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Abstract

In a previous paper we proposed a novel method for
generating alternative query plans that uses chasing (and
back-chasing) with logical constraints. The method brings
together use of indexes, use of materialized views, semantic
optimization and join elimination (minimization). Each of
these techniques is known separately to be beneficial to
query optimization. The novelty of our approach is in
allowing these techniques to interact systematically, eg. non-
trivial use of indexes and materialized views may be enabled
only by semantic constraints.

We have implemented our method for a variety of schemas
and queries. We examine how far we can push the method in
term of complexity of both schemas and queries. We propose
a technique for reducing the size of the search space by
"stratifying” the sets of constraints used in the (back)chase.
The experimental results demonstrate that our method is
practical (i.e., feasible and worthwhile).

1 Introduction

In [9] we proposed a new optimization technique aimed
at several heretofore (apparently) disparate targets.
The technique captures and extends many aspects of se-
mantic optimizations, physical data independence (use
of primary and secondary indexes, join indexes, access
support relations and gmaps), use of materialized views
and cached queries, as well as generalized tableau-like
minimization. Moreover, and most importantly, using
a uniform representation with constraints the technique
makes these disparate optimization principles cooperate
easily. This presents a new class of optimization op-
portunities, such as the non-trivial use of indexes and
materialized views enabled only by the presence of cer-
tain integrity constraints. In section 2 we motivate the
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technique and some of the experimental configurations
we use with two such examples.

We will call this technique the C&B technique
from chase and backchase, the two principal phases
of the optimization algorithm. The optimization is
completely specified by a set of constraints, namely
schema integrity constraints together with constraints
that capture physical access structures and materialized
views. In the first phase, the original query is
chased using applicable constraints into a universal plan
that gathers all the pathways and structures that are
relevant for the original query and the constraints used
in the chase. The search space for optimal plans consists
of subqueries of this universal plan. In the second
phase, navigating through these subqueries is done by
chasing backwards trying to eliminate joins and scans.
Each backchase step needs a constraint to hold and the
algorithm checks if it follows from the existing ones.
Thus, everything we do is captured by constraints, and
only two (one, really!) generic rules.

The chase transformation was originally defined for
conjunctive (tableau) queries and embedded implica-
tional dependencies. We are using a significant exten-
sion of the chase to path-conjunctive queries and depen-
dencies [19] that allows us to capture object-oriented
queries, as well as queries against Web-like interfaces
described by dictionary (finite function) operations.
Dictionaries also describe many physical access struc-
tures giving us succinct declarative descriptions of query
plans, in the same language as queries.

While sound and complete for the important case of
path-conjunctive materialized views [9, 16], the C&B
technique is sound for a larger class of queries, physical
structures and constraints. We describe here the per-
formance of a first prototype that uses path-conjunctive
query graphs internally. The optimizations on which
we concentrate here are increasingly relevant as more
queries are generated automatically by mediator tools
in heterogenous applications, while materialized views
are increasingly used in dealing with source capabili-
ties, security, encapsulation and multiple layers of logi-
cal/physical separation.



Contributions  Our previous paper was promising
on the potential of the C&B technique but raised the
natural question: is this technique practical? This
means two sets of issues:

1. Are there feasible implementations of the technique?
In particular:

(a) Is the chase phase feasible, given that even
determining if a constraint is applicable requires
searching among exponentially many variable
mappings?

(b) Is the backchase feasible, given that even if each
chase or backchase step is feasible, the backchase
phase may visit exponentially many subqueries?

2. Is the technique worthwhile? That is, when you add
the significant cost of C&B optimization, is the cost
of an alternative plan that only the C&B technique
would find still better than the cost of the plan you
had without C&B?

In this paper we show the following:

1. The technique is definitely feasible, for practical
schemas and queries, as follows:

(a) By using congruence closure and a homomorphis-
m pruning technique, we can implement the chase
very efficiently in practice.

(b) The backchase quickly becomes impractical if
we increase both query complexity and the size
of the constraint set. But we have designed
several stratification strategies that reduce the
size of either the query or the constraint set by
partitioning them into subparts that can be dealt
with independently, in a dynamic programming
style. Both strategies work well in common
situations and one of them is complete for the case
of path-conjunctive materialized views [9, 16].

2. We find the technique very valuable when only the
presence of semantic integrity constraints enables
the use of physical access structures or materialized
views. This situation clearly justifies the original
intuition for this research direction [9, 19].

Experiments We have built a prototype implementa-
tion of the C&B technique for path-conjunctive queries
and constraints. With this implementation, we have
used three experimental configurations to answer the
above questions, repeating the experiments on families
of queries and schemas of similar structure but of in-
creasing complexity. This allows us to find out how
far (as the title of the paper asks) the technique can
take us and to show that the applicability range of the
implementation likely includes many practical queries.
For one of the configurations where we can use a con-
ventional execution engine, we have also measured the
global benefit of the C&B technique by measuring the

reduction in total processing (optimization + execu-
tion) time, as a function of the complexity of the queries
and the schema.
Overview of the paper Section 2 presents two
motivating examples that support the goals of the C&B
technique. Section 3 describes the implementation
techniques we have designed to make C&B feasible
and worthwhile. The architecture of our prototype
is shown in section 4. Section 5 describes our
experimental configurations and results. We survey
related work in section 6. Section 7 discusses some
possible improvements and extensions.

