Hypothetical Queries in an OLAP Environment*

Andrey Balmin Yannis Papakonstantinou

Dept. of Computer Science and Engineering

Univ. of California, San Diego
La Jolla, CA 92093

{abalmin,yannis}@cs.ucsd.edu

Abstract

Analysts and decision-makers use what-if anal-
ysis to assess the effects of hypothetical sce-
narios. What-if analysis is currently supported
by spreadsheets and ad-hoc OLAP tools. Un-
fortunately, the former lack seamless integra-
tion with the data and the latter lack flexibil-
ity and performance appropriate for OLAP ap-
plications. To tackle these problems we devel-
oped the SESAME system, which models an hy-
pothetical scenario as a list of hypothetical mod-
ifications on the warehouse views and fact data.
We provide formal scenario syntax and seman-
tics, which extend view update semantics for ac-
comodating the special requirements of OLAP.
We focus on query algebra operators suitable
for performing spreadsheet-style computations.
Then we present SESAME’s optimizer and its cor-
nerstone substitution and rewriting mechanisms.
Substitution enables lazy evaluation of the hypo-
thetical updates. The substitution module de-
livers orders-of-magnitude optimizations in co-
operation with the rewriter that uses knowledge
of arithmetic, relational, financial and other op-

erators. Finally we discuss the challenges that

*This work was supported by the NSF-IRI 9712239
grant, UCSD startup funds, the Onassis Foundation, and

equipment donations from Intel Corp.

Thanos Papadimitriou
Anderson School of Management

Univ. of California, Los Angeles

apapadim@anderson.ucla.edu

the size of the scenario specifications and the
arbitrary nature of the operators pose to the
rewriter. We present a rewriter that employs the
“minterms” and “packed forests” techniques to
quickly produce plans. We experimentally eval-

uate the rewriter and the overall system.

1 Introduction

Recently the database community has developed
data warehousing and OLAP systems where a
business analyst can obtain online answers to
complex decision support queries on very large
databases. A particularly common and very im-
portant decision support process is what-if anal-
ysis, which has applications in marketing, pro-
duction planning, and other areas. Typically the
analyst formulates a possible business scenario
that derives an hypothetical “world” which he
consequently explores by querying and naviga-
tion. What-if analysis is used to forecast future
performance under a set of assumptions related
to past data. It also enables the evaluation of
past performance and the estimation of the op-
portunity cost taken by not following alternative
policies in the past [PC95].

For example, an analyst of a brokerage com-
pany may want to investigate what would be

the consequences on the return and volatility of

the customers’ portfolios if during the last three
years the brokerage had recommended the buy-
ing of Intel stock over Motorola. According to
his scenario he (hypothetically) eliminates many
Motorola buy orders that the customers had ac-
tually issued, introduces Intel share orders of
equivalent dollar value, and recomputes the de-
rived data. Subsequently, he investigates the
results of this hypothesis on specific customer
categories. More hypothetical modifications and
queries will follow as the analyst follows a par-

ticular trail of thought.

Spreadsheets or existing OLAP tools are cur-
rently used to support such what-if analysis.
what-if
analysis is not efficiently supported by either

Surprisingly, despite its importance,
one. Spreadsheets offer a large number of pow-
erful array manipulation functions and an inter-
active environment that is suitable for specifying
changes and reviewing their effects online. How-
ever, they lack storage capacity, the functional-
ity of DB query languages, and seamless integra-
tion with the data warehouse; once the data has
been exported to the spreadsheet it becomes dis-
connected from updates that happen in the data

warehouse.

OLAP systems offering what-if analysis [CCS]
lack the analytical capabilities of spreadsheets
and their performance is orders of magnitude
worse than what can be achieved by intelligent
scenario evaluations, such as the ones delivered
by our Sesame prototype. To further understand
the limitations of current OLAP tools let us walk
through a typical implementation of the what-if
analysis example above. First an experienced
user or the data warehouse’s administrator de-
signs a “scenario” datacube and develops a script
(eg, see [CCS] for a scripting language) that pop-
ulates the scenario datacube with the data cor-

responding to the hypothetical world developed

by the scenario.!

Consequently the cross-tabs
(sums) and other views are recomputed. Ap-
parently the creation of the scenario datacube
cannot be an online activity.

After the scenario is materialized the ana-
lyst will issue queries, drill-down and roll-up
[GMUW99] into parts of the hypothetical world.
At this point it becomes evident that material-
izing the full hypothetical world (and hence de-
laying query submission by as much as a day)
may have been an unecessary overhead. Con-
sider the following cases where the conventional
methodology underperforms. We comment on

how Sesame handles such cases.

e Queries and drill-downs on detailed data
will typically retrieve only a small part of
the hypothetical world. (After all, there is
only so much real estate in a monitor.) For
example, a query that investigates the con-
sequences of the scenario on the portfolios
of the first 50 investors does not have to
materialize anything more than the hypo-
thetical portfolios of the specific investors.
Indeed, Sesame won’t even materialize the
hypothetical portfolios; it will simply re-
trieve the actual portfolios, it will remove
the Motorola orders and will dynamically
introduce in the result Intel orders of equal

dollar value.

e Queries that retrieve various aggregate mea-
sures, such as the SUM, can leverage the
corresponding aggregate measures of the
“actual” datacube. For example, Sesame

will compute the hypothetical current value

UIn practice, he adds a “scenario” dimension to the
existing datacube. When the scenario dimension has
the value “actual” the measure corresponds to the “real”
world. But if it has values such as “forecast”, “scenario”,

etc, it corresponds to an hypothetical world [PC95].

V'[x] of the portfolio of customer x as

follows.2

V'[z] =

Pli,d]
where ¢ stands for Intel, m for Motorola,
V'[z] is the hypothetical value of the port-
folio of customer x and V[x] is the actual
value. The array entry Olz,y, d| stands for
the actual number of y shares bought (or
sold if the number is negative) by customer
x on day d, and Ply,d] stands for the (clos-
ing) price of shares of y on day d. T[y]
stands for the current value of y. Accord-
ing to the above the hypothetical value of a
portfolio is computed by adding to the port-
folio’s actual value the profit by each hypo-
thetical investment in Intel and subtracting

the profit of each investment in Motorola.

One may actually update the orders table
and then propagate the updates, possibly us-
ing one of the efficient update propagation tech-
niques suggested by the database community
[BLT86, GMS93, RKR97, LYGM99, MQMJ97].
However, SESAME’s no-actual-update policy has
the advantage that no backtracking of updates
is needed after scenario evaluation is over nor it
is anymore necessary to lock the hypothetically
updated parts.?

Technical Challenges and Contributions
First, we formally define scenarios as ordered sets
of hypothetical modifications on the fact tables
or the derived views of the warehouse. As usual,
modifications on views may be satisfied by multi-

ple possible fact table modifications. We extend

2Note that the following syntax does not correspond to

the actual Sesame algebra, which is presented in Section 2.
3And, as the previous examples showed, SESAME’s

main advantage comes from the holistic optimization op-
portunities that arise when distinct updates are optimized
as a set.

prior work [AHV96] on the semantics of select-

project-join (SPJ) view updates by introducing

Viz] — £4(Olw,m, d)(T[m] — Plm, d}ﬂw notion of “minimally modified database”,
4y d(P[m,d] Olz,m,d)(T[i] — P[i,d]) which is necessary for having reasonable seman-

tics in warehouses involving non-SPJ operators,
such as aggregation and arithmetic.

Second, we developed an extensible system
where arbitrary algebraic array operators can be
used. Using the extensible algebra machinery
we introduce operators that combine spreadsheet
and database functionality. In this paper we
present the join arithmetic family of operators.
More operators (moving windows and operators
for metadata handling) can be found in the ex-
tended version [BPP]. Expressions involving the
novel operators are optimized by providing to the
rewriting optimizer appropriate rewriting rules.

Our most important contribution is SESAME’s
scenario evaluation, which is based on substitu-
tion and rewriting. Given a scenario s, a query
q on the hypothetical database, and information
on the warehouse’s views, the substitution mod-
ule delivers a query ¢’ that is evaluated on the
actual warehouse and is equivalent to the result
of evaluating ¢ on the hypothetical database cre-
ated by s. Then the rewriter optimizes the query
¢’. In the spirit of conventional optimizers it
pushes selections down and it eliminates parts
of ¢’ that do not affect the result (such parts
typically correspond to “irrelevant” hypotheti-
cal modifications.) It also rewrites the query ¢
in order to leverage on the warehouse’s precom-
puted views.

We identify and provide solutions to two ma-
jor rewriting challenges. First, the query expres-
sion ¢’ is typically very large, as a result of the
potentially large number of hypothetical mod-
ifications. The good news is that ¢ has a par-
ticular structure, which is exploited by SESAME’s

minterm optimization. Second, rewriting queries

using views, while non-conventional operators
are involved in the algebra, is a novel chal-
lenge that has not been considered by extensible
rewriters [HFLP89] (they have not considered
views) or by the “rewriting using views” litera-
ture, which has focused on conjunctive queries
[LMSS95] or conjunctive with SQL’s aggrega-
tion operators [SDJL96, CNS99]. We present the
packed forests extension to System-R-style opti-
mizers that allows the development of rewriters
that trade the rewriter’s running time with the
generality of rewriting axioms, queries, and ma-
terialized views for which they can deliver the
optimal result.

