yy, is the following. The constant root denotes the root of the XML document, and the
unary relation el is the set of its elements. child and desc are subsets of el x el and they
say that their second component is a child, respectively a descendant of the first component.
tag C el X string associates the tag in the second component to the element in the first.
attr C el X string X string gives the element, attribute name and attribute value in its
first, second, respectively third component. id C string x el associates the element in the
second component to a string attribute in the first that uniquely identifies it (if DTD-specified
ID-type attributes exist, their values can be used for this). text C el x string associates to
the element in its first component the string in its second component. Some (but not all!) of

this intended meaning is captured by the following set ¥, of first-order constraints

(base) Vz,y [child(z,y) — desc(z,y)] (oneTag) Vz,t1,t2 [tag(z,t1) Atag(z,t2) = t1 =t2]
(trans) Vaz,y,z [desc(z,y) A desc(y, z) (id) Vs,er,ez [id(s,e1) Aid(s,e2) — e1 =e2]
— desc(z,2) | (noLoop) Vz,y [desc(z,y) Adesc(y,z) > z =y |
(refl) Vz [el(z) — desc(z,z) | (oneParent) Vx,y,z [child(z,2) A child(y,z) & z =y]
(ele) Vx,y [child(z,y) — el(z) Ael(y)] (noShare) Vz,y,u,v [child(z,u) A child(z,v)
(elg) Vz,y [desc(z,y) — el(z)Ael(y)] Ndesc(u,y) Adesc(v,y) & u =]
(el;g) Vs,z [id(s,z) — el(z) | (oneRoot) Vz [desc(x,root) — x = root]
(el;) el(root)
(line) Vz,y,u [desc(z,u) Adesc(y,u) - z =y Vdesc(z,y) V desc(y, z)]

Observe that (base), (tramns), (refl) above only guarantee that desc contains its intended in-
terpretation, namely the reflexive, transitive closure of the child relation. There are many
models satisfying these constraints, in which desc is interpreted as a proper superset of its
intended interpretation, and it is well-known that we have no way of ruling them out using
first-order constraints. The fact that we can nevertheless use the constraints in Y, and clas-
sical relational (therefore first-order) techniques for deciding containment under constraints
comes therefore as a pleasant surprise.

DEDs. Note that except for (line), all constraints in Yy, are embedded dependencies (as [1]
calls them, but also known as tuple- and equality-generating dependencies [2]) for which
a deep and rich theory has been developed. (line) contains disjunction but so do the XPath
expressions, implicitly, via the | operator. Extending the theory to what we will call disjunctive
embedded dependencies (DEDs) is fairly straightforward as suggested already in [2]. We show
this extension in [8] where DEDs are defined exactly like the SXICs in formula (1) but with
relational atoms instead of XPath atoms. The main difference to the classical chase is that,
instead of a chase sequence, the rewrite yields a chase tree, whose leaves are conjunctive queries
to which no chase step with DED from the set D applies.

We translate XPath expressions into unions of relational conjunctive queries over the schema
of ¥xur- This translation is performed by first translating away the disjunction (| in paths,

or in qualifiers), thus obtaining a union of simple, disjunction-free XPath expressions:
/(son|daughter) translates to /son U /daughter. Next, we translate these XPath expressions ac-
cording to the operator T (¢, p, s) defined below. It takes a variable denoting the context node
¢, a disjunction-free XPath (sub)expression p and a variable s denoting a node in the node set
yielded by p, and returns the body of a relational conjunctive query. z,u below denote fresh

variables.

T(z,/p,y) = T(root,p,y) T (z,ancestor-or-self,y) = {desc(y,z)}
T(z,//p,y) = {desc(root,2)} UT(2,p,y) T (z, ancestor,y) = {child(z,z2),desc(y, 2)}
T(z,p1/p2,y) = T(z,p1,2) UT(2,p2,9) T(z,%y) = {child(z,y)}
T(z,p1//p2,y) = T(z,p1,2) U {desc(z,u)} UT (u,p2,9) T(w,. ,y) = {child(y,)}
T(z,plal,y) = T(z,p,y)U Ay, q) T(x,$v := Qn,y) = {attr(z,’n”,v),y =v}
T(z,,y) = {z=y} Oz, q1 and ¢g2) = Q(x,q1) U Q(,q2)
T(z,n,y) = {child(z,y),tag(y,n)} Q(z,p) = T(z,p,2)
T(z,@n,y) = {attr(z,”n",y)} Qz,p=s) = T(z,p,s)
T(z,Qx,y) = {attr(z,z,y)} Q(z,@n = $v) = {attr(z,”n",v)}
T(z,text(),y) = {text(z,y)} Oz, $v1 = $v2) = {v1 = va2}
T(z,id(p),y) = T(z,p,2z) U {id(z,9)} Oxz,p1 =p2) = T(z,p1,2) UT(z,p2,2)

T(:C,ld()ay) = {id(syy)}

It is not hard to see that this translation captures exactly the formal semantics in [22] over
models in which desc has the intended interpretation.

