
Navigation-Driven Evaluation of Virtual

Mediated Views

Bertram Lud�ascher Yannis Papakonstantinou Pavel Velikhov

ludaesch@sdsc.edu, fyannis,pvelikhog@cs.ucsd.edu

Abstract. The MIX mediator systems incorporates a novel framework for
navigation-driven evaluation of virtual mediated views. Its architecture allows
the on-demand computation of views and query results as the user navigates
them. The evaluation scheme minimizes super
uous source access through the
use of lazy mediators that translate incoming client navigations on virtual
XML views into navigations on lower level mediators or wrapped sources. The
proposed demand-driven approach is inevitable for handling up-to-date me-
diated views of large Web sources or query results. The non-materialization
of the query answer is transparent to the client application since clients can
navigate the query answer using a subset of the standard DOM API for XML
documents. We elaborate on query evaluation in such a framework and show
how algebraic plans can be implemented as trees of lazy mediators. Finally,
we present a new bu�ering technique that can mediate between the �ne gran-
ularity of DOM navigations and the coarse granularity of real world sources.
This drastically reduces communication overhead and also simpli�es wrapper
development. An implementation of the system is available on the Web.

1 Introduction and Overview

Mediated views integrate information from heterogeneous sources. There are two
main paradigms for evaluating queries against integrated views: In the warehous-
ing approach, data is collected and integrated in a materialized view prior to
the execution of user queries against the view. However, when the user is in-
terested in the most recent data available or very large views, then a virtual,
demand-driven approach has to be employed. Most notably such requirements
are encountered when integrating Web sources. For example, consider a mediator
that creates an integrated view, called allbooks, of data on books available from
amazon.com and barnesandnoble.com. A warehousing approach is not viable:
First, one cannot obtain the complete dataset of the booksellers. Second, the
data will have to re
ect the ever-changing availability of books. In contrast, in a
demand-driven approach, the user query is composed with the view de�nition of
allbooks and corresponding subqueries against the sources are evaluated only
then (i.e., at query evaluation time and not a priori).

Current mediator systems, even those based on the virtual approach, compute
and return the results of the user query completely. Thus, although they do not
materialize the integrated view, they materialize the result of the user query. This
approach is unsuitable in Web mediation scenarios where the users typically do
not specify their queries precisely enough to obtain small results. Instead, they

XMAS view

de�nition q1

BBQ User Interface XML Application

results results

source navigationssource navigations

Wrapper

RDB-XML

Wrapper

HTML-XML

RDB
OODB

XMAS view

de�nition q2

user navigations

results results

virtual XML view

Web sites

OODB-XML

Wrapper

Lazy Mediator mq1 Lazy Mediator mq2

client DOM navigations

Fig. 1. Virtual XML Document (VXD) mediation architecture

often issue relatively broad queries, navigate the �rst few results and then stop
either because the results seem irrelevant or because the desired data was found.
In the context of such interactions, materializing the full answer on the client
side is not an option. Instead, it is preferable to produce results as the user
navigates into the virtual answer view, thereby reducing the response time.

In this paper, we present a novel mediator framework and query evaluation
mechanism that can e�ciently handle such cases. We use XML, the emerging
standard for data exchange, as the data model of our mediator architecture
(Fig. 1). User queries and view de�nitions are expressed in XMAS1, a declarative
XML query language borrowing from and similar to other query languages for
semistructured data like XML-QL [17] and Lorel [1].

The key idea of the framework is simple and does not complicate the client's
code: In response to a query, the client receives a virtual answer document. This
document is not computed or transfered into the client memory until the user
starts navigating it. The virtuality of the document is transparent to the client
who accesses it using a subset of the DOM2 API, i.e., in exactly the same way
as main memory resident XML documents.

Query evaluation is navigation-driven in our architecture: The client applica-
tion �rst sends a query to the mediator which then composes the query with the
view de�nition and translates the result into an algebraic evaluation plan. After
the preprocessing phase, the mediator returns a \handle" to the root element
of the virtual XML answer document without even accessing the sources. When
the client starts navigating into the virtual answer, the mediator translates these

1
XML Matching And Structuring Language [16]

2
Document Object M odel [6]

navigations into navigations against the sources. This is accomplished by imple-
menting each algebra operator of the evaluation plan as a lazy mediator, i.e.,
a kind of transducer that translates incoming navigations from above into out-
going navigations and returns the corresponding answer fragments. The overall
algebraic plan then corresponds to a tree of lazy mediators through which re-
sults from the sources are pipelined upwards, driven by the navigations which

ow downwards from the client.