Finally we incorporate SESAME as an add-on
component to an SQL Server that stores the
warehouse and provides the query processing en-
gine for evaluating the optimized scenario/query.
Using this architecture we have built a database
containing NYSE stock prices of 5 years, along
with almost one million customer orders of an
imaginary brokerage company, and we have eval-
uated the performance of our system.

Due to lack of space we do not present
SESAME’s metadata operators and how they al-
low the modeling of hierarchical dimensions. De-
tails on metadata can be found in the extended
version [BPP].

1.1 Related Work

To the best of our knowledge what-if scenarios in
an OLAP environment have not been addressed
by the database research community. Neverthe-
less our work brings together a large number of
important technologies and concepts developed
by the database community during the last ten
years. Indeed, we strongly believe that a sign
of the effectiveness of the framework set by this

paper is that it incorporates a multitude of con-

cepts and techniques such as substitution, ex-
tensible rewriting optimizers, view updates and
incomplete data, and logical access path schemas
(see below).

[GH97] presents an equational theory for re-
lational queries involving hypothetical modifica-
tions and discusses its use in an optimizer that
may choose between lazy and eager evaluation.
The substitution step of our rewriter extends the
lazy evaluation idea of [GH97] by considering an
environment including views as well. However,
the optimization and rewriting problem is much
more challenging in Sesame’s case due to the rea-
sons mentioned above.

Our extensible algebra and rewriting system
follows Starburst [HFLP89]. = Note also that
interesting extensible rewriting optimizers based
on ADTs [SLR97] have recently been introduced.
SESAME differs from them in that it is not an
extensible type system. Our model, following
the tradition of spreadsheets, is based on just
one type — essentially arrays. None of the above
considers views into the rewriting.

The specification of the repercussion of an hy-
pothetical modification on the constituents of a
view is influenced by works on the semantics of
view updates ([AHV96] provides an overview.)
The critical difference from the prior work is the
introduction of the “minimally modified data-
graph” concept and the corresponding redefini-
tion of “sure” answers. The difference is justified
by the intuitive requirement that base relation
tuples that do not “contribute” to modified view
tuples should remain sure and non-modified. Not
surprisingly, our definition of sure and the con-
ventional definition of [AHV96] coincide when
we focus on SPJ queries, which have been the
focus of prior work, but diverge when we con-
sider aggregate, arithmetic and moving window

functions.

The datagraph schema, which helps us rewrite
inherits from the LAP
schemas [SRN90] the idea of guiding the rewrit-

queries using views,

ing optimizer by a graph indicating how the
views are connected to each other. However,
LAP schemas have dealt with SPJ queries only
and this makes the rewriter described in [SRN90]

much simpler than Sesame’s.
The next section introduces the framework,

Section 3 de-

scribes the architecture and algorithms involved

syntax and semantics used.

in Sesame.

2 Framework

We first present the datagraph model, which is
our abstraction of warehouses and datacubes and
extends the datacube lattice model of [HRU96]
and the logical access path schemas of [SRN90]
by allowing derived views to be produced using
an extensive set of operators.* Section 2.1 de-
scribes novel operators and Section 2.2 describes
the formal syntax and semantics of hypothetical
modifications and scenarios.

The datagraph schema is a directed acyclic hy-
pergraph that consists of

1. A set of nodes V = {vi,...,v,}. Each
v; is a relation schema that has a unique
name, zero or more dimension attributes
and one measure attribute. Each dimension
attribute a has a domain D(a), which may
be ordered (e.g., time) or unordered. Mea-
sure attributes are of numeric types only —
float or integer. We may use the term re-
lation instead of node whenever there is no

confusion.

*As opposed to the de facto SUM operator of [HRU96]
or the SPJ operators of [SRN90].

10/ 29/ 98
10/ 30/ 98
10/ 30/ 98
10/ 29/ 98
10/ 29/ 98
10/ 30/ 98
10/ 29/ 98
10/ 29/ 98
10/ 30/ 98

node

10/29/98 860
10/30/98 950
10/30/98 -800
10/29/98 500
10129/ 98
10/ 30/ 98 0
10/29/98 410
10/29/98 -130

no g
ValueCTV+——<P=% v/ a6 HistCTDV

N * M1 ki AAPL 10/ 30/ 98 1250
* * - .
[~_
T
| \D=today L
PositionCTS ! PositionHistCTD
i
I
|
1
Z Note:
‘ ———h——»
PR ?
D | PriceToday TV
|
| \
| \
\ R \
pY \
I \
P . | D \
. hyperedge - | N 7‘7I'-V0D-:|Dday
I AN
I \
1 \
| \
| \
\
fact node) OrderCTDS N
. PriceTDV
{ c T D s 1
MIkin CATP 10/ 29/ 98 860 P 4
John NSFT 10/ 30/ 98 - 950 T D
Mlkin CATP 10/ 30/ 98 700 CATP 10/29/98 46.500
Garcia CATP 10/ 29/ 98 - 630 MBFT 10/29/98 132.00
John MBFT 10729/ 98 950 AAPL 10/29/98 40. 00
Boffet AAPL 10/ 30/ 98 410 AAPL 10/30/98 41.125
Bof f et MSFT 10/ 29/ 98 - 800 MSFT 10/30/98 131.00
Garcia CATP 10/ 29/ 98 500 CATP 10/30/98 45.250
MIkin AAPL 10/ 30/ 98 1250 L
. . 5
Figure 1: Brokerage House’s Datagraph

2. A set of directed labeled hyperedges of the

form [v1, ..., vm] = vg, where [v1, ... vy] is
the tuple of parent nodes and vy is the de-
rived node. The label e is a SESAME algebra
expression involving the nodes vy, ..., Upy,.

We will call fact nodes the ones with no in-
coming hyperedges. They correspond to the fact
table(s) of OLAP systems. Internal nodes cor-
respond to the views in a warehouse system and
the edge labels correspond to the view defini-
tions. Notice however that, in the same spirit
with the lattice model [HRU96] and logical ac-
cess paths [SRN90], multiple hyperedges may be
leading to the same node/view, hence encoding
multiple ways in which the node/view can be
derived. The hyperedges assist substitution and
rewriting (see Section 3).

Each node v is populated with a bag of tu-
ples S(v), called the state of v.

relational algebra, each SESAME algebra expres-

Similarly to

sion e(v1,...,vy), whether it is a hyperedge la-

bel or a query, is a mapping £ that given the
input nodes’ states S(v1), ...,S(vy) it produces
,S(vm))-

The states of the nodes must be such that they
For-
mally, a valid datagraph state (or simply data-

an output bag £(S(vy),...
satisfy the hyperedge label expressions.

graph from now on) is an assignment of a state
S(v) to each node v of the datagraph schema
such that for every hyperedge {v,...,vm} = vy
it is S(vg) = E(S(v1),...,S(vm)). From now on
we will omit mentioning S explicitly, whenever
the context makes clear that we refer to states
as opposed to schemas.

The datagraph schema must be consistent, in
the sense that alternative ways to compute a
view have to yield the same result. We formalize
consistency via the transitive hyperedges defini-
tion. (The transitive edges definition is also used

in the substitution and rewriting algorithms.)

Definition 1 The set of transitive hyperedges T

of a datagraph schema is computed as follows:

. v
1. for every node v, T contains v = v,

2. if the datagraph schema contains the edge

{v1,.
Vi =, i=1,...,m then T also contains

.y Um} S v and T contains the edges

the edge Ui=1,. mVi LS v, where €' is the
expression created by substituting each v; in
e with e;.
Given a transitive hyperedge {vy,...,v,} = vy
we will say that v; is an ancestor of vy (for every
1) and, vice versa, vg is a descendant of v;.
Formally, a datagraph is consistent if for every
two distinct transitive edges V <5 vy and V 3
vg the expressions e; and es are equivalent, i.e.,
they derive the same result for all possible states
of V. (Note that we typically use calligraphic V

to denote a set of views.)

EXAMPLE 2.1 Figure 1 illustrates a broker-
age house’s datagraph that will serve as the run-
ning example. A tuple (¢, t,d, s) in the fact node
OrderCTDS(Customer, Ticker, Date, Shares)
indicates that customer ¢, bought s shares of the
stock with ticker symbol ¢ on date d. If s has a
negative value it indicates selling of shares. For
brevity we are writing only the relation name
corresponding to the node and, by convention,
the capital letters at the relation names’ suffix
will stand for the initials of the attribute names.
The fact node PriceTDV(Ticker, Date, Value)
has tuples (¢, d, v) that stand for the closing price
v of stock ¢ on date d.

The current positions node PositionCTS is
derived from OrderCTDS by the hyperedge
{OrdersCTDS} s PositionsCTS. The oper-
ator X pgre (which adapts the summation opera-
tor of [GMUW9Y9] to one-measure tables) out-
puts all dimension attributes of the input ex-
cept Date. For each output tuple (c,t,s) the
measure s is the sum s; + ... + s,, where
the s;’s are the measures of the set of tuples
{(c,t,d1,81),--.,(c,t,dn, sy)} that consists of all
input tuples where Customer = ¢ and Ticker =
t. In general, ¥ may have multiple parameters,
€.8., L pate, Ticker- See [BPP] for a complete def-
inition of ¥ as well as all the operators in the
current implementation of SESAME.