Example translation. Recalling our simple XPath example P from section 1, we first
translate away the disjunction obtaining Pi U P, where Pi = //a/c[@m = ”0” and .//d and . =
//.[@0]//.]/@n and Py = //b/c[@m = »0” and .//d and . = //.[@0]//.]/@n. Next, we translate P, P,
according to 7(). For example, P; translates to

P{(z) <+ desc(root,u1) , tag(ui,”a”),child(uy,u2) , tag(uz,”c”), attr(uz,”m”,”0”),
desc(uz,u3), tag(us,”d”), desc(root,us), attr(us,”o”,us), desc(uq,uz), attr(us,”n”,x)

where the equalities of variables (of the form w = v) obtained during the translation were
eliminated (by substituting w for v everywhere).

SXIC Translation. Combining the 7 ()-translation of the XPath atoms shown above with
a straightforward translation of logical connectives and quantifiers, we translate SXICs into
disjunctive embedded dependencies (DEDs) over the schema, of Yy (see appendix A).

Section 5 shows in detail how we use this reduction to containment of relational queries under
first-order dependencies to decide containment of simple XPath expressions, and section 6
shows how we extend this kind of reasoning to handle containment for the extensions of
simple XPath mentioned in section 3.

5 Detailed Treatment for Simple XPath

5.1 Upper Bounds

We first point out a major difference between containment for simple XPaths and SXICs
versus containment for conjunctive queries and DEDs. In the absence of constants in the
language, given arbitrary conjunctive query p and set of DEDs D, there is always a relational
database satisfying D, on which p returns a non-empty answer. We say that p is D-satisfiable.
This is not always the case if p is a simple XPath expression and D a set of SXICs. As an
example, let p be //person[@ssn = ./loves/person/@ssn] returning persons who love persons of
same social security number (in particular, p may return narcissistically inclined individuals).
Let D contain the key constraint (keys,,) on the ssn-attribute of person-elements (shown in
section 1). p is D-unsatisfiable (it returns the empty answer on all documents satisfying D)
because any XML document satisfying the key constraint cannot nest a person-element e

in a person-element that agrees with e on the ssn-attribute: this would amount to nesting e
within itself. We need to detect D-unsatisfiable XPaths, because they are vacuously contained
in any other XPath under D. If constants are present in the language, unsatisfiability can
occur even in the relational case, from equality tests between distinct constants. Qur decision
procedure is given in theorem 5.1 below. Conditions (1) and (2) are used precisely to handle
D-unsatisfiability.

Theorem 5.1 Given simple XPaths p; (i =1,2) and the set C of bounded SXICs, let p; be
translated to the union of conjunctive queries Q%, ..., Qih., and let X¢ denote the result of C'’s
translation to a set of DEDs according to T (). Then the following are true

e The chase of Q} with Yy U Yo terminates for every 1 < j < ny and, the depth of the
chase tree is polynomial in the size of Q} and exponential in that of the constraints in
Yc. Denote the leaves with {Lx, ..., Ly} = UjL, chasesy,uso @).

e py is contained in ps under C if and only if for every 1 < i < m either
(1) there is a homomorphism from the formula child(sz',y') Adesc(y’,z') into L;, or
(2) the equality of distinct string constants s, sz is implied by the equalities in L;, or
(3) there is a 1 < j < ny and a containment mapping from Q? into L;.

We omit the proof (it uses theorem A.1), but we give the intuition behind the conditions
(1),(2),(3) above. (1) detects queries L; which test the existence of a nontrivial cycle in the
XML document, thus being unsatisfiable. (1) is obviously PTIME-checkable. (2) detects
queries that contain unsatisfiable tests (they could result from testing for elements with two
distinct tags, or with two non-IDREFS attributes of same name but distinct values). It can
be checked in PTIME by checking the membership of (s1,s2) in the symmetric, reflexive,
transitive closure of the equality conditions of L;. There are conceivably other reasons for
L;’s unsatsifiability (e.g. a test for two distinct paths leading to the same node). It turns out
however that, no matter what the reasons are, one of the conditions (1) or (2) must apply, as
a result of chasing with the DEDs (noLoop), (oneParent), (noShare), (line) from Yx\y. Therefore,
if none of (1),(2) applies, L; is satisfiable and (3) turns out to be equivalent to containment
in Q3.

Example: Containment by condition (1). The simple XPath expression p above is shown
to be {(keys,p)}-unsatisfiable as follows. Let 7(p) = p’ where p’(y) < desc(root, z), child(z, y), tag(y, person),
attr(y, ssn,z), child(y,u), tag(u, loves), child(u,v), tag(v, person),attr(v, ssn, z) .

By chasing p’ in order with (key),(oneParent),(base), we obtain a query p” that extends p’
with the atoms y = v,z = u,desc(u,v) respectively. Note that condition (1) applies now, as
witnessed by the homomorphism A = {2/ — 3,3’ = u}. The chase continues since more steps
are applicable, but they cannot affect the existence of h, as they only add atoms to p”. e

Example: Containment by condition (3). We highlight here how we deal with the
// operator. Given ¢1 = /A/B and ¢ = //B//., it is easy to see that ¢; is contained in g¢o
over all XML documents (i.e. even if C' = §)). We show how we infer this using condition
(3). The translation yields ¢|(z) « child(root,z1),tag(z1, A), child(z1,x), tag(z, B) and g4(y) «
desc(root, y1), child(y1, y2), tag(ys, B), desc(y2,y). Note that there is no containment mapping from
g, to ¢ as the latter contains no desc-atoms to serve as image for the former’s desc-atoms.
But by chasing ¢ with (base),(el.),(refl) we add desc(root,z1),el(z1),el(z),desc(z,z) to ¢}, thus
creating an image for the containment mapping {y — z,y1 — z1,y2 — z}. There are further
applicable chase steps, omitted here as they only add new atoms and hence do not affect the
existence of the containment mapping.