The paper is organized as follows: In Section 2 we introduce lazy mediators
and our navigation model. Section 3 elaborates on query evaluation: The XMAS
algebra is presented and it is shown how its operators are implemented as lazy
mediators. Section 4 re�nes the architecture by introducing a bu�er component
between mediators and sources, thereby reconciling the �ne granularity of our
navigation model and the coarse granularity of results returned by real sources.
To this end, we present a simple, yet
exible, XML fragment exchange protocol
and the corresponding bu�er algorithms.

The complete presentation of XMAS, its algebra, the algorithms, and the
software architecture is found in [16]. A preliminary abstract on the architecture
appeared in [11]. The implementation is available at [14].

Related Work. Our navigation-driven architecture extends the virtual view
mediator approach as used, e.g., in TSIMMIS, YAT, Garlic, and Hermes [15,
4, 5, 10]. The idea of on-demand evaluation is related to pipelined plan execu-
tion in relational [8] and object-relational [12] databases where child operators
proceed just as much as to be able to satisfy their parent operator's requests.
However, in the case of (XML) trees the client may proceed from multiple nodes
whose descendants or siblings have not been visited yet. In contrast, in relational
databases a client may only proceed from the current cursor position. Also the
presence of order has an impact on the complexity wrt. navigations and the
implementation of lazy mediators.

Note that we use the terms lazy and demand-driven synonymously, whereas
in the context of functional languages, lazy evaluation refers to a speci�c and
di�erent on-demand implementation technique for non-strict languages [2, 9].

Our XML query language XMAS borrows from similar languages such as
XML-QL, MSL, FLORID, Lorel, and YAT [17, 15, 7, 1, 4]. However, most of the
above rely on Skolem functions for grouping, while XMAS uses explicit group-by
operators thereby facilitating a direct translation of the queries into an algebra.
In that sense our implementation is closer to implementations of the nested
relational and complex values models.

2 Navigations in the VXD Framework

We employ XML as the data model [18]. Note that the techniques presented
here are not speci�c to XML and are applicable to other semistructured data
models and query languages. The paper uses the following abstraction of XML
where, for simplicity, we have excluded attributes: XML documents are viewed

as labeled ordered trees (from now on referred to simply as trees) over a suitable
underlying domain D.3 The set of all trees over D is denoted by T.

A tree t 2 T is either a leaf, i.e., a single atomic piece of data t = d 2 D, or
it is t = d[t1; : : : ; tn], where d 2 D and t1; : : : ; tn 2 T. We call d the label and
[t1; : : : ; tn] the ordered list of subtrees (also called children) of t.

In XML parlance, t is an element, a non-leaf label d is the element type (\tag
name"), t1; : : : ; tn are child elements (or subelements) of t, and a leaf label d is
an atomic object such as character content or an empty element. Thus, the set
T of labeled ordered trees can be described by the signature T = D j D[T�]:

DOM-VXD Navigation Commands. XML documents (both source and
answer documents) are accessible via navigation commands. We present the
navigational interface DOM-VXD (DOM for V irtual XML Documents) that is
an abstraction of a subset of the DOM API for XML. More precisely, we consider
the following set NC of navigation commands, where p and p0 are node-id's of
(pointers into) the virtual document that is being navigated:

{ d (down): p0 := d(p) assigns to p0 the �rst child of p; if p is a leaf then
d(p) = ? (null).

{ r (right): p0 := r(p) assigns to p0 the right sibling of p; if there is no right
sibling r(p) = ?.

{ f (fetch): l := f(p) assigns to l the label of p.

This minimal set of navigation commands is su�cient to completely explore
arbitrary virtual documents. Additional commands can be provided in the style
of [19]. E.g., we may include in NC a command for selecting certain siblings:

{ select (��): p
0 := ��(p) assigns to p0 the �rst sibling to the right whose label

satis�es � (else ?).

De�nition 1 (Navigations) Let p0 be the root for some document t 2 T. A
navigation into t is a sequence c =

p00 := c1(p0); p
0
1 := c2(p1); : : : ; p0n�1 := cn(pn�1)

where each ci 2 NC and each pi is a p0j with j < i.
The result (or explored part) c(t) of applying the navigation c to a tree t is

the unique subtree comprising only those node-ids and labels of t which have
been accessed through c. Depending on the context, c(t) may also denote the
�nal point reached in the sequence, i.e., p0n�1. For notational convenience, we
sometimes omit the pointer argument and simply write c = c1; : : : ; cn. 2

3 Query Evaluation Using Lazy Mediators

A lazy mediator mq for a query or view de�nition4 q operates as follows: The
client browses into the virtual view exported bymq by successively issuing DOM-
VXD navigations on the view document exported by the mediator. For each

3 D includes all \string data" like element names and character content.
4 We often use the terms query and view de�nition interchangeably.