For brevity we are going to represent at-
tributes by their first letter only and we may
not include the full operand names in the edge
expression whenever it is obvious from the con-
text.

The hyperedge

ER
OrderCTDS =& PositionHistCTDS

declares that the position history is the run-
ning sum of orders according to date (D). In
particular, PositionHistCTDS contains the tu-

ple (e, t,dy,s) if {(c,t,d1,51),...,(c,t,dp,sn)}
is the set of all OrderCTDS tuples such that
di <dy<...<d,and s =8 +...+s, Of
course, it is necessary that the attribute param-
eter(s) of X' are of an ordered type.

The hyperedge

{ PositionHistCTDS, PriceTDV'} = ValueHistCTDV
indicates that ValueHistCTDYV, the history of

the dollar value each customer held in each stock
each day, may be derived by multiplying the
stock prices with the position history. SESAME’s
arithmetic functions are explained in detail in
Section 2.1.

Finally as an example of datagraph consis-
tency, observe that ValueCTV, which is the cur-
rent dollar value each customer holds in each
stock, may be derived in two ways, correspond-
ing to the hyperedges A and B of Figure 1, from
OrderCTDS and PriceTDV. The first one is the
expression

Z (OrderCTDS) * (T1v 0 D=today Price TDV)
D

which first computes the current positions of the
customer and then multiplies them with the cur-
rent stock market prices (depicted by arrow type

A of figure 1). The second one is the expression
R

WCTV(TD:today((Z OrderCTDS) % PriceI DV')
D

which first computes the dollar value history
for each customer, stock and date (see above)
and then selects today’s data (depicted by arrow
type A of figure 1). The datagraph is consistent
because the two expressions always deliver the

same result. O

2.1 Novel Operators in SESAME

SESAME is based on an algebra where arbitrary
operators can be included as long as their in-

put and output is one-measure bags of tuples

(see Section 2.) Besides select, project, semi-
join, union, difference and the aggregate oper-
ators sum, min, max, avg and count (see Ap-
pendix for their precise definitions), we have also
included the novel join arithmetic family of oper-
ators, presented below, and the moving window
and metadata families, which are presented only
in the extended version due to space consider-
ations. Our operators appropriately merge the
relational framework of SESAME with array al-
gebras and spreadsheet-style operations. They
lead to expressions that are much more concise
than relational algebra expressions that are ex-
tended with generalized projections [GMUW99]
that accomplish arithmetic operations. The con-
ciseness greatly facilitates the development of
rewriting rules and speeds up the rewriter, which
has to deal with smaller expressions.
Join Arithmetic Operators The join arith-
operators
+,%%,—, /% and +* %, —% / take two operands,
let us call them the left(D1,..., Dy, ..., Dy, M)
and the right(Dy,...,Dg,M,). The dimen-
sion attributes of right must be a subset
of left). The result relation has schema
Result(D1,...,Dy, ..., Dy, Measure). The se-

mantics depend on whether the operator belongs

metic

to the semijoin sub-family +% %, —* / or the out-
erjoin sub-family +, *°, —, /°.
Semijoin Family For ev-
ery pair of tuples left(dy,...,dg,...,dy, m)
and right(dy, .. .,dg, m,) the result has a tu-
ple Result(dy, . ..

© is one of the four operators +,*, —,/.%

i, ..., dy, m©m,) where

Note that the without-superscript * and /
are “semijoin” operators. For an example of

(semijoin) multiplication, consider the con-

5Division by 0 raises an exception.

tents of PositionHistCTDS and PriceTDV
that appear in the Figure 1 and the cor-
responding content of ValueHistCTDS =
PositionHistCTDS * PriceTDV .

Outerjoin Family The outerjoin family is de-
fined only when the two operands have iden-
tical lists of dimension attributes. For every

pair of tuples left(dy, ..., dg,...,d,, m;) and

right(dy,...,dg,...,dy,, my) the result con-
tains the tuple
Result(dy, ... ,dk, ..., dp,m; ®m,). For ev-

ery tuple left(dy,...,dg,...,d,, m;) with no
matching tuple the tuple appears as is in
the result and so do tuples of right with no
matching left tuples. The no-superscript +

is an outerjoin operator.

Notice that, though the result relation name
is by default “Result” and the result measure is
“Measure” we may rename them to whatever
we like by using the renaming operator p. If
the operator is used in the datagraph schema
then we will omit the p, using the convention
that the relation name and measure name that
have already been given to the view will override
“result’” and “Measure”.

Based on the above and the special rela-
tion a = {(a)}, which has no dimensions
and its single tuple has measure a, we de-
fine the following four “macro” operators that
add/subtract/multiply /divide a constant a to

the single operand’s measure.

ADD,R=R+%a
SUB,R=R—°a
MULT,R=Rx*a
DIV,R = R/a
Our “implicit join” approach simplifies the ex-
pression of array computations and simplifies the
axioms and rewriting rules which involve arith-

metic (see Appendix).

2.2 Scenarios

A scenario is a set of ordered hypothetical mod-
ifications on a datagraph D. The first modifica-
tion results in a hypothetical datagraph D'. The
second modification uses the state of datagraph
D' and produces a new hypothetical datagraph
D?, and so on. Eventually a query is evaluated
on the last hypothetical datagraph. The follow-
ing example illustrates the syntax and semantics

of scenarios.

OrderCTDS! —
(}D>/Jan15,97//\T:I’I’Lt€l,MULT1_QOTdBTCTDS
OrderCTDS? «— OrdersCTDS!
—O0 D> Jan15,97 ANT'=Motorola OrderCTDS*
OrderCTDS? «— OrderCTDS?
UTT Intel,C,D
(07=MotorolanD>" Jan15 97"V alueHistCT DV)

The three modifications above roughly corre-

spond to an update, a delete, and an in-
The first one states that a hypothetical
datagraph D! is created and its OrderCTDS*

node must be the result of “updating” the

sert.

fragment o p~r jan15,97 AT=Intel OrderCTDS' with
MULT1.2(0 p> Jan15,97 AT —ntet OrderCTDS™Y).
Notice the select-modify operator & that is
used for accomplishing the first modification.
The function of & is to (i) select the tuples satis-
fying the subscript condition and apply to them
the subscript operator and (ii) union the result
with the remaining tuples of the input node.

Hence,
Ge,fR= f(o.R)Uo-cR

The hypothetical modification will be rever-
berated to all the nodes of the graph D'. For
example, the PositionsCTS' will reflect a 20%
larger position in Intel. Intuitively D! is pro-
duced by having OrderCTDS' be defined di-
rectly by the modification and all the nodes that

are descendants of OrderCTDS? are recomputed
according to the datagraph hyperedges.
Consequently, the datagraphs D? and D? are
defined. Notice that the definition of D3 uses
both D? and D (in particular, the node Value-
HistCTDV of D is used.)

pressing modifications that happen “in parallel”.

This facilitates ex-

Then queries can be issued against any node of
D!, D? or D3.

We now formalize the semantics of a scenario
s on a datagraph G. For uniformity we’ll be re-
ferring to the actual datagraph G as G°. The no-
tation e(V%1?) denotes an expression e whose

arguments are nodes of G°, G, ..., G".

vt — e1(VY),
13 — ea(Vyh),

7}% — em(VTOr{l,...,m—l)

Definition 2 assumes that the first ¢ — 1 data-
graphs are known and uses the i-th modification
of s to derive the i-th hypothetical datagraph.
Definition 3 specifies the induction that defines
G' from G°. Note in the following definition that
the hypothetical datagraph is not an arbitrary
datagraph that satisfies the modification and the
edge expressions; in addition, it will have to be
in agreement with all minimally changed data-
graphs. The intuition behind this definition is
illustrated in Example 2.2.

Definition 2 Consider the
datagraphs G°,G',...,G*"! and a modification
vl — e(V?""’ifl). The hypothetical datagraph G*

meets the following properties:

1. For every node v° of GO there is a node v’
of G* with identical schema, modulo having
a superscript * on the relation name. For
every edge VO 5 00 of GO there is a corre-

sponding edge V' 5 v* of GI.

2. S(vi) = e(S(VI1Y)

7 K

3. Each node v' of G contains the intersec-

tion ﬂjzl,_",kv;'- of the corresponding nodes
vt of all minimally modified data-
M. A datagraph M' s

called minimal if there is no L' that meets

i
vy, ..

graphs M}, ..

conditions 1 and 2 and for every node vli of
L, which corresponds to nodes v* of M* and
vl of G, it s vf — vl c ot — v and
viml—of c Tl =o' (Le., you cannot “can-
cel” any tuples’ insertion or deletion in a
minimally changed datagraph and still have
a valid modified datagraph that meets condi-

tions 1 and 2.)