10

The upper bounds for containment given in theorem 2.1 follow as a corollary of theorem 5.1.

Proof of Theorem 2.1: (1) We prove equivalently that non-containment is in X3, that is it
is decidable by an NP machine with an NP oracle. In the notation of theorem 5.1, the machine
guesses (Q;, then the root-leaf path in the chase tree of); leading to some L; as follows. The
necessary space is polynomial in the size of p; and the maximum size of a ded in X¢: for every
step of the root-leaf path in the chase tree, the machine guesses the ded d that applies, the
homomorphism & from d’s left-hand side of the implication, and the disjunct (in d’s right-hand
side of the implication) which is used to chase on this particular path. This information is
sufficient to check in PTIME (in the size of d) whether the guessed step corresponds to a chase
step. Then the machine uses the oracle to check that this chase step is indeed applicable (it
must ask whether there is an extension of h to any of d’s disjuncts). At every step, the machine
asks the oracle if further chase steps apply and goes on to guessing the next step if the answer
is “yes”. The oracle is guaranteed to answer “no” after polynomially many invocations (in the
size of @;!), due to the first item in theorem 5.1.

Once the leaf L; is guessed, the machine checks conditions (1) and (2) in PTIME (in the size
of L; which is polynomial in that of @;, hence also in that of p;) and answers “yes” if any of
them is true. Otherwise, it checks condition (3) by asking the oracle (this can be checked in
NP in the maximum size of a ded, as finding containment mappings is in NP). The machine
answers ”yes” if and only if the oracle answers "no”.

(2) Note that in the absence of disjunction of any kind, p; is translated to a single conjunc-
tive query, Q1. The chase tree degenerates into a single root-leaf path, because there is no
disjunction in ¥ and because the absence of the element equality tests and ancestor and
ancestor-or-self navigation steps guarantees that (line) in Yy, never applies. This single
root-leaf path corresponds to a standard chase sequence, whose result is a conjunctive query
we denote with L;. By the first item of theorem 5.1, the number of steps in this chase se-
quence is polynomial in the size of Q}. For each step in the sequence, the machine must guess
a homomorphism from some dependency d € Yo U Yxyr, which is polynomial in the size of
d. Once the chase sequence has been guessed, the machine checks conditions (1) and (2) from
theorem 5.1 in PTIME, and if none is satisfied, it guesses a containment mapping from Q?
into the chase result (polynomial in the size of Q?).

(3) As in (2), the absence of disjunction ensures that the paths are translated to the single
conjunctive queries Q1,Q?, and, together with the absence of equality tests, this ensures that
the chase of Q1 degenerates to a sequence. The chase result L; is polynomial in the size of
Qi-

Let I(L1) be a Yxyp-instance obtained from L; such that (i) el consists of all variables and
constants in Ly, (ii) the entries in child,attr, tag, text,id are the corresponding atoms in L;’s
body, and (iii) desc is the minimal relation closed under (base), (trans), (refl). It is easy to see
that I(L1) can be computed in PTIME in the size of L;. It is also easy to show that there is a
containment mapping from Q? into L, if and only if Q}’s head variable belongs to the result
of evaluating Q% on I(L;). But the latter evaluation can be performed in PTIME in both the
size of I(L1) (hence L;) and of Q2. This is because the absence of equality tests makes Q2
an acyclic query, for which Yannakakis shows PTIME evaluation (in the combined expression
and data complexity) [1].

We therefore only need to guess the homomorphisms for the chase steps, which can be done
in NP in the size of the dependencies. But in the absence of (or if we fix) the SXICs in C,
we can find any homomorphism from a dependency d in PTIME in the size of @1 by simply
trying all mappings (their number is exponential only in the size of d). e

11

Remarks. In practice the decision procedure from theorem 5.1 is typically invoked repeatedly
to check containment under the same set C' of bounded SXICs. In this scenario, we can consider
C fixed, in which case the complexity bounds in the theorem are only in the size of the simple
XPath expressions. In particular, if C' = () (there are no integrity constraints), we obtain
upper bounds for containment over all XML documents.

Note that if we disallow disjunction, containment is in NP, and thus no harder than for
relational conjunctive queries. We will see in section 6 that this situation changes for extensions
of simple XPath expressions: adding navigation to wildcard children or to ancestors raises
complexity of containment to IT5-hard (theorem 3.1) even in the absence of disjunction!

5.2 TUndecidability

In practice, we often know that XML documents satisfy SXICs that are not necessarily
bounded, the most salient examples being SXICs implied by DTDs, such as (someAddress) from
the introduction. Unfortunately, we have the result in theorem 2.2 showing undecidability of
containment :

Proof of theorem 2.2: By reduction from the following undecidable problem: Given context-
free grammar G = (£, N, S, P) where ¥ is the set of terminals (containing at least two sym-
bols), N the nonterminals, S € N the start symbol, P C N x (X U N)* the productions, and
L(G) the language generated by G, the question whether L(G) = ¥£* is undecidable [13].