XML sourcekXML source1

materialized XML

query q

* * *

answer tree

virtual XML

answer tree

source navigation

partial XML source1 partial XML sourcek

source navigation

source results

* * *

c1...cn...

client navigation

r1...rn...

results

Lazy Mediator

mq

Fig. 2. Navigational interface of a lazy mediator

command ci that the mediator receives (Fig. 2), a minimal source navigation
is sent to each source. Note that navigations sent to the sources depend on the
client navigation, the view de�nition, and the state of the lazy mediator. The
results of the source navigations are then used by the mediator to generate the
result for the client and to update the mediator's state.

Query processing in the MIX mediator system involves the following steps:

Preprocessing: At compile-time, a XMAS mediator view v is �rst translated
into an equivalent algebra expression Ev that constitutes the initial plan.
The interaction of the client with the mediator may start by issuing a query
q on v. In this case the preprocessing phase will compose the query and the
view and generate the initial plan for q0 := q � v.

Query Rewriting: Next, during the rewriting phase, the initial plan is rewrit-
ten into a plan E0

q0 which is optimized with respect to navigational complex-
ity. Due to space limitations we do not present rewriting rules.

Query Evaluation: At run-time, client navigations into the virtual view, i.e.,
into the result of q0 are translated into source navigations. This is accom-
plished by implementing each algebra operator op as a lazy mediator mop

that transforms incoming navigations (from the client or the operator above)
into navigations that are directed to the operators below or the wrappers.

By translating eachmqi into a plan Eqi , which itself is a tree consisting of \little"
lazy mediators (one for each algebra operation), we obtain a smoothly integrated,
uniform evaluation scheme. Furthermore, these plans may be optimized wrt.
required navigations by means of rewriting optimizers.

Example 1 (Homes and Schools) Fig. 3 shows a simple XMAS query which
involves two sources, homeSrc and schoolsSrc, and retrieves all homes having

CONSTRUCT <answer> % Construct the root element containing ...
<med_home> $H % ... med_home elements followed by

$S {$S} % ... school elements (one for each $S)
</med_home> {$H} % (one med_home element for each $H)

</answer> {} % create one answer element (= for each {})
WHERE homesSrc homes.home $H AND $H zip._ $V1 % get home elements $H and their zip code $V1
AND schoolsSrc schools.school $S AND $S zip._ $V2 % ... similarly for schools
AND $V1 = $V2 % ... join on the zip code

Fig. 3. A XMAS query q

tupleDestr

�$A

createElemanswer;$MHL!$A

grpByfg;$MHs!$MHL

createElemmed homes;$HLSs!$MHs

conc$H;$LSs!$HLSs

grpByf$Hg;$S!$LSs

1$V 1=$V 2

getDesc$H;zip: !$V 1 getDesc$S;zip: !$V 2

getDesc$root1;homes:home!$H getDesc$root2;schools:school!$S

sourcehomesSrc!$root1 sourceschoolsSrc!$root2

Fig. 4. Plan (algebra expression) Eq

a school within the same zip code region. For each such home the query creates
a med home element that contains the home followed by all schools with the
same zip code. The body (WHERE clause) includes generalized path expressions,
as in Lorel [1] and generalized OQL expressions [3]. Bindings to the variables
are generated as the path expressions are matched against the document. In our
example $H binds to home trees, reachable by following the path homes.home

from the root of homesSrc; $S binds to school trees. The result of evaluating
the body is a list of variable bindings.5

The head (CONSTRUCT clause) of the query describes how the answer docu-
ment is constructed based on the variable bindings from the body. E.g., the
clause <med home> ... </med home> f$Hg dictates that for each binding h of
$H exactly one med home tree is created. For each such h, med home contains
h, followed by the list of all bindings s of $S such that (h; s) is contained in a
binding of the body. For a more detailed exposition of XMAS see [16]. 2

5 XMAS also supports tree patterns in the style of XML-QL, e.g., <homes> $H:

<home> <zip>$V1</zip> </home> </homes> IN homesSrc is the equivalent of the
�rst line in the WHERE clause in Fig. 3.

The XMAS Algebra. Each XMAS query has an equivalent XMAS algebra
expression. The algebra operators input lists of variable bindings and produce
new lists of bindings in the output. We represent lists of bindings as trees6 to
facilitate the description of operators as lazy mediators. For example, the list of
variable bindings [($X=x1; $Y=y1); ($X=x2; $Y=y2)] is represented as the following
tree

bs[b[X [x1]; Y [y1]]; b[X [x2]; Y [y2]]] :

Here, the bs[: : :] element holds a list of variable bindings b[: : :].