Definition 3 A hypo-
thetical datagraph G* given the scenario s is a
datagraph such that there is a sequence of data-
graphs G1, ..., G* such that G* is a hypothetical
datagraph of GV, ..., G given the modification
vl e;(Vi 1), for eachi=1,... k.

We denote by G(G, s) the set of all hypothetical

datagraphs given a scenario s and a datagraph G.

Note the following two points which are illus-
trated in Example 2.2. First, there is no guaran-
tee on the number of hypothetical datagraphs.
Second, not all modified datagraphs are hypo-

thetical according to our definition.

EXAMPLE 2.2 Consider
the hypothetical modification PositionCTS! «—
(ATT:wIntelw’MULTl_2Posz’tionCTSO that hypothet-
ically increases by 20% the customer holdings
on Intel. There are more than one hypotheti-
cal datagraphs because there are multiple ways
to derive an OrderCTDS" state such that the
sum of the OrderCTDS" Intel tuples will be in-
creased by 20%.

There are modified datagraphs that satisfy the

modification but affect “irrelevant data”. For

example, there are datagraphs that lead to the
same PositionCTS! but they update non-Intel
tuples as well. We believe that such datagraphs
should not be considered valid hypothetical data-
graphs. We exclude them from the set of hypo-
thetical datagraphs by placing the third condi-
tion in Definition 2.

Finally note that we do not restrict valid hy-
pothetical datagraphs to the minimally modified
ones (see Definition 2.) For example, a valid
hypothetical datagraph for the running example
is one that increases every Intel order by 20%.
However, such a datagraph is not minimal. The
only minimal datagraphs are those that assign
the full increase of the Intel position to a single
order. We believe that being restricted to min-
imal datagraphs would unnecessarily disqualify

meaningful hypothetical datagraphs. O

If a modification is applied on a node with no
incoming edge, say the OrderCT DS of Figure 1,
and the edge expression operators are total then
there is exactly one hypothetical model.

The result of a query or, more general, the re-
sult of an expression (say, the expression that is
used on the right side of an assignment) is com-
prised of a sure and a non-sure part as defined

below.

Definition 4 (Sure Expressions) Given

a datagraph schema G and a scenario s, con-
sisting of m modifications, the expression e(V™)
is sure if for every state of G the result of eval-
uating e(V™) on every hypothetical datagraph in
the set G(G, s) is identical.®

6Note that according to the above definition — and
according to SESAME, which follows the above defini-
tion — the “sureness” of an expression depends only on
the datagraph schema and not on the specific datagraph
state. This decision is justified by obvious implementa-

tion considerations.

Der eferenced Query

Execution Plan

SQL dueria
Transact SQL

Sesame’s
Temporary

Data
Warehouse
(DataGraph

Figure 2: SESAME’s Architecture

It is interesting to note the difference of our
definition of “sure” with the one used in [AHV96]
for the definition of updating a select-project-
join view. The latter one does not use “minimal-
ity of changes” and this makes it inappropriate
in an OLAP environment with arithmetic and
aggregate operators. For example, according to
the definition of [AHV96] the updating of a frag-
ment of a sum aggregate node makes the whole
source node unsure. Nevertheless our more com-
plex definition coincides with the one of [AHV96]

when applied to Select-Project-Join views only.

3 Sesame’s Algorithms, Imple-
mentation and Performance
Results

The SESAME system is the middle layer in the
3-tier OLAP architecture of Figure 2. The ware-
house is actually stored in a relational database
On the

client side there is a user interface that creates

— currently Microsoft’s SQL Server.

the scenarios and hypothetical queries that are

10

sent to SESAME. A simple GUI is available at
www.db.ucsd.edu/projects/sesame/demo.htm
and demonstrates the rewriter and the execution
engine of SESAME. SESAME processes the hy-
pothetical query (along with the corresponding

scenario) in three steps:

1. The substitution module (see Figure 2) com-
bines the scenario and the original query
into a new query, called dereferenced, that

refers directly to the original datagraph.

2. Then the rewriter turns the dereferenced
query into an optimized one, which may
even use materialized views. Rewriting is
driven by the datagraph and a set of rules
related to the involved operators (the com-
plete list can be found in the Table 2.)

EXAMPLE 3.1

Consider the single-modification scenario on
the datagraph shown on Figure 1, where po-
sition on the stock “MSFT” is increased by
10%.

PositionCTS' — & PositionCTS

T=MSFT,Mult, 1

Then consider the query that retrieves the
hypothetical value of the account of client
John

To_ John ValueCTV

The substitution module will combine the
scenario and the query into the following
dereferenced query. The specific steps are

explained in Section 3.1 and Example 3.3.

(TC:JOhn(((ATT:MSFT7Mult1_1POSitiOnCTSO)
% Price Today TV°)

transformations:

o John (OT=MSFT, Mult, Posz‘tionCTSO)
s Price TodayTV°)
= 0c_ John\OT=MSFT Mult; , ValueCTV®)
= OT=MSFT,Mult, O c_ John ValueCTV®
= Multy 10 (1= rSFT)AN D(C=John) ValueCTV®

V0 s mspryaND(C=J0hn) ValueCTV®

At this point the query processor has
achieved two goals: (I) It has expressed the
query in terms of actual, stored relations.
(IT) It has optimized the expression by push-
ing selections down the query tree and by
using the appropriate materialized views. In
particular it has used the ValueCTV? - as
opposed to the PositionCTS®. a

. SESAME’s execution engine treats the ex-

pression produced by the rewriter as an exe-
cution plan.” The engine traverses the plan
tree bottom-up. When it locates a subtree ¢
that corresponds to a single SQL statement
¢ it sends ¢ to the SQL server. Consequently
the server creates and stores the result table
r of ¢ and the engine replaces the subtree ¢
with the table . However, many SESAME
operators cannot be reduced to SQL (e.g.,
moving windows and financials). For each
operator of this kind SESAME has a stored
procedure written in Microsoft’s Transact-
SQL, which has the full power of a program-
ming language. Each procedure implements
the functionality of a specific SESAME op-
erator. Note that all processing is done at
the SQL Server and no data is moved be-
tween SESAME’s execution engine and the
SQL Server. Only the final result passes
through the engine, before it is sent to the

"We have not yet separated the notions of logical and

physical plan [GMUW99] mainly because the physical

Next, the rewriter makes the following work is passed to the SQL server.

client.®

EXAMPLE 3.2 The engine will translate the
plan produced by the rewriter in the Example 3.1
into the SQL query

SELECT C, T, (V * 1.1) AS V
FROM ValueCTV

WHERE T = "MSFT" AND C = "John"
UNION

SELECT * FROM ValueCTV

WHERE T != "MSFT" And C = "John"

For the sake of the example, let us assume that
SQL does not have a multiplication operator.
Then the engine will execute the plan by issu-
ing the following three commands to the SQL
Server:

1. SELECT * INTO #Tmpl FROM ValueCTV
WHERE T = "MSFT" AND C = "John" (creates

#Impl = T(T=pMSFT)AND(C=John) ValueCTYV)

2. Run a Transact-SQL procedure that creates a
#I'mp2 where V is multiplied by 1.1.

3. SELECT * FROM ValueCTV
WHERE T != "MSFT" AND C = "John"
UNION
SELECT * FROM #Tmp2

a

In many real-world situations, substitution
and rewriting are not as simple or as fast as the
In the

general case they both reduce to combinatorial

few steps of the Example 3.1 suggest.

problems. We have sped up substitution by fo-
cusing our algorithms on the class of structurally
sure scenario queries. For this class substitution
is polynomial in the size of the query and the
datagraph. Then we present a series of rewriters
that incrementally address the performance chal-

lenges that are special to what-if scenarios. For

8Note also that in order to improve the performance
the intermediate tables are stored in a special temporary

database which is kept in the main memory.

example, we found that a naive rewriter’s run-
ning time increases almost doubly exponentially
in the number of select-modifications, whereas
our more advanced rewriter using minterms and
We re-

port the solutions we have implemented, their

packed forests performs much better.

applicability, and experimental results showing
the improvements.

Section 3.1 describes the substitution step.
Section 3.2 gives an overview of a straightfor-
ward rewriting algorithm and its performance
Section 3.3

introduces the minterms replacement for effi-

problems in non-trivial scenarios.

ciently rewriting scenarios with multiple select-
modifications. Section 3.4 describes the packed
forest rewriter. Section 3.5 provides experiment

results.

3.1 Substitution

The substitution module receives (i) a datagraph
DY, (ii) a scenario s illustrated in (SQ5) that
produces an hypothetical datagraph D™ and (i)
a query g = e,(Vy) on D". The module derives a
query ¢’ that (1) uses exclusively the nodes of the
original datagraph D, and (2) when evaluated
on DU it returns the same answer that ¢ returns
when it is evaluated on the datagraph D™. We
will call ¢’ the dereferenced query.

U = e1(V1)

vm = ea(Vy?)

n 0,...
Um < en(vn7 ’

eq(Vy) %oquery

The implemented substitution module works
for the class of structurally sure scenario-queries,
which are guaranteed to be sure (as defined in

Section 2.) Structural sureness leads to a very

12

efficient substitution algorithm, because it de-
pends on the graph structure of the datagraph
schema and scenario modifications, but not on
the datagraph’s edge expressions and the related
axioms.