Note. For the sake of presentation simplicity, the reduction we show below is to containment
in the presence of bounded SXICs and DTDs. However, a careful analysis of the used DTD
features reveals that these are captured as SXICs of two forms: Ve [//A z — Gy = ./A y) V
(3y z ./B y)] and vz [//A 2 — (3y = ./Q@s y)]. These are not bounded SXICs: note the illegal
existential quantification of y and recall that the definition allows at most the quantification
of x, and only in the z .@s y atom.

The reduction. Given context-free grammar G = (X, N, S, P), we construct an instance
(DTDg, Dg, XP; C XP) such that XP; is contained in X P over all XML documents
conforming to the description DTDg and satisfying the dependencies in D¢ if and only if
¥* C L(G). We first show DTD¢, which does not exercise all features of DTDs. The features
of DTD¢ used to prove undecidability can be easily shown to be fully captured by SXICs:

<!ELEMENT B (A|E)> <IATTLIST B <IATTLIST A

<IELEMENT A (A|E)> i #ID, i #ID,

<!ELEMENT E (PCDATA)> S #IDREFS> sym (atla2l...lan),
N1 #IDREFS,

Nk #IDREFS>

B,E,A are fresh names, a1, ...,a, are the alphabet symbols in X, Ny,..., N} are the nonter-
minals in N. Every document conforming to DTDg is a list (unary tree) of elements, whose
head is tagged B and unique leaf tagged E. The inner elements (if any) of the list are tagged A,
and their sym attribute contains a symbol of ¥. Every document conforming to DTD¢ thus
corresponds to a word w € ¥*, and every pair s, t of A-elements such that ¢ is a descendant of
s determines a substring of w.

The set of dependencies Dg (shown shortly) is designed such that, whenever a document
conforms to the DTD¢g and satisfies Dg, the following claim holds: for every pair s,t of A-
elements with ¢ a descendant of s, let u be the corresponding substring of w (if s = ¢, u is the
unit length string given by the value of t’s sym attribute). Then for every 1 < j < k such that

12

there is a derivation of u starting from nonterminal INV;, the value of the attribute ¢ of ¢ is a
token of the value of the N; attribute of s ?. Furthermore, the S attribute of the B-element
contains all tokens of the S attribute of the first A-element, if any.

We omit the proof of the claim, but illustrate for the grammar S — ¢S | cc and word w = ccc.
An XML document corresponding to w which conforms to DTD¢ and satisfies the claim is

<B i=77077 $=772 377>
<A sym=,)c), i=) ,1,) S=)72 3))) <A Sym=) ,C,) i:))3)} S:,),))
<E>any text goes here</E>

Now we have w € L(QG) if and only if there is a derivation of w in G starting from S, which by
the claim is equivalent to the i-attribute in the parent of the E-element being among the tokens
of the S-attribute in the B-element. Therefore, £* C L(G) is equivalent to the containment

//.l/E]/@i C /B/QS
which we pick for xP, C XP.

We now show the dependencies Dg. For every production p € P, we construct a dependency
(prodp) as illustrated by the following example. Let R,T be nonterminals and a,b alphabet
symbols in the production R — aRbT. The corresponding dependency is

(prodp) Vz,y [z ./S[Qsym ="a”]/id(QR)/S[Qsym =7b"]/id(QT)/Qi y — z= ./QR y |
We enforce that the tokens in the S-attribute of the first A-element be included in the S-
attribute of the B-element with the SXIC

(startg) Vz,y[/Bx A z./A/JQS y — x./QS y]

Furthermore, we may assume without loss of generality that G has at most one e-production,
namely S — € (see the procedure for elimination of e-productions employed when bringing a
grammar in Chomsky Normal Form [13]). If S — € € P, add to D¢ the SXIC

(d¢) Vz,y[/Bz A z./Qi y — z./QS y]| e

Remark. The undecidability result of theorem 2.2 does not preclude us from using the
procedures in theorem 5.1 and section 6 for checking containment even under arbitrary SXICs.
If the chase terminates, then containment holds if and only if and any of the conditions
(1),(2),(3) in theorem 5.1 are satisfied. The problem is that for arbitrary SXICs the chase
may diverge. We can always impose a threshold after which we stop the chase and check the
conditions. This would result in a sound, but incomplete procedure for checking containment.
Our experience with the chase for the relational/OO data model [15] suggests that there are
many practical cases in which the chase terminates even if the SXICs are not bounded.

6 Detailed Treatment for Extensions of Simple XPath

Note that the translation of enriched XPath expressions is compatible with that of simple
XPath expressions, and the addition of the wildcard child, parent and ancestor navigation is
a very natural extension, which doesn’t even require new schema elements in Y.,;. We chose

2Recall that an IDREFS attribute a models a set of IDREF attributes, represented by the set of whitespace-
delimited tokens of a’s string value.

13

- * @x=0
=1 @x=1/¥ \ r/\‘ \ =
B FT~— ac N @x
" / \ @x=0 c'/ *
a AN N

Figure 1: XPath expressions in counterexample 6.1

to handle these extensions separately because, innocuous as they may seem, they change com-
plexity bounds dramatically. It turns out that the dependencies in Yy become insufficient
in reasoning about wildcard expressions. Here is a counterexample to theorem 5.1.