By bi we denote the i-th element of bs; the notation bi+X [v] adds the binding
($X=v) to bi. bi:X denotes the value of X for bi.

Algebra Operators. The XMAS algebra includes a set of operators conven-
tional in database systems (�, �, semi-/outer-/antisemi-join, �, etc.) that op-
erate on lists of bindings bs. Additionally, it contains operators that extend the
nested relational algebras' nest/unnest operators with generalized path expres-
sions and XML speci�c features such as access and creation of attribute/value
pairs. The complete XMAS algebra is presented in [16]. Due to space limitations
we only present operators that participate in the running example.

The semantics of algebra operators is given as a mapping from one or more
input trees to the output tree. Let bin and bout denote variable bindings from the
input and the output of the operators, respectively. The notation opx1;:::;xn!y

indicates that op creates new bindings for y, given the bindings for x1; : : : ; xn.

{ getDesce;re!ch extracts descendants of the parent element bin:e which are
reachable by a path ending at the extracted node, such that this path
matches the regular expression re. We consider the usual operators \.", \j",
\�", etc. for path expressions; \ " matches any label (Fig. 4): For each input
binding bin and retrieved descendant d, getDesc creates an output binding
bin + ch[d]. E.g., getDesc$H;zip: !$V 1 evaluated on the list of bindings:

bs[b[H[home[addr[La Jolla]; zip[91220]]]]
b[H[home[addr[El Cajon]; zip[91223]]]]]

produces the list of bindings:

bs[b[H[home[addr[La Jolla]; zip[91220]]]; V 1[91220]]
b[H[home[addr[El Cajon]; zip[91223]]]; V 1[91223]]]

{ grpByfv1;:::;vkg;v!l groups the bindings bin:v by the bindings of bin:v1, : : :,
bin:vk (v1; : : : ; vk are the group-by variables). For each group of bindings
in the input that agree on their group-by variables, one output binding
b[v1[bin:v1], : : :, vk[bin:vk]; l[list[coll]]] is created, where coll is the list of

6 Variable bindings can refer to the same elements of the input, hence are implemented
as labeled ordered graphs. This preserves node-ids which are needed for grouping,
elimination of duplicates and order preservation.

all values belonging to this group and list is a special label for denoting lists.
For example, grpByf$Hg;$S!$LSs applied to the input

bs[b[H[home[addr[La Jolla]; zip[91220]]]; S[school[dir[Smith]; zip[91220]]]]
b[H[home[addr[La Jolla]; zip[91220]]]; S[school[dir[Bar]; zip[91220]]]]
b[H[home[addr[El Cajon]; zip[91223]]]; S[school[dir[Hart]; zip[91223]]]]]

will yield the output

bs[b[H[home[addr[La Jolla]; : : :]; LSs[list[school[dir[Smith]; : : :]; school[: : :]]]]]
b[H[home[addr[El Cajon]; : : :]; LSs[list[school[dir[Hart]; : : :]]]]]]

{ concx;y!z concatenates subtrees or lists of subtrees of bin:x and bin:y, de-
pending on their types. For each input tuple bin, conc produces bin+z[conc],
where conc is:

� list[x1; : : : ; xn; y1; : : : ; yn] if bin:x= list[x1 : : : xn] and bin:y = list[y1 : : : yn].
� list[x1; : : : ; xn; vy] if bin:x = list[x1 : : : xn] and bin:y = vy .
� list[x; y1; : : : ; yn] if bin:x = vx and bin:y = list[y1 : : : yn].
� list[vx; vy] if bin:x = vx and bin:y = vy.

{ createElemlabel;ch!e creates a new element for each input binding. Here label
is a constant or variable and speci�es the name of the new element. Its sub-
trees are the subtrees of bin:ch. Thus, for each input binding bin, createElem
outputs a binding bin + e[l[c1; : : : cn]], where l is the value of bin:label and
c1; : : : ; cn are the subtrees of bin:ch. E.g., createElemmed homes;$HLSs!$MHs

where $HLSs results from conc$H;$LSs!$HLSs applied to the $H and $LSs
in the output of the above grpByf$Hg;$S!$LSs yields:

bs[b[H[: : :]; LSs[: : :]; MHs[med home[school[dir[Smith]; : : :]; school[: : :]]]]
b[H[: : :]; LSs[: : :]; MHs[med home[school[dir[Hart]; : : :]]]]]

{ tupleDestr returns the element e from the singleton list bs[b[v[e]]]
{ sourceurl!v creates the singleton binding list bs[b[v[e]]] for the root element

e at url.