Given a datagraph D and the scenario-
query (SQ5) the following nodes of D°,... D™
are structurally sure. For each structurally sure
node v we also provide a set of expressions C(v)

that compute v using D° nodes exclusively.

0

Initial Nodes Every node v" is structurally

sure. For each oY it is
c(’) = {"}

Directly Modified Nodes
If the nodes V?""’i_l used in the ith mod-
ification are structurally sure then the di-
rectly modified node v!, is also structurally
sure. The set of expressions that compute

i

Um,

is constructed by applying the modifi-
cation expression e; on each expression e

i—1

that computes the corresponding node v’

of D1 ie.,
C(op,) = {ei(e)]e' € Clup,)}

Unmodified Nodes If the node v* is not a de-
scendant of an ancestor of the node v?, that
was modified in the ith step of the scenario
then v* is also structurally sure. One can
easily see that such nodes v’ are left unmod-
ified by the ¢th modification. Hence

C(v) =C(v'™)

Indirectly Modified Nodes If there is an hy-
peredge A’ = v' and all of the nodes a;'- €
A" are structurally sure then v* is also struc-

turally sure. In general, there are many

13

ways in which we can compute v’. For ex-
ample, given the hyperedge labeled by e and
given expressions €ai that compute each of
the aj € A® one expression that computes v*
is derived by substituting each instance of aj
in e with the corresponding €ai - However
there may be many hyperedges leading to
v® and each source node aé- of the hyperedge
may be computed by multiple expressions
(i.e., C(a;'-) will typically have more than one

expressions.) Hence C(v*) is the following

set.
C(v))={ e/(a} Heai,...,a%Hea%)
3al, ... ap,} =0
gt €C(a),. - eqs, € Claiy)}
where the notation e/(a% — €qis - - Sab

eqi) stands for the substitution of each

Z'
az,j=1,...,m, in e with €ai-

Finally, a scenario-query is structurally sure if
every node in the node set V', which is used by
the query, is structurally sure. It is easy to see
that the query can be computed by any expres-

sion of the set

Co={ eq/(v] —ewp,..
levp € C(V]), ..., eqp € C(0]")}

7
LU eyn)

Reducing the Number of the C Sets The
implemented algorithm computes the C sets top-
down — unlike the above definitions that hint a
bottom-up algorithm. The top-down derivation
computes fewer C sets than the bottom-up one,
because the bottom-up one computes C sets even
for the nodes that are “irrelevant” to the query.

The top-down algorithm proceeds in n rounds,
where n is the number of modifications in (SQ5).
Each round consists of two steps. In the first step
of the first round the indirectly modified nodes
of V¢, i.e., the indirectly modified nodes of D"

that are used in the query, are substituted with
expressions that refer to directly modified and
unmodified nodes of D". (Given the definition of
“indirectly modified” above, one can prove that
there are such directly modified and unmodified
nodes.) In the second step the directly modi-
fied node and the unmodified nodes of D" are
replaced with expressions involving nodes from
D" 1 (or even from datagraphs D¥ k < n —1).
Hence at the end of the two steps of the first
, DY
- but not of D™. The algorithm repeats this pro-

round the query involves nodes of D"~ 1, ...

cedure another n — 1 times, at the end of which,

the query refers exclusively to DY nodes.

EXAMPLE 3.3 Consider (again) the modifi-
The
substitution algorithm first locates a transi-
tive hyperedge that leads to ValueCTV' and
contains only directly modified and unmodi-
fied nodes. Such a transitive edge is the
{PositionCTS", PriceTodayTV'} = ValueCTV*
since PositionCTS' is directly modified and

PriceTodayTV" is unmodified. Now we can re-

cation and the query of Example 3.1.

place the query with:
UC:JOhn(PositionCTSl % PriceTodayTV")

Then PositionCTS" is replaced by the right hand
the hypo-
thetical assignment. PriceTodayTV' is replaced

side of

by PriceTodayTV because it is “unmodified”.
Hence, we end up with the dereferenced query
o= John\(Trnrsrr, MULT, o, PositionCTS)
PriceTodayTV)

|

3.2 SESAME’s Rewriters

This section describes the challenges that arise
during the rewriting of dereferenced queries and

the solutions developed for SESAME’s rewriter.

The variety of operators, datagraphs and sce-
nario queries that have to be considered during
query rewriting, prompted us to first develop
the ultra-conservative rewriter that exhaustively
searches the space of plans. We configured this
rewriter with the set of 9 operators formally de-
fined in the Appendix A and the rewriting rules

listed in Table 2.7

Although for a small set of inputs the ultra-
conservative algorithm might perform reason-
ably well, in the general case its running time
is very poor as the following experiments illus-
trate. In the first experiment queries of the form

Y pOT—tick,,Mult., - - - OT=tick,,Muit., OrderCTDS

where n ranges from 1 to 3, were executed on
the datagraph of Figure 1. The reported experi-
ments were developed and run using JDK 1.3 on
the Hotspot Java Virtual Machine, which was
running on a 333MHz Pentium II system with
512Mbytes of main memory under Windows NT.

The following exponential blowup was ob-
served, resulting in poor performance for queries

with more than four select-modifications.

Number of

Select-Modifications | Rewriting Time (sec.)

1 0.27
2 0.71
3 3.26
4 13.2

Table 1: Performance of the ultra-conservative

rewriter.

The the

ultra-conservative algorithm is due to challenges

poor performance of

that relate to the structure and size of derefer-

enced queries. We describe next the challenges

9This set of rules does not create an infinitely large

space of plans.

14

Relational Rewritings

0c,0cy R = 0y pcy R

0, RUOLR = 0.ve, R

Ocives B =0, RU0, R
Aggregate Operators Rewritings

if ¢ does not use A, Aggr 4o0.R = 0. Aggr 4R
ocAggr 4R = Aggr 4o.R

YadsR= 4R

S(MultR) = Mult(>. R)

avg(AddR) = Add(avgR)

AvgoR x CountcR =)~ R

>4 CountzR = Count o 3R

Union Rewritings

UnaryOP(Ry U Ry) =

= (UnaryOPRy) U (UnaryOP Ry)

(Ry URs) * R3 = (Ry * R3) U (Rs * R3)

Arithmetic Rewritings

if ¢ involves dimensions only, o.fR = fo.R
f1i(foR) = fsR, (fsis composition of f1and f2)
0(Ry % Rz) = (0Ry) * Ry

(MultRy) * Ry = Mult(Ry * Ra)

Table 2: List of the rewritings rules.

along with the solutions that SESAME’s rewriter

gives.

3.3 Exponentiality in the number
of Select-Modifications and the
Minterms Solution

The first challenge is the exponential size of the
dereferenced query after replacing each select
modification 6, R with fio, R U 0, R. For

example, the expression

Ocr,f10co,f20cs,f3 R

is rewritten as:

J10e, (fo0c, (f10ca RU Oy R) U 0—cy (f10cs RU 0y R))
U0 -, (f200, (f10cs RU 0—cq R) UOaes (f10ca RU Ty R))

One may wonder whether considering common

subexpressions could lead to a faster rewriter

that would optimize each common subexpression
just once. The shortcoming of this approach
is that the modifying functions (f1, fo and f3
above) will make each of the two copies of the
common subexpression interact differently with
the rest of the expression and hence it will be-
come impossible to optimize the common subex-
pression just once.

SESAME’s rewriter, provides an efficient solu-
tion to this problem by identifying the minterms
of R. A minterm is a set of tuples on which ex-
actly the same modifying functions are applied.
Identifying minterms in a query that involves
select-modifications allows the rewriter to re-
move the exponentiality in the number of select-
modifications; instead, the result is exponential
only in the number of dimensions referenced in
the selections of the query. The minterms tech-
nique can be applied in the case of scenarios

where:

1. The conditions of the select-modifications

do not involve measure attributes.

2. The modifying functions in the select-
modifications are commutable with selec-

tion and union operators.

Though the above requirements seem strict, they
are quite common. Indeed, modifying functions
consisting of arithmetic operators, which we be-
lieve are predominant in what-if practice, meet
the above conditions.

Now consider the following scenario/query,
which is amenable to the minterms technique be-
cause the modifying functions commute with se-
lection and union and the conditions are of the
form A € range; or A = c¢; where A is a di-
mension. For simplicity let us consider equality

conditions as a special case of range conditions.

15

scenario V1 «— O Ae(iy u1)erV
2 S 1
V — O-Ae[lz,ug),egv
n S n—1
V" — (TAE[ln,un),enV

query eq(V™)

The dereferenced query for the above is

€q(0 Aclln un)en - - - TAClizuz),e0 Ay, ur)er V) (Q6)

Using the minterm technique this scenario query

can be rewritten into the minterm form

eQ((Uj:2:2nUA€[Cj—1,Cj)e‘zlefl—l s G{V)U (

QT)
UAg[cl,ch)V)

where the points c¢i,...,co, are simply an or-
dered list of the {; and u; points (i.e., ¢ < ¢c2 <

. < cap). eg is e; if the range [l;,u;) covers
the range [cj_1,¢;) and it is the identity func-

tion otherwise (i.e., it can be omitted as well.)