Example 6.1 There are simple XPath expressions p,p' extended with wildcard child naviga-
tion such that p is contained in p' but 7 (p) is not contained in 7 (p') under Xy :

p =/[b/1[@z =" 1"] and
ala[@z =" 1" and * //a and c] and */x[c and */* and @z =" 0"]]
b/o[@z =" 0"]]
p’ =/ .//*[ala and] and
x/ %[c and * /% and Qz = /b/ * /Qz]]

In case the reader finds the graphical representation useful, we refer to figure 6, in which we
depict child navigation steps with single arrows and descendant navigation steps with double,
dashed arrows. The tag names are used to label the nodes (* is used for wildcards), and solid
non-arrow lines associate attributes with nodes. @z = 0 indicates that the string value of the
z-attributes is “0”. The dotted line represents an equality condition on z-attributes.

To see that p is contained in p', observe that a//a in p is equivalent to a/a U a/ * //a, and
hence p is equivalent to p; U p, where p;,ps are obtained by replacing the subpath a//a with
a/a, respectively a/ * //a in p. But both p;,p, are contained in p', as witnessed by the
containment mappings matching the z-attributes in p’ against the “0”-valued z-attributes of
p1, respectively the “1”-valued z-attributes of ps.

On the other hand, according to the chase theorem [1], 7 (p) is not contained in 7 (p') under
Y xur because there is no containment mapping from 7 (p') into chasesy,. (T (p)). Intuitively,
what Y does not capture is the minimality of desc: it only states that the latter contains
the reflexive transitive closure of child, but it doesn’t rule out pairs of nodes that aren’t
reachable via child navigation steps. Yy -instances containing such a pair (s,t) € N x N
are counterexamples for the containment: subpath *//a in p is satisfied by the nodes r, ¢ where
child(r, s),desc(s, q),tag(g,a) even if s has no immediate child, while .// * /a in p' is not.

It turns out however that theorem 5.1 holds if p;, the contained wildcard Xpath expression,
is //-free.

We will use this observation to extend our decision procedure to handle wildcard expressions.
First, we introduce some notation. Observe that any //-free XPath expression is equivalent

14

to a finite union of ancestor-or-self-free and ancestor-free expressions. For instance,
/a/b/ancestor-or-self is equivalent to (/a/bU /a/b/..U [a/b/../..). There is no point in
instantiating the occurrence of ancestor-or-self to more parent navigation steps (..) since
the resulting expression would be unsatisfiable, that is empty over all documents. We denote
the set of ancestor-free and ancestor-or-self-free paths in this finite union with af(p).

Proposition 6.2 Let C be a set of tree SXICs, let p be a //-free wildcard XPath expression,
and let af(p) = {p1,...,pn}- Then p is contained in wildcard expression p' under C if and
only if both items of theorem 5.1 are satisfied when substituting p; for p1 and p' for ps, for
every 1 <i<n.

Recall that tree SXICs are restricted bounded SXICs, so the chase with them is defined. By
proposition 6.2, the decision procedure for containment of simple XPath expressions given in
theorem 5.1 can be used to decide containment of //-free wildcard XPath expressions under
tree SXICs.

We next show how to use proposition 6.2 to decide containment even if p contains navigation
along the descendant axis. First, observe that // = [Jy<, **, where #* is short for the
concatenation of k wildcard navigation steps. More generally, every wildcard XPath expression
p with n occurrences of // is equivalent to an infinite union of //-free queries: denoting with

p(k1, ..., kn) the result of replacing the it occurrence of // in p with the concatenation of k;
wildcard navigation steps, p is equivalent to Uoskl,...,oskn pk1, ... k).
Therefore, the containment of p in p’ reduces to checking the containment of each p(k, ..., ky)

in py, which is done according to proposition 6.2. This still doesn’t give us a decision procedure,
since there are infinitely many containments to be checked. The key observation to our
containment decision procedure is that it is sufficient to check the containment for only finitely
many //-free queries in the union. For arbitrary p, we denote with wts(p) the wildcard tag
size, i.e. the number of * navigation steps in p. For instance, wts(//a/ = /b/../c/@x) =1
(note that wildcard attributes @« are not counted). Furthermore, we denote with ps(p)
the parent size, i.e. the number of .. navigation steps in p. Recalling that ancestor is
syntactic sugar for ../ancestor-or-self, this means we count ancestor navigation steps as
well: ps(//a/../ancestor) = 2.

Proposition 6.3 Let C be a set of bounded SXICs, p1,p2 be wildcard XPath expressions and
let 1 < wts(ps) + ps(p2) + ps(p1) + 1. Then

P Cop e U p1(ki, ..., kn) Co p2
0<h <0< hin <1

This result gives us the following decision procedure for containment of p; in ps:

Step 1: We first translate away the disjunction (| and or), obtaining finite unions Uy, U,
of XPaths.

Step 2: We next use proposition 6.3 to obtain from U; a finite union of //-free queries DFy,
which must be checked for containment in Us.

Step 3: Containment of DF; in Us is decided using the following easy result:
Proposition 6.4 The union of //-free wildcard XPath expressions \J;—_, pi is contained in

the union of wildcard XPath expressions U;”Zl p; under the bounded SXICs C' if and only if for
every 1 <i < n thereis a 1 < j <m such that p; Cc pg.

15

Step 4: Finally, checking each //-free p; for containment in p’; is done using proposition 6.2.