Example 2 (XMAS!Algebra) Fig. 4 shows the algebraic plan for Fig. 3. 2

Implementation of Operators as Lazy Mediators. XMAS algebra op-
erators are implemented as lazy mediators. Each operator accepts navigation
commands (sent from the \client operator" above) into its output tree and in
response to each command c it (i) generates the required navigation sequence
into its input tree(s), i.e., it sends navigation commands to the sources/operators
below, and (ii) combines the results to produce the result of c. This computation
model reminds of pipelined execution in relational databases. However there is
a new challenge: An incoming navigation command c(p) may involve any pre-
viously encountered pointer p. Responding to c(p) requires knowledge of the
input associations a(p) of p. These associations encode su�cient information for
continuing the navigation, either down or right, from p.

identity level

binding level

�f

�a

value level

pV

p0

B

p0

I

pB

pI

p00

B

Input tree (outgoing navigations)

p0

V

Output tree (incoming navigations)

�e

�d�c

�a

�r �r

�e

�d �b

�bs

�b

�X �Y �Z

as in the input

�b

�Y �Z

�bs

�b

�X

�r

�Y

�f�c

�a �a

�b

�X

Fig. 5. Example navigations for getDesc$X;r:a!$Z

Example 3 Consider the operator getDescX;r:a!Z that operates on the input
of Fig. 5. Given a node-id pV at the value level of the output, the association
a(pV) contains the token v (to indicate that pV is at the value level) and the
corresponding node-id p0V in the input. A d(pV) will result in a d(p0V) sent below.
A r(pV) will result in a ?. Similarly, given a node-id pI at the identity level of
the output, the association a(pI) contains the token id and the corresponding
node p0I . A d(pI) results in a d(p0I) and a r(pI) results in a r(p0I).

Finally note that a pointer pB at the binding level requires two associated
pointers p0B and p00B , as shown in the Fig. 5. A command r(pB) will result in a
series of commands

p00B := r(p00B); l := f(p00B)

until l becomes \a" or p00B becomes?. In the second case the operator will proceed
from p0B to the next input binding b and will try to �nd the next a node in the
x attribute of b. 2

The di�culty is that the operator has to know a(p) for each p that may appear in
a navigation command and has to retrieve them e�ciently. Maintaining associa-
tion tables for each operator is wasteful because too many pointers will typically
have been issued and the mediator cannot eliminate entries of the table without
the cooperation of the client. Thus, the mediator does not store node-ids and
associations. Instead node-ids directly encode the association information a(p)
similar to Skolem-ids and closures in logical and functional languages, respec-
tively. In Example 3, the node-id pV is hv; p0V i, the node-id pB is hb; p0B ; p

00
Bi.

Note that the mediator is not completely stateless; some operators perform
much more e�ciently by caching parts of their input. For example,

{ when the getDesc operator has a recursive regular path expression as a pa-
rameter, it stores part of the visited input. In particular, it keeps the input
nodes that may have descendants which satisfy the path condition,

{ the nested-loops join operator stores the parts of the inner argument of the
loop. In particular, it stores the \binding" nodes along with the attributes
that participate in the join condition.7

4 Managing Sources with Di�erent Granularities

The lazy evaluation scheme described in the previous section is driven by the
client's navigations into the virtual answer view. Thus, it can avoid unneces-
sary computations and source accesses. So far, we have assumed \ideal" sources
that can be e�ciently accessed with the �ne grained navigation commands of
DOM-VXD, and thus return their results node-at-a-time to the mediator. How-
ever, when confronting the real world, this �ne granularity is often prohibitively
expensive for navigating on the sources:

First, if wrapper/mediator communication is over a network then each nav-
igation command results in a packets being sent over the wire. Similarly high
expenses are incurred even if the wrapper and the mediator communicate via
interprocess sockets. Second, if the mediator and wrapper components reside in
the same address space and the mediator simply calls the wrapper, the runtime
overhead may not be high, but the wrapper development cost still is, since the
wrapper has to bridge the gap between the �ne granularity of the navigation
commands and the usually much coarser granularity at which real sources oper-
ate. Below we show how to solve this problem using a special bu�er component
that lets the wrapper control the granularity at which it exports data.