EXAMPLE 3.4 The expression

0 Del1/1/98,1/15/98), Mult1.1 O Din[1/10/98,1/25/98), Mult1
0 De[1/20/98,1/30/98), Mult, 3 OTderCT DS

reduces to the following after the select modifica-

tions are removed using the minterms technique

T Def1/1/98,1/10/98) Mult1 10rderCTDS

U0 pel1/10/98,1/15/98) Multy o Multy10rderCTDS
U0 pel1/15/98,1/20/98) Mult1 20rderCTDS

U0 pel1/20/98,1/25,/98) Multy s Multy 20rderCTDS
UUD€[1/25/98,1/30/98) Multy 30rderCTDS
UUT¢[1/1/98,1/30/98) OrderCTDS

a

Note that the above minterm form is linear in
the number of select-modifications — as opposed
to exponential. We can generalize the above
transformation to one where the conditions in-

volve d dimensions. In this case the number of

minterms (i.e., the number of operands in the
above union) will be less than ((2n + 1)/d)<.
A polynomial time algorithm that performs

the above transformation is in Appendix B.

3.4 Multi-Operand Operators Chal-
lenge and the Packed Forests’ So-
lution

The second challenge arises when the rewriter
optimizes unions and other multi-operand oper-
ators. In this case, the rewriter produces an ex-

ponential number of equivalent expressions.

EXAMPLE 3.5 Assume that the operators a
and b are commutative. Then, given the expres-
sion a(b(R)) U (a(b(S)) the rewriter will also de-
rive a(b(R)) U (b(a(95)), b(a(R)) U (a(b(S)), and
b(a(R)) U (b(a(5)). O

System-R style optimizers resolve this prob-
lem by optimizing each branch of the union sep-
arately, i.e. by employing local optimization

(called dynamic programming in the context of
2 System-R.) However, the local optimization al-

gorithms may miss the opportunity to use a

materialized view. The following example illus-

trates the problem.

EXAMPLE 3.6 Consider the dereferenced
query

Avge(Multy 1 OrderCTDS) *
Countc(OrderCTDS)

against a datagraph containing the views

Vi => ¢ OrderCTDS
Vo = Avg(OrderCTDS)

If the optimizer processed each operand of the
multiplication operator separately, it would ar-
rive to Mult;1Ve % Countc(OrderCTDS) and
would not be able to reach the optimal Mult; 1V}

O

16

Packed Forests

strates that local optimization may miss the op-

The above example demon-

timal rewriting. Our rewriter tackles the prob-
lem by employing the packed forests data struc-
ture, which efficiently stores all equivalent plans
for each subexpression — as opposed to System-
R optimizers, which note only the optimal plan
and discard the rest.

Technically, a packed forest is a data struc-
ture that can encode in a compact way a class
of equivalent expressions. A forest of an expres-
sion F is a set of all expressions equivalent to F.
A packed forest of E is a forest in which every
subtree of each expression is also a forest.

Packed forests have been used to save space
in parsing of natural languages [RN95]. To il-
lustrate how packed forests are used to improve
efficiency of the query rewriting let us reconsider
the union expression of Example 3.5. The packed
forest of this expression is {a(b(R)), (b(a(R))} U
{a(b(S)), bla($))}.

Notice that if the union had n operands and
the packed forest of each one had two equivalent
expressions the packed forest encoding would re-
quire space linear in n while it represents 2"
equivalent expressions.

The packed forest rewriting algorithm shown
in Figure 3 creates the packed forest of
Let wus

gorithm with the rewriting of the query:
ZC’(&[Year:IQQ&Multl_z] (CST))

a given query. illustrate this al-

In the first step (see Figure 4) , the initial tree
is traversed bottom up starting at oy eqr—1998 and
a forest is built out of each non-leaf node. In
Figure 4 dotted circles indicate the roots of the
subtrees for which the buildForest() is called, and
solid boxes indicate completed forests. Since no
rules match any of the nodes, until the rewriter

reaches the root node) ., every forest con-

function buildForest(query g, rules R, datagraph D)
returns forest F'
for every hyperedge {v1,...,v,} — vg
insert e(vy,...,vp) — vg In R
Queue — [q]
insert the node ¢ in F
while Queue is not empty
remove from Queue its first element ¢
for every rule r in R
if r.match(q')=true
and returns the set of bindings B
for every binding b from the set B
generate new tree t = r.rewrite(b)
traverse t’s non-forested part bottom-up,
applying buildForest() to every node.
if ¢ is not already in F insert ¢ in Queue
insert the node ¢t in F'

Figure 3: Packed Forests Optimizer

U U [§] S e
I
*12 O ot 1908 12 ONot 1998 ! *12 ONot 1998 *1‘2 o ‘
J ‘ ‘ Not 1998
O 1908 cst T 190 cst ' || [P cst epr !
| | ' | | st
cst cst ! cst cst

*12 OnNot 1908

*
U190 c‘sr ‘ O 1008]| | [0 1008
| z‘c st | |
csT oo cst cst

Figure 4: Example of Packed Forest Optimiza-

tion

17

tains exactly one tree (step 2 in the figure). At
this point the rule > 4(R1 U Ra) = (D-4 R1) U
(3°4 R2) fires and adds the second tree to the
forest that is being built (step 3). Note, that the
new tree already has forests built for %39 and
Ty ear+1998, because these subtrees where copied
from the original expression without modifica-

tions.

Next, the buildForest() function is called for
every non-forested child of U i.e., both its chil-
It starts with the left) . This in-
stance of buildForest() uses the > 4 Multy =
Multy Y~ 4 rewriting and produces the expres-
sion T1 = Multl.g ZC((TyeaTzlggg(CST)). Then
it recursively calls buildForest() on Ty (step 4).

dren.

The rest of the forests is produced, in the similar

fashion.

By default, SESAME’s rewriting rules use only
the local optimum plan of each subexpression,
thus being almost as fast as local optimization
algorithms. However, specially written rules
spend extra time to scan (not only the local
optimum but also) the equivalent subexpres-
sions and hence find the optimal rewriting. In
our current system implementation only the rule
AvgoR * CountcR = > R is implemented in
this fashion. The match() function of this rule
looks at the roots of all trees in the operand
forests, selecting Sum’s in the first operand and
Count’s in the second. Then pairs of Sum and
Count with the same operands and parameters
should be identified, and bindings be produced

for each of those pairs.

Packed forests greatly reduce the amount of
space required by the rewriter and allow us to
trade the rewriter running time with the com-

plexity of rewritings it can do.

3.5 Experiment results

This section presents two sets of experiments.
First, we evaluate the running time of an opti-
mizer that employs the techniques described in
Sections 3.2, 3.3, and 3.4 on the performance
of the rewriter. Second, we evaluate SESAME’s
overall performance in comparison with recom-
putation and incremental update policies in a
conventional data warehouse.

The data presented in this section were ob-
tained on the same Pentium II 333 MHz, Win-
dows NT, JDK1.3 with Hotspot Java Virtual
Machine configuration where the data for the ul-
tra conservative rewriter were obtained. In all
cases the rewriter was set up with the datagraph
schema of Figure 1. The same set of rewriting

rules listed in Table 2 was used.

Rewriter Running Time Experiments In
this section we evaluate a rewriter employing
minterms and the packed forest technique. We
do not show results for rewriters without these
two techniques, for their performance is non-
competitive (see Table 1). For our experiments
we report only the running time of the rewriter
and not the number of produced plans, because
the number of produced expressions is linear
with respect to running time as indicated by Fig-
ure 7.

For the experiments of Figures 5 and 6 the
scenario consists of N = 1,...,10 modifications

of the form
OrderCTDS" = 64, muLt,, OrderCTDS™

where A; were conditions on the dimensions T
and C. The first query was o¢g PositionCSTY,
where C's was a condition on the T dimension.
The second query was o¢yg ValueCTVYN. Thus

the dereferenced queries are of the form:

18

1200

1000

800

600

Time (ms.)

A
o

[—

400

200

0

4 5 6 7 8 9
Number of Modifications

1 2 3 10

Figure 5: Query on PositionCTS. Run using
JDK 1.3 and the Hotspot Java Virtual Machine
on a 333MHz Pentium II system, under Windows
NT.

1800

1600

1400

1200

.
® 9
S o
S o

Time (ms.)

e

@
=3
S

I
S
S

/

3

N
=}
1<}

o

4 5 6 7 8 9
Number of Modifications

-

2 10

Figure 6: Query on ValueCTV

0Cs X Date0 Ay, MULT o, -0 Ay MULT ., Order CT DS,

and

005 (XDated Ay, MULT., -

0 A, MULT., OrderCTDS) * PriceT odayTV
Figures 5 and 6 present how the rewriter’s run-

ning time increases as a function of the number

of modifications.

Overall Performance Experiments In con-

clusion we present an experiment in which

the same hypothetical query o¢g PositionC ST

(where N = 1,...,4 is the number of modifi-

cations in the scenario) that was used for the

rewriting experiment, was executed by SESAME’s

execution engine and by Microsoft SQL Server.