Given this decision procedure, the proofs of theorems 3.2 and 3.3, claiming IT5 upper bounds for
diverse extensions of simple XPath are straightforward adaptations of the proof of theorem 5.1.
We illustrate for the case of simple XPaths with wildcard child navigation under tree SXICs:

Proof of theorem 3.3: We prove equivalently that non-containment is in X%, that is it
is decidable by an NP machine with an NP oracle. By proposition 6.3, it is enough if the
machine exhibits a //-free query in the finite union which is not contained in U,. To this end,
the machine guesses p1 € DF; and pa € Us, computes [/, guesses 0 < ki,...,k, <[, guesses p
in af(pi(k1,-..,kn)) and next continues like in the proof of theorem 5.1. o

Given the presence of | and or in the fragment of wildcard XPath expressions, it is not
surprising that the algorithm is assymptotically optimal (we’ll see shortly that its lower bound
is II§ as well): [16] shows that containment of conjunctive queries with union is IT5-complete.
The upper bound however does not follow from [16]: the decision procedure of [16] works in
the absence of dependencies, and hence must be extended to work under the ones in Yy .

However, we prove a stronger result in theorem 3.1, showing IT5-hardness even for containment
of disjunction-free extensions of simple XPath.

Proof of theorem 3.1: We only show the proof for the extension with wildcard child navi-
gation, which is the most interesting one.

The proof is by reduction from the IT5-complete V33 — SAT problem [14]: the instances of
this problem are first-order sentences ¢ of general form

Vey ... Ve, Jyr ... Jym /\é:1 C;, where each clause C; is a disjunction of three literals which
are any of the variables x1,...,Zn,¥1,...,Ym Or their complements. ¢ is a ”yes” instance if
and only if it is valid.

For every instance ¢, we construct the instance p; C p,, where ¢’s variables appear as attribute
and variable names, and p;,ps contains occurrences of Qz;,$z; for every 1 < i < n, and
occurrences of Qy;, $y; for every 1 < j < m. We use the notation p;(ki,...,ky) introduced
for proposition 6.3. The containment holds if and only if py (k1, ..., kn) C p2 for all 0 < k;. We
claim that the reduction is defined such that the latter holds if and only if ¢ has a satisfying
assignment which makes z; false if k; = 0, and true if k; > 0. This makes ¢ valid if and only
if py C pa. The claim is proved after we give the construction.

Both p;, ps return either the root of the document itself, or an empty node set: they have
the form /[g;] where g1, g2 are qualifiers. ¢; is constructed as the conjunction of 7l + m + n
subexpressions:

e for every clause Cj, let u;,v;, w; be its variables, and a;1,...,a;7 the seven satisfying
assignments for C;. For every 1 <i <l and 1 < j <7, ¢; contains the subexpression
CilQu; = ai,j(us), Qui = aij(vi), Qi = @i 5(w;)]-

o for every y;, we add the ezistential gadget y;[Qy; =" 0" and Qy; =" 1"] to ¢;.

e We also add n copies of a universal gadget (one copy for every z;). The universal
gadget (defined shortly) is denoted U (l) and it is a wildcard XPath subexpression having
occurrences of @[for some attribute name [. For every z;, the corresponding copy of U
has @[substituted with Qzx;, denoted U(x;).

This completes the construction of g;, up to the specification of the universal gadget. First
we show the construction of go, which contains I + m + n subexpressions:

16

o for every 1 < i <1, ¢ contains C;[Qu; = $u;, Qu; = $v;, Qw; = $w;)] where, as before,
u;, Vi, w; are the variables occuring in clause C;. Note how they give both the names of
the attributes and the names of variables.

e for every 1 < j < m, g» contains the subexpression y;[Qy; = $y;].

o for every 1 < i < n, ¢go contains a copy of a satisfaction gadget (defined shortly).
The satisfaction gadget is denoted S(I) and it is a wildcard XPath subexpression with
occurences of @/ and $/ for some . For every x;, g2 contains a copy S(z;) in which @I, $!
are substituted by Qz;, $z;.

We exemplify the construction so far on a V32 — SAT instance for simplicity sake:

¢ = VaVydz(zVY)A(yV2)
S N>
C1 Cso

p = /[C1[@z =" 0" and Qy =" 0"] and C;[@z =" 1" and @Qy =" 0"] and C1[@z =" 1" and @y =" 1"] and
Cy[@Qy =" 0" and @z ="' 1"”] and C3[Qy =" 1" and @z =" 0] and C2[Qy =" 1" and @z =" 1"] and
2[@z="0" and @z =" 1"] and
U(z) ana U(y)]

p' = /[C1[@x = $z and Qy = $y] and C>[Qy = $y and @z = $2] and 2[@Qz = $2] and S(z) and S(y)]

We now specify the universal and satisfaction gadgets. Recalling counterexample 6.1, U(l) is
a copy of of p, with z acting as I, and S(I) is a copy of p/, with z acting as [.