Example 4 (Relational Wrapper) Consider a relational wrapper that has
translated a XMAS query into an SQL query. The resulting view on the source
has the following format:

view[tuple[att1[v1;1]; : : : ; attk[v1;k]]; � � � ; tuple[att1[vn;1]; : : : ; attk[vn;k]]]

i.e., a list of answer tuples with relational attributes attj . Let the wrapper receive
a r (=right) command while pointing to some tuple element of the source view.
This will be translated into a request to advance the relational cursor and fetch
the complete next tuple (since the tuple is the quantum of navigation in relational
databases). Subsequent navigations into the attribute level attj can then be
answered directly by the wrapper without accessing the database. Thus, the
wrapper acts as a bu�er which mediates between the node-at-a-time navigation
granularity of DOM-VXD and the tuple-at-a-time granularity of the source. 2

The previous example illustrates that typical sources may require some form
of bu�ering mechanism. This can also decrease communication overhead signi�-
cantly by employing bulk transfers. E.g., a relational source may return chunks

7 We assume a low join selectivity and we do not store the attributes that are needed
in the result, assuming that they will be needed relatively infrequently.

Lazy Mediator

Bu�er Component

Wrapper

Source

DOM-VXD navigations: d; r; f results: node-ids/labels

LXP requests: �ll(hole[: : :]) open XML trees

Fig. 6. Re�ned VXD architecture

of 100 tuples at a time. Similarly, a wrapper for Web (HTML) sources may
ship data at a page-at-a-time granularity (for small pages), or start streaming
of huge documents by sending complete elements if their size does not exceed a
certain limit (say 50K). Clearly, additional performance gains can be expected
from such an architecture. In the following, we discuss how such extensions can
be incorporated into the VXD framework.

Re�ned VXD Architecture: Bu�ers and XML Fragments. As motivated
above, source results usually have to be bu�ered in order to reconcile the di�erent
access granularities of mediators and sources and to improve performance. One
way to accomplish this without changing the architecture is by incorporating into
each wrapper some ad-hoc bu�ering mechanism. While this has the advantage
that the bu�er implementation can be tailored to the speci�c source, it also leads
to \fat" wrappers with increased development cost. Moreover, similar bu�er
functionality has to be reinvented for each wrapper in the system.

Therefore, instead of having each wrapper handle its own bu�ering needs,
we introduce a more modular architecture with a separate generic bu�er com-
ponent that conceptually lies between the mediator and the wrapper (Fig. 6).
The original mediator remains unchanged and interacts with the bu�er using
DOM-VXD commands. If the bu�er cannot satisfy a request by the mediator, it
issues a request to retrieve the corresponding node from the wrapper. The crux
of the bu�er component is that it stores open (XML) trees which correspond to
a partial (i.e., incomplete) version of the XML view exported by the wrapper.
The trees are open in the sense that they contain \holes" for unexplored parts of
the source view. When the mediator sends a navigation command to the bu�er
component, the latter checks whether the corresponding node is available from
the bu�er and if so immediately returns the result to the mediator. However,
if the incoming navigation \hits a hole" in the tree, then the bu�er sends a �ll
request to the wrapper. At this point, the granularity issue is resolved since the
wrapper answers the �ll request by sending not only the single requested node

but possibly the whole XML tree rooted at the node or at least larger parts of
it, with further holes in place of the missing pieces.

De�nition 2 (Holes, Open Trees) An element of the form t = hole[id] is
called a hole; its single child id is the unique identi�er for that hole. No assump-
tion is made about the structure of id. We assume that hole 2 D is a reserved
name. A tree t 2 T containing holes is called open (or partial), otherwise closed
(or complete). Instead of hole[id] we may simply write �id. 2

Holes represent zero or more unexplored sibling elements of a tree:

De�nition 3 (Represented Sublist) Given a tree t = r[e1; : : : ; en], we can
replace any subsequence si;k = [ei+1; : : : ; ei+k] (k � 0) in t by a hole �i;k. In the
resulting open tree t0, the hole �i;k is said to represent the sublist si;k of t. 2

Example 5 (Holes) Consider the complete tree t = r[a; b; c]. Possible open
trees t0 for t are, e.g., r[�1], r[a; �2], and r[�3; b; c; �4]. The holes represent the
following unexplored parts: �1 = [a; b; c], �2 = [b; c], �3 = [a], �4 = []. Syn-
tactically, one can substitute a hole by the list of children which it represents
(assuming that brackets around inner lists are dropped). 2

Since holes represent zero or more elements, the length of an open list is generally
di�erent from the length of the complete list which it represents.