19

—+-PositionCTS -&- ValueCTV\

1800
1600

/

1400
1200

Va
Wt
A
Lt
e
/

P d

1000

800
600

Time (ms.)

400
200
0

T T
600 800

Number of Trees Produced

T T
0 200 400 1000

Figure 7: In all cases the number of produced
expressions is proportional to the running time

of the rewriter

Since SESAME’s rewriter can optimize this query
to be answered entirely using the original materi-
alized view PositionC ST, SESAME’s lazy evalua-
tion approach has huge advantage over the eager

execution one, as Table 3 clearly demonstrate.

The second column indicates the time that it
took SESAME’s execution engine to carry out the
optimized dereferenced plan.

The third column reflects the time that it took
the MS SQL Server to update the fact nodes and
relevant views according to the scenario, execute
the hypothetical query and roll back the mod-
ifications. This result is equal to the time this
scenario would take in a warehouse system that
supports incremental updates, i.e., the time to
create the delta tables for OrderCTDS and Posi-
tionCST, run the query and destroy the deltas.
The fourth column reflects the time that it took
the MS SQL Server to execute the query with-
out the simulated incremental updates. In this
case the hypothetical database was created, all
the data was copied from the original fact ta-
bles along with the necessary modifications, all
the views were recomputed, and the query was

executed on the hypothetical database.

Number of Sesame Incremental | Replacement | Affected
modifications | Exec. time | Exec. time Exec. time tuples
1 0.25 sec 202 sec 630 sec 151 K
2 0.9 sec 225 sec 630 sec 168 K
3 1.1 sec 289 sec 630 sec 249 K
4 1.0 sec 298 sec 630 sec 257 K

Table 3: SESAME’s overall performance vs. the MS SQL Server

The data warehouse used for this experiment
contained only one million orders or about 50
MB of data. In a more realistically sized ware-
house, SESAME’s advantage would be even more

striking.

4 Conclusions

In this paper we presented SESAME a middle-
ware system that sits between the user and a re-
lational warehouse. SESAME allows the modeling
of hypothetical scenarios as ordered sets of hypo-
thetical modifications on the fact tables or the
derived views of the warehouse. We provide for-
mal scenario syntax and semantics, which extend
SPJ view update semantics for accommodating
the special requirements of OLAP what-if anal-
ysis. SESAME is extensible with array operators,
such as the join arithmetic family of operators,
that bring spreadsheet-style computational ca-
pabilities in database queries.

The scenario evaluation algorithms achieve
superb performance by using substitution and
rewriting. Given a scenario s, a query q on the
hypothetical database, and information on the
warehouse’s views, the substitution module de-
livers a query ¢’ that is evaluated on the actual
warehouse and is equivalent to the result of eval-
uating q on the hypothetical database created by

s. We provide an efficient substitution algorithm

20

for the class of sure scenario-queries.

Then the rewriter optimizes the query ¢’. In
the spirit of conventional optimizers it pushes se-
lections down and it eliminates parts of ¢’ that
do not affect the result (such parts typically
correspond to “irrelevant” hypothetical modifi-
cations.) The rewriter faced many novel chal-
lenges that required novel optimization tech-
niques: First, the minterm optimization tech-
nique resolves the problems caused by the expo-
nential (in the number of modifications) increase
of the dereferenced query’s size. Second, the ar-
bitrary nature of the operators and the require-
ment for rewriting queries using the warehouse’s
materialized views makes hard the System-R-
style pruning of the plan space. The packed for-
est rewriter allowed us to trade off the rewriter’s
execution time (heavily dependent on the prun-
ing of the plan space) with the query/warehouse
complexity. The rewriter was implemented and
tested with very encouraging experimental re-

sults.

References

[AHV96]

[BLTS6]

[BPP]

[cCs]

[CNS99)

[GHO7]

[GMS93]

[GMUWY9]

[HFLPY)

[HRUY6]

[LMSS95]

S. Abiteboul, R. Hull, and V. Vianu.
Foundations of Databases. Addison

Wesley, 1996.

J. Blakeley, P. Larson, and F. Tompa.
Efficiently updating materialized views.
In Proc. SIGMOD Conf., 1986.

A. Balmin, Y. Pa-
pakonstantinou, and T. Papadimitriou.
Hypothetical queries in an olap environ-
ment. http://www.db.ucsd.edu/

publications/extsesame.pdf.

E.F. Codd, S.B. Codd, and C.T. Salley.
Providing OLAP (on-line analytical pro-
cessing) to user-analysts: An IT man-
date. http://www.arborsoft.com/
essbase/wht_ppr/coddT0C.html.

S. Cohen, W. Nutt, and A. Serebrenik.
Rewriting aggregate queries using views.
In Proc. PODS Conf., 1999.

T. Griffin and R. Hull. A framework for
implementing hypothetical queries. In
Proc. SIGMOD Conf., 1997.

H. Gupta, I. Mumick, and A. Subrahma-
nian. Maintaining views incrementally.
In Proc. SIGMOD Conf., 1993.

H. Garcia-Molina, J. Ullman,
J. Widom. Principles of Database Sys-
tems. Prentice Hall, 1999.

and

L. Haas, J. Freytag, G. Lohman, and
H. Pirahesh. Extensible query process-
In Proc. SIGMOD

ing in starburst.

Conf., 1989.

V. Harinarayan, A. Rajaraman, and
J. D. Ullman. Implementing data cubes
efficiently. ACM SIGMOD Conf. Proc.,
pages 105-216, 1996.

A. Levy, A. Mendelzon, Y. Sagiv, and
D. Srivastava. Answering queries using

views. In Proc. PODS Conf., 1995.

21

[LYGMO99)]

MQMY7]

[PCY5]

[RKRO7]

[RNOS5]

[SDJLY6]

[SLR97]

[SRN90)

W. J. Labio, R. Yerneni, and H. Garcia-
Molina. Shrinking the warehouse update
window. In Proc. SIGMOD Conf., 1999.

I. Mumick, D. Quass, and B. Mumick.
Mainenance of data cubes and summary
tables in a warehouse. In Proc. SIGMOD
Conf., 1997.

N. Pendse and R. Creeth. The OLAP
Report, Business Intelligence, 1995.

N. Roussopoulos, Y. Kotidis, and
M. Roussopoulos. Cubetree: organiza-
tion of and bulk incremental updates on
the data cube. In Proc. SIGMOD Conf.,

1997.

S. Russel and P. Norvig. Artificial In-
telligence: a modern approach. Prentice
Hall, 1995.

D. Srivastava, S. Dar, H. V. Jagadish,
and A. Levy. Answering queries with
aggregation using views. In Proc. VLDB
Conf., 1996.

Praveen Seshadri, Miron Livny, and
Raghu Ramakrishnan. The case for en-
hanced abstract data types. In Proc.

VLDB, 1997.

T. Sellis, N. Roussopoulos, and R. Ng.
Efficient Compilation of Large Rule
Bases Using Logical Access Paths. In-
formation Systems, 15(1):73-84, 1990.

A Operators Implemented in the SESAME

e Relational Operators. The framework supports most standard relational operators including:

Select (0.) : The selection operator, like the rest of the relational operators that the
Graph framework supports, is directly derived from relational algebra. The subscript
parameter c is a logical expression consisting of tuple attributes, arithmetic comparison
operators (<,=,>, <, > #) , and logical operators (V, A,). 0. (V) is the bag of tuples

in node V for which c is true.

Project (m4) : The projection operator, takes a single parameter A which is a new list

of dimensions. All dimensions not included in A are eliminated.

Union (U) : The union operator takes two or more operands V; with identical schema.
U(Vi, ..., Vi), or in infix notation, V; U...U Vj, is a bag of tuples which exist in at least
one of the operands. Formally, given a Graph node V with n dimensions dy, do, ..., d, and
a single measure m, a tuple t = (dy, ..., dy,m) € U(Vy, ..., V) iff 3V}, such that t € V.

Difference (\) : The set difference operator always has two parameters. V;\V, is a bag
of tuples from V; that do not appear in Vy. Tuple t = (dy, ...,dn, m) € V;\Vy, iff t € V;
and t ¢ Vg

e Scalar Operators.

Addition (PLUS;) : The PLUS (V) operator adds the constant value ¢ to the measure
attribute of every tuple of a node V. Formally, given a Graph node V with n dimensions
di,da, ...,dy and a single measure m, PLUS (V) = {(dy, ...,dy,, m+c) : (d1,...,dp,m) € V}

Subtraction : SUB.(V) = {(d1,...,dn,m+¢) : (d1, ...,dn,m) € V}
Multiplication : MULT.(V) = {(d1,...,dn,m +¢) : (d1,...,dn,m) € V}
Division : DIV, (V) = {(d1,...,dn,m +¢) : (d1,...,dy,m) € V}

o Aggregate Operators.

Summation (X4) : The summation operator ¥4(V) sums the measures of the node V
along the dimension d. The tuples of V are grouped by every dimension but d. The
measure values in each of these groups are summed yielding a single tuple per group. The
arity of ¥4(V) is one less that of V.