We still have to prove the claim. According to proposition 6.3, p C p' if and only if
p(k1, ..., k) Cp' both for k; = 0 and k; > 0. Recalling the discussion in counterexample 6.1,
the containment mapping corresponding to k; = 0 binds $x; to “0”, while that corresponding
to k; > 0 binds $x; to “1”. Moreover, it is easy to see that any containment mapping from p’
to p corresponds to a satisfying assignment of ¢. Therefore, p; C ps if and only if every truth
assignment to the z;s has an extension to the y;s that satisfies all clauses of ¢ (or, equivalently,
if and only if ¢ is valid). e

Remark. It is interesting to see that the IT5 lower bound is reached even in the absence
of disjunction when both //- and * navigation steps are allowed. We found this result to be
counterintuitive, as the presence of // or * in isolation results in NP-complete containment
complexity (item (2) in theorem 2.1). It is only their interaction that increases complexity.
The intuition behind this is the fact that // expresses disjunction implicitly in the presence
of x: //a is equivalent to (/a) | (/ * //a)-

7 Extensions and further work

Order. Our decision procedure for containment extends straightforwardly if we add the
preceding-sibling and following-sibling navigation steps to the fragments of XPath we show
in section 3, and the complexity results carry over to this extension. We consider the ordered
XML data model, and extend our XPath fragments with order-related predicates:

p = preceding-sibling(p)| following-sibling(p) | preceding(p) | following(p)

17

We take the view of the XPath 1.0 specification [18], according to which an XPath expression
evaluates to a node set, thus restricting the impact of order only to checking the predicates
above (this situation will change with the XPath 2.0 specification however).

Let EQMLbe the extensionof ¥, with the binary relations preceding-sibling,preceding and the
constraints

(transps) Vz,y,z [preceding-sibling(z,y) A preceding-sibling(y, z) — preceding-sibling(z, 2)]
(mings) Vz,y [preceding-sibling(z,y) — Iz child(z,z) A child(z,y)]
(totalps) Vz,y,z [child(z,y) A child(z,2) - y = z V preceding-sibling(y, z) V preceding-sibling(z,y)]
(basep) Vx,y,z,u [desc(z,z) A preceding-sibling(x,y) A desc(y,u) — preceding(y,u)]
(transp) Vz,y,z [preceding(z,y) A preceding(y, z) — preceding(z, z)]
(ming,) Vz,y [preceding(z,y) — Ju, v preceding-sibling(u,v) A desc(u,x) A desc(v,y)]
(totalp) Vz,y [N(z) A N(y) — desc(x,y) V preceding(z,y) V preceding(y,)]

We provide the first-order translation

T(x,preceding-sibling(p {preceding-sibling(z,y)} U T (y,p, 2)
= {preceding(z,y)} UT (y,p,2)
= T (y,preceding-sibling(p),)

= T(ya preceding(p), z)

T (z,following-sibling(p

)
T (z, preceding(p),
)
)

T (z,following(p

Theorem 7.1 If we add the preceding-sibling and following-sibling predicates to the XPath
fragments in section 3 and use X9, above, the algorithm in section 6 remains a decision
procedure for containment, and the complexity results carry over.

If the XPath expressions contain following and preceding as well, the algorithm remains sound,
but we do not know if it is complete for deciding containment.

What we do not capture. The order-related features we do not capture in this way are
index and range qualifiers. The expression /a[2] uses the index qualifier 2 to return the second
a-child of the root. /a[range 2 to 4] returns the second, third and fourth a-child.

Other open problems. In addition to what we pointed out above, we have the containment
of full-fledged XPath expressions, both under the set semantics given in XPath 1.0, and the
list semantics coming up in XPath 2.0.

Another, maybe more important problem is that of extending optimization of XPath expres-
sions to optimization of XQueries [20]. The latter lets variables range over node sets defined
by XPath expressions. Two extensions are needed here: the output of XQueries is not a node
set, but rather full XML. Also, XQueries have list semantics.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies. Journal of the ACM,
31(4):718-741, 1984.

[3] Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, and Wang-Chiew Tan. Keys for xml. In
WW W10, May 2001.

18

(4]
(5]
[6]

D. Calvanese, G. De Giacomo, and M. Lenzerini. Queries and constraints on semi-structured data. In
CAiSE, pages 434-438, 1999.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. Containment of conjunctive regular path
queries with inverse. In KR, 2000.

A. K. Chandra, H. R. Lewis, and J. A. Makowsky. Embedded implicational dependencies and their
inference problem. In Proceedings of ACM SIGACT Symposium on the Theory of Computing, pages
342-354, 1981.

Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. A Query Language for
XML. In Proc. of 8th International WWWW Conference, 1999.

Alin Deutsch and Val Tannen. Containment of Classes of XPath Expressions Under Integrity Constraints.
Technical Report MS-CIS-01-21, University of Pennsylvania, 2001.

Wenfei Fan and Leonid Libkin. On XML Constraints in the Presence of DTDs. In Proceedings of PODS,
May 2001, Sanata Barbara, CA, USA. ACM, 2001.

Wenfei Fan and Jéréme Siméon. Integrity Constraints for XML. In ACM-SIGMOD, May 15-17, 2000,
Dallas, Tezas, USA, pages 23-34. ACM, 2000.

Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunctive queries with reg-
ular expressions. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 1-3, 1998, Seattle, Washington. ACM Press, 1998.

Gosta Grahne and Alberto O. Mendelzon. Tableau techniques for querying information sources through
global schemas. In Catriel Beeri and Peter Buneman, editors, Database Theory - ICDT ’99, 7th Inter-
national Conference, Jerusalem, Israel, January 10-12, 1999, Proceedings, volume 1540 of Lecture Notes
in Computer Science, pages 332-347. Springer, 1999.

J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and computation. Addison-
Wesley, 1979.

Christo H. Papadimitriou. Computational Complezity. Addison-Wesley, Reading, Massachusetts, 1994.

Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tannen. A Chase Too Far? In Proceedings of
ACM SIGMOD International Conference on Management of Data, May 2000.