The Lean XML Fragment Protocol (LXP). LXP is very simple and com-
prises only two commands get root and �ll : To initialize LXP, the client (=bu�er
component) sends the URI for the root of the virtual document, thereby request-
ing a handle for it:8

get root(URI) �! hole[id]

This establishes the connection between the bu�er (client) and the wrapper
(server). The wrapper answers the request by generating an identi�er for the root
element. This id and all id's generated as responses to subsequent �ll requests
are maintained by the wrapper. The main command of LXP is

�ll(hole[id]) �! [T�] :

When the wrapper receives such a �ll request, it has to (partially) explore the
part of the source tree, which is represented by the hole. Di�erent versions of the
LXP protocol can be obtained by constraining the way how the wrapper has to
reply to the �ll request. A possible policy would be to require that the wrapper
returns list of the form [e1; : : : ; en; �k], i.e., on the given level, children have to be
explored left-to-right with at most one hole at the end of the list. On the other
hand, LXP can be much more liberal, thereby providing interesting alternatives
for query evaluation and propagation of results:

8 In general, sources do not export a single �xed XML view but, depending on the
sources capabilities, can accept di�erent XML queries. In this case, the source gen-
erates a URI to identify the query result. We assume this step has been done before
starting the LXP.

Example 6 (Liberal LXP) Let u be the URI of the complete tree t = a[b[d; e]; c].
A possible trace is:

get root(u) = �0 % get a handle for the root
�ll(�0) = [a[�1]] % return a hole for a's children
�ll(�1) = [b[�2]; �3] % nothing to the left of b; possibly more to the right
�ll(�3) = [c] % nothing left/right/below of c
�ll(�2) = [�4; d[�5]; �6] % there's one d and maybe more around
�ll(�4) = [] % dead end
�ll(�5) = [] % also nothing here
�ll(�6) = [e] % another leaf

2

The use of such a liberal protocol has several bene�ts, most notably, that re-
sults can be returned early to the mediator without having to wait before the
complete source has been explored (this assumes that the DOM-VXD naviga-
tion commands are extended such that they can access nodes not only from
left to right). When implemented as an asynchronous protocol, the wrapper can
prefetch data from the source and �ll in previously left open holes at the bu�er.

Generic Bu�er Algorithms. An advantage of the re�ned VXD architecture
is that a single generic bu�er component can be used for di�erent wrappers.
The bu�er component has to answer incoming navigation commands and, if
necessary, issue corresponding LXP requests against the wrapper. Fig. 7 depicts
the algorithm which handles the down command d(p) for returning a pointer to
the �rst child of p.9 Note that both the function d(p) and the auxiliary function
chase �rst(p) are recursive. This is because they have to work correctly for the
most liberal LXP protocol, in which the wrapper can return holes at arbitrary
positions. To ensure correctness and termination of LXP, we only require that (i)
the sequence of re�nements of the open tree which the bu�er maintains can be
extended to the complete source tree using �ll requests, and that (ii) \progress
is made", i.e., a non-empty result list cannot only consist of holes, and there can
be no two adjacent holes.

Wrappers in the Re�ned VXD Architecture. In Example 4 we discussed a
relational wrapper which communicates directly with the mediator, i.e., without
an intermediate bu�er component. The development cost of such a wrapper is
quite high if one wants to avoid severe performance penalties due to the mis-
matching DOM vs. relational granularities. In contrast, the use of a bu�er com-
ponent provides the same performance bene�ts while also simplifying wrapper
development signi�cantly. The following example sketches the relational wrapper
which has been developed for the MIXm system.

9 The algorithm for f(p) (fetch) is trivial and r(p) is very similar to d(p): replace
d(p)=r(p); first child=right neighbor; children=right siblings.

function d(p) f
if not has children(p) return ? % can't go down: done!
else

p0 := first child(p);
if not is hole(p0) return p0 % regular child: done!
else % p0 is a hole
p00 := chase first(p); % chase �rst child
if p00 6= ? return p00 % found one: done!
else % remove the empty hole & redo without it:
children(p) := children(p) n fp0g;
return d(p);

g

function chase first(p) f
[x1; : : : ; xn] := fill(p);
update bu�er with([x1; :::;xn]);
if n = 0
return ?;

else if not is hole(x1)
return pointer to(x1);

else

return chase first(x1);
g

Fig. 7. Main bu�er algorithm

Relational LXP Wrapper. In order to be able to answer subsequent �ll
requests, the wrapper has to keep track of the hole id's it has generated. For
example, the wrapper could just assign consecutive numbers and store a lookup
table which maps the hole id's to positions in the source. Whenever feasible, it
is usually better to encode all necessary information into the hole id and thus
relieve the wrapper from maintaining the lookup table. For example, the MIXm
relational wrapper uses hole identi�ers of the form10

hole[db name.table.row number] :