Formally, given a Graph node V with n dimensions di,ds, ...,d, and a single measure m.
A tuple t = (dy, ..., dj_1,djq1, ..., dp, m) € Zdj (V) iff

1. 3dj, mg such that tuple s = (dy, ...,d;_1,d;,djt1,...,dp, mg) € V and

2. m = ¥my, Vi for which 3d;,, such that tuple (di, ...,d;_1,dj;,dji1,...,dp, mi) € V

Average (Avgy) : A tuple t = (dy,...,dj—1,dj11,...,dn,m) € Avgdj(V) iff
1. 3d;, mg such that tuple s = (di, ...,dj_1,d;,dji1,...,dn,mg) € V and
2. m = Avg(m;), Vi for which 3d;,, such that tuple (di, ...,d;j—1,d;,,djt1,...,dn,m;) € V

22

— Maximum (Mazgq) : A tuple t = (di, ...,dj 1,dj11, ..., dp,m) € Mazy, (V) iff
1. 3d;, mg such that tuple s = (dy, ...,d;_1,d;,djt1,...,dyp, mg) € V and
2. m = Maz(m;), Vi for which 3d;,, such that tuple (di, ...,d;_1,dj;,dji1,...;dn, ms) € V

— Minimum (Ming) : A tuple t = (d1,...,dj-1,dj+1, ..., dn,m) € Ming, (V) iff
1. 3dj, mg such that tuple s = (dy, ...,d;_1,d;,djt1,...,dp, mg) € V and
2. m = Min(m;), Vi for which 3d;;, such that tuple (d1,...,d;_1,dj;,djt1,....,dn,m;) € V

e Ranking Operators

— Rank (Rank) : Given a node V, the rank operator will replace the nodes measure
values with their rank in the node. Formally, given a Graph node V with n dimen-
sions di,do, ...,d, and a single measure m, we can establish an ordering of measures:

My, > My > ... > my,. Rank(V) ={(d1,...,dn, k) : (d1,...,dy,m;,) € V}.

— Top (Top;) : Given a node V and a positive integer x, Top, (V) constructs a node that
contains £ maximum tuples from the original node. Tuple ¢t = (dy, ..., d,,, m) € Top,(V),

iff there exist less than « tuples in V with measure greater than m.

e Metadata Operator.
Metadata operator MDp, . p,, (V) creates ones extra dimension Dy, which is populated based
on the values of the dimension Djrom. Dio and Djom have to be connected by one of the meta-
data function provided by the system, such as MonthTo Year of StockToType. Formally, tuple
t = (dl, ey dfmm, digy enr Ay, m) S MDDmeDw(V), iff 3 tuple s = (dl, ey dfrom; ey iy m) eV
and dto = Df,-omTODto(dfmm).

B Minterm Construction Algorithm

This section describes the algorithm that SESAME’s rewriter uses to transform a line of select-

modify operators, such as (Q6) into a union of minterms such as (Q7).

Given a list of n conditions and n expressions from n select-modify operators, for each minterm
we create a data structure that contains a set of d (number of dimensions) ranges that specify a
condition for the minterm, and a bitmap of n bits, that specify which of the n expressions form an
expression for this minterm. This structure is built from d similar, dimension-specific data struc-
tures, which have a single range as a condition.

These dimension specific structures S(D;) are built in the following way:

For each dimension D
1. Create a sorted list of end-points pj...py for conditions on D;
2. With each p; store an integer r; which indicates that p; is

an end-point of a range ¢,,. Also store a flag that indicates

23

whether p,, is lower of upper bound of the ¢,,.
3. Initialize bitmap M of size n with all zeros
4. Set My = M % bitmap for the range outside all the ¢;’s (A < p; and A > pg)
5. Foreachi=1...k -1

if p; is a lower bound, M,, =0

else M, =1

M;=M

After all the Dj’s are built, we construct the minterm structures:

For k1 from 0 to kp1 % (number of ranges in S(D;))
For k2 from 0 to kp2 % (number of ranges in S(D;))

For kd from 0 to kpg % (number of ranges in S(Dy))
Create a minterm with condition
c=A¢€ (S(Dl).p/ﬂ, S(Dl).p/ﬂ_H) AN..NAE€ (S(Dd).pkd, S(Dd).pkd+1)
bitmap m = S(Dl).Mkl VANRTRVAN S(Dd)Mkd

A union of form (Q7) can be easily constructed from the set of minterm data structures in the
following way:
1. Initialize an empty union operator U (with zero operands)
2. For each minterm, construct a new union operand: e;j..ejj(oc(V)), where i1,42,...,7j a list of

positions in the bitmap m that were set to 1.

C Rewriting Rules and Axioms

24

Description | Axiom

Oc 00, t+R=0.0. R
Commutativity with selection e S c20c

and union 1 2V¢, f Dy 2

(Afc7f(R1 U Rg) = ((}07fR1) U ((}CJRQ)

if fifoeR= fof1R then fi6. 5, R = fo6.5 R
if A€ c, Gepop R = 0p 0. 5R
DA sR=> 4R+ 4(focR—0R)
Leveraging on Non-Modified Ag- | min46. ;R = min(minaR, fo.R)
gregates maz 46, R = maz(maz 4R, fo.R)
avg 76,y R = avg .R + (D_ 4(focR — 0R))/count 4R
if T & c, compoundy(6¢rR, 1) =
compound (R, I) + compoundp(fo.R— o.R,I)
if T &c, npvyp(6e,¢R,I) = npvyp(R,I)+ npvp(fo.R—0cR,)

Conditional Commutativity with
Arithmetic, Aggregate and Sort-
ing Operators

Leveraging on Non-Modified Fi-
nancial Operators

Table 4: Rewritings For the Select-Modify Operator (hold when the modifying function f is arith-
metic)

25

Description

] Rewriting

Relational Rewritings

Uclo—czR = Ucl/\czR

0, RUO,R=0,ve,R

TATER = Ty s R

0c, TAR = mp0., R if ¢1 does not reference A

Commuting Relational Operators
with Metadata (what if Dy is not
in the condition?)

0D, erD—D, R = MDLHDzo—DzEMI,lHDZ(T)R
Dy~ R1 U pip,p,R2 = pp,—p,(R1 U R2)
TARD D, R = pip,sp, TaRIf A # Dy
7TD2MD1'—>D2R = MDU—>D27TD1R

Range Transformation

Opser = UDQGT‘I\/DQG/J,BIHDz (ro)VD2€rs>
where V(r1),V(ra),V(rs) C V(r), are disjoint,
V(r1) UV(ra) UV(r3) = V(r) and Arh : V(rs) CV(r}) C V(r)

Commuting of Metadata with
Arithmetic Operators

Zf N> O?MDL'—)DZ (ROPN) = Zf N > 07 (uDl'—’DzR)OpNa op € {+7)

WD, D, absR = abspp,.p, R
,MDIHDQN =N

%/, %}

Commuting of Metadata with
Aggregate and Sorting Operators

if D1 € A, tp,-p,0p AR = 0p 4ptp,—p, R

Selections and Aggregates

if ¢ does not use A,) 4j0.R=0.) 4R
DARIURy) =3 R+ 4Ry

Select Range Transformations

Oacrndaer, 8 = 0ac, R, =11 N1y
UAEH\/AGTQR = UAGTR,T =T U T2

Commuting of Relational Opera-
tors with Arithmetic

if ¢ involves dimensions only, fo.R=o0.fR
JTaR=piafR
f(R1URy) = (fR1) U (fR2)

Commutations of the Aggregate
Operators Y, max, min, avg, var
with Arithmetic Operators

Op.A(R * N) = (Op.AR) N Nv op € {27 max, minv avg, Ua?”}
op 4(R/N) = (op 4R)/N, op € {3, max, min, avg, var}
op 4(R+ N) = (op 4R) + N, op € {max, min, avg}

op 4(R—N) = (op 4R) — N, op € {max, min, avg}

Financial Operator Properties

compoundp () 4 R, I) = > 4 compound (R, T)

npvp (34 R, 1) =3 4 npvp(R, 1)

compound(avg 4R, I) = avg 4 compound (R, I)
compound((R1 + Ra),I) = compound(Ry) + compound,(Rsz)
npvyp(Ry + Ry, I) = npvp(Ra) + npvp(Rs)

avgp(Ry + Re, I) = avgp(R1) + avgp(Rs)

Running Sum Properties

YR« N)=(X"R)*N

> (R/N) = (2" R)/N

if ¢ does not involve time , ZR o.R=o0. ZRR
count 4(3°% R) = Count, A(R)

YA OaciuR=Y40auR =Y 0auR

Tdempotence of Aggregate Oper-
ators

op 40pR = op 4upR, op € {3, max, min, avg, var}

Sorting Operators Properties

if AD B then op 0pgR = op 4R, op € {Rank, Perc}

if AD B then Perc RankgR = Perc 4R

if AD B then Perc4RankgR = Perc 4R

if AD B then Top"yRankgR = Top"yR

if AD B then Top"yPercyR = Topy R

op 4(R+N) = (op4R) * N, op € {Rank 4, Perc 4, To;, Sort 4}

Miscellaneous Aggregate Rela-
tionships

avg 4 = (D 4 R)/(count 4 R)
count A(RopN) = count 4R

Table 5: Extended list of the Rewriting Axioms

26