Yehoushua Sagiv and Mihalis Yannakakis. Equivalences among relational expressions with the union and
difference operators. Journal of the ACM, 27:633-655, 1980.

W3C. Extensible Markup Language (XML) 1.0. W3C Recommendation 10-February-1998. Available
from http://www.w3.org/TR/1998/REC-xm1-19980210.

W3C. XML Path Language (XPath) 1.0. W3C Recommendation 16 November 1999. Available from
http://www.w3.org/TR/xpath.

W3C. XML Schema Part 0: Primer. Working Draft 25 February 2000. Available from
http://www.w3.org/TR/xmlschema-0.

W3C. XQuery: A query Language for XML. W3C Working Draft 15 February 2001. Available from
http://www.w3.org/TR/xquery.

W3C. XSL Transformations (XSLT) Version 1.0. W3C Recommendation 16 November 1999. Available
from http://www.w3.org/TR/xslt.

Phil Wadler. A Formal Semantics of Patterns in XSLT. In Proceeding of the Conference for Markup
Technologies, 1999.

19

A Chasing With Disjunctive Embedded Dependencies

We translate SXICs to first order logic statements by translating every path atom v p w to the
conjunction of all goals in T (v, p, w), and universally quantifying all fresh variables introduced
during the translation. For example, the translation of SXIC T (keys,p) = key above is

(key) = Vz,y,s,u,v [desc(root,u) A child(u,x) A tag(z, person) A attr(z,ssn,s) A
desc(root,v) A child(v, y) A tag(y, person) A attr(y, ssn,s) > =y |

and Vz [//A/@sex x — xz="m” V x="f"] translates to

Vz,u,v [desc(root,u) A child(u,v) A tag(v, A) A attr(v,”sex”,z) > c="m" Ve ="f"].

DEDs. We introduce a new class of relational dependencies, which expresses all dependencies
in Yxye and the dependencies resulting from the translation of SXICs. Their general form is

1
Vz1...Ven [¢(z1,...,20) — \/ 250 .- F2ip; Vi(@1y oy Ty 24,1505 24 k)] (2)
i=1
where ¢,v; are conjunctions of relational atoms of the form R(w1,...,w;) and equality atoms
of the form w = w’, where w1, ...,w;,w,w’ are variables. ¢ may be the empty conjunction. We
call such dependencies disjunctive embedded dependencies (DEDs), because they contain the
classical embedded dependencies [1] as the particular case [= 1.

We extend the classical relational chase [2], which is a proof procedure for query containment
under embedded dependencies. First a bit of notation:

A homomorphism from ¢, into ¢- is a mapping h from the variables of ¢, into those of ¢ such
that (i) for every equality atom w = w' in @1, h(w) = h(w') follows from the equality atoms

of ¢» and (ii) for every relational atom R(wq,...,w;) in ¢, there is an atom R(vq,...,v;)
in ¢2 such that v; = h(w;) follows from the equality atoms of ¢». Given conjunctive queries
Qi(z1,...,Tn) + O1(Z1,- o, Ty Y1y, Ym) and Qa(ur, ..., upn) d1(ur,...,Up,v1,...,0%)

(¢1, P2 are conjunctions of relational and equality atoms), a containment mapping from Q1 to
Q)2 is a homomorphism m from ¢; to ¢o such that m(u;) = z; for 1 <4 < n.

Chase with DEDs. Let d be a DED of general form (2),) be a conjunctive query and
let h be a homomorphism from ¢ into (). We say that the chase step of) with d using h
is applicable, if h allows no extension which is a homomorphism from ¢ A v; into @) for any
1 < ¢ <. In this case, the result of applying this chase step is the union of queries Ui’:1 Qs,
where each @); is defined as Q A ;(h(x1),. .., h(xy), fi1,---, fik:), Where the f; ;’s are fresh
variables.

For example, chasing Q(z,y) + a(z,y) with VuVYv [a(u,v) = b(u,v)Ve(u,v)] results in QpUQ,
with Qy(z,y) < a(z,y),b(z,y) and Qc(z,y) « a(z,y), c(z,y).

If we continue applying chase steps to each @; (with DEDs from a set D), we build a chase
tree rooted at (), whose subtrees are the chase trees rooted at the @;’s. The leaves of the chase
tree are conjunctive queries to which no chase step with any DED from D applies. In general,
the chase may diverge, thus building an infinite tree, but when it terminates, we define its
result to be the set of leaves of the chase tree, denoted chasep(Q).

Theorem A.1 Given conjunctive queries Q1,Q2 and the set D of DEDs, assume that the
chase of Q1 with D terminates. Then we have: (1) Q1 is equivalent to the union of the leaves

20

of the chase tree, and (2) Q1 is contained in Q2 under D if and only if there is a containment
mapping from Q2 into every leaf L € chasep(Q1).

The proof is omitted, but it is a straightforward generalization of the classical proof given
in [2] for the case of embedded dependencies (recall these are DEDs without disjunction).
In fact, we retrieve that result as a particular case of theorem A.1 by observing that in the
absence of disjunction, the chase tree degenerates into what [2] calls a chase sequence, having
a single leaf. Another particular case is obtained when our DEDs contain no existentials, and
only equalities between a variable and a constant are allowed on the right-hand side of the
implication in general form (2). Such constraints and the idea of chase tree were introduced
in [12], in the context of incomplete databases.

21