When the wrapper receives a get root(URI) command, it connects with the
database speci�ed in the URI and returns a handle to the root of the database,
i.e., hole[db name]. When receiving a �ll(hole[id]) command, the wrapper can
initiate the necessary updates to the relational cursor, based on the form of the
id. In particular, the following structures are returned:

{ at the database level, the wrapper returns the relational schema, i.e., the
names of the database tables:11

�ll(hole[db name]) �! db name[table1[hole[db name:table1]]; : : : ;
tablek[hole[db name:tablek]]]

{ at the table level, the wrapper returns the �rst n tuples completely (n is a
parameter) and leaves a hole for the remaining tuples (provided the are at
least n rows in the table):

�ll(hole[db name:tablei]) �! tablei[row1[a1;1[v1;1]; : : : ; a1;m[v1;m]]; : : : ;
rown[an;1[vn;1]; : : : ; an;m[vn;m]];
hole[db name:tablei:(n+ 1)]]

{ at the row level, the wrapper returns the next n tuples (if available):

�ll(hole[db name:tablei:j]) �! db name:tablei:j[rowj+0[: : :]; : : : ;
rowj+(n�1)[: : :];
hole[db name:tablei:(j + n)]]

10 It is transparent to the bu�er component whether the hole identi�er is sent as a
nested XML element db name[table[: : :]] or as a `.'-delimited character string.

11 In the real system also column names/types and constraints are returned. We omit
these details here.

Observe how the relational wrapper controls the granularity at which it returns
results to the bu�er. In the presented case, n tuples are returned at a time. In
particular, the wrapper does not have to deal with navigations at the attribute
level since it returns complete tuples without any holes in them.

Implementation Status. A Java implementation of the MIX mediator is avail-
able from [14] along with an interface that allows the user to interactively issue
Java calls that correspond to the navigation commands. The mediator is com-
plemented by a thin client library [16] that sits between the mediator and the
client and allows transparent access to the virtual document through (a subset
of) DOM. For other components and applications of the MIX system see [13].

References

1. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query
Language for Semistructured Data. Intl. Journal on Digital Libraries, 1(1):68{88,
1997.

2. P. Buneman, R. E. Frankel, and N. Rishiyur. An Implementation Technique for
Database Query Languages. ACM TODS, 7(2):164{186, June 1982.

3. V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with Generalized
Path Expressions. In ACM SIGMOD, pp. 413{422, 1996.

4. S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your Mediators Need Data Con-
version! In ACM SIGMOD, pp. 177{188, 1998.

5. W. F. Cody, et.al. Querying Multimedia Data from Multiple Repositories by Con-
tent: the Garlic Project. In VLDB, pp. 17{35, 1995.

6. Document Object Model (DOM) Level 1 Speci�cation. www.w3.org/TR/

REC-DOM-Level-1/, 1998.
7. Florid Homepage. www.informatik.uni-freiburg.de/~dbis/florid/.
8. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database System Implementation.

Prentice Hall, 1999.
9. T. Grust and M. H. Scholl. How to Comprehend Queries Functionally. Journal of

Intelligent Information Systems, 12(2/3):191{218, Mar. 1999.
10. Hermes Homepage. www.cs.umd.edu/projects/hermes/.
11. B. Lud�ascher, Y. Papakonstantinou, and P. Velikhov. A Framework for Navigation-

Driven Lazy Mediators. In ACM Workshop on the Web and Databases, Philadel-
phia, 1999. www.acm.org/sigmod/dblp/db/conf/webdb/webdb1999.html

12. B. Mitschang, H. Pirahesh, P. Pistor, B. G. Lindsay, and N. S�udkamp. SQL/XNF
{ Processing Composite Objects as Abstractions over Relational Data. In ICDE,
pp. 272{282, Vienna, Austria, 1993.

13. Mix (Mediation of Information using XML). www.npaci.edu/DICE/MIX/ and www.

db.ucsd.edu/Projects/MIX/, 1999.
14. Mixm (MIX Mediator System). www.db.ucsd.edu/Projects/MIX/MIXm, 1999.
15. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object Fusion in Me-

diator Systems. In VLDB, pp. 413{424, 1996.
16. P. Velikhov, B. Lud�ascher, and Y. Papakonstantinou. Navigation-Driven Query

Evaluation in the MIX Mediator System. Technical report, UCSD, 1999. www.db.
ucsd.edu/publications/vxd.ps.gz.

17. XML-QL: A Query Language for XML. www.w3.org/TR/NOTE-xml-ql, 1998.
18. Extensible Markup Language (XML) 1.0. www.w3.org/TR/REC-xml, 1998.
19. XML Pointer Language (XPointer). www.w3.org/TR/WD-xptr.