The rest of this paper requires familiarity with some
concepts in [9], such as dictionaries, constraints, chase,
universal plan, backchase, minimal plans.

2 Motivating Examples

In this section, we illustrate with two examples certain
optimizations that one would like to see performed
automatically in a database system.

Example 2.1 This is a very simple and common rela-
tional scenario adapted from [1], showing the benefits
of exploiting referential integrity constraints. Consider
a relation R(A, B, C,E) and a query that selects all tuples
in R with given values for attributes B and C:
(Q) select struct (A=r.A, E=r.E) fromRr
where 7.B=10» and r.C=c

The relation is very large, but the number of tuples
that meet the where clause criteria is very small.
However, the SQL engine is taking a long time in
returning an answer. Why isn’t the system using an
index on R 7 Simply because there is no index on the
attributes B and C. The only index on R that includes
B and C is an index on ABC. There is no index with
B and/or C in the high-order position(s), and the SQL
optimizer chooses to do a table scan of R. The only way
of forcing the SQL optimizer to use the index on ABC is
to rewrite () into an equivalent query that does a join
of R with a small table S on attribute A knowing that
there is a foreign key constraint from R into S on A:

(o)) select struct (A =r.A, E=r.E)fromR7r, Ss
where rB=0 and r.C=c¢ and 7.A =s.A

Although we have not selected any attributes from
S, the join with S is of a great benefit. The SQL
optimizer chooses (only now!) to use S as the outer
table in the join and while scanning S, as each value a
for A is retrieved, the index is used to lookup the tuples
corresponding to a, b, c.

Example 2.2 Integrity constraints also create oppor-
tunities for rewriting queries using materialized views.
Consider the query @ given below, which joins relation-
S Rl(K,Al,AQ,F, .. .), RQ(K,Al,AQ, .. ) with Sij(Ai,B, .. )
(1<i<2,1<j<2). Figure 1 depicts @’s join graph,
in which the nodes represent the query variables and
the edges represent equijoins between them.
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Figure 1: Query graph of @

One can think of Ry, S;; and S5 as storing together
one large conceptual relation U; that has been normal-
ized for storage efficiency. Thus, the attributes A; and
A, of Ry are foreign keys into S1; and, respectively, Sio.
The attribute K of Ry is the key of U; and therefore of R;.
Similarly, Ry, So; are S are the result of normalizing
another large conceptual relation Us. For simplicity, we
used the same name for attributes A;, A and K of Uy
and Us but they can store different kind of information.
In addition, the conceptual relation U; has a foreign key
attribute F into Uy and this attribute is stored in R;. We
want to perform the foreign key join of U; and Uy, which
translates to a complex join across the entire database.
The query returns the values of the attribute B from
each of the ”corner” relations S11,S12,S21,S22. (Again
for simplicity we use the same name B here, but each
relation may store different kind of information).

(Q) select struct(Bi1 :s11.B, Bi2 @ 512.B,
Bo1 : $21.B, Bag @ SQQ.B)
from Ry 71, S11 S11, S12 S12,
Ra r2, S21 S21, S22 S22
where 7. F =r2.K and
r1.A1 = s11.41 and 71.A2 = s12.A42 and
ro. A1 = s91.A1 and 2. A2 = s92.A9

Suppose now that the attributes B of the ”corner”
relations have few distinct values, therefore the size of
the result is relatively small compared to the size of the
database. However, in the absence of any indexes on
the attributes B of the ”corner” relations, the execution
time of the query is very long. Instead of indexes, we
assume the existence of materialized views V;(K,B;,Bs)
(1 <i < 2), where each V; joins R; with S;; and S;» and
retrieves the B attributes from S;; and S;» together with

the key K of R; :
Vi) select struct(X : r.K, By : $1.B, Bo : $2.B)
from  R; r, Si1 s1, Si2 s2
where r.A; = s;.A1 and r. Ay = s2. 49
It is easy to see that the join of Ry, So1, and Sy can
now be replaced by a scan over Vj:
(Q’) select struct(B11 :811.B, B12 : 812.B,
Baj : v2.B1, Baa :1)2.32)
from R1 71, S11 S11, S12 S12, V2 v2
where 71.F = v2.K and
r1.A1 = s11.A1 and 71.42 = s12.42
However, the join of Ry, Sj1, and Si2 cannot be
replaced by a scan over Vi. @7, the obvious candidate
for a rewriting of () using both V; and Vs, is mot
equivalent to () in the absence of additional semantic
information.

Q") select  struct(By; : v1.B1, B2 : v1.By,
Baj : v2.B1, Baa :1)2.B2)
from Ry r1, Vi wg, Vo oo
where r;.K=wv;.Kand r1.F = va.K
The reason is that V; does not contain the F attribute
of Ry, and there is no guarantee that joining the latter
with V; will recover the correct values of F. On the
other hand, if we know that K is a key in Ry then Q”
is guaranteed to be equivalent to @), being therefore an
additional (and likely better) plan.

The C&B technique covers and amply generalizes the
two examples shown in this section.

3 Practical Solutions

In this section we describe the implementation tech-
niques used to make C&B feasible and worthwhile and
we point to some of the experiments that show that this
goal can be achieved. In particular, we discuss:

Feasibility of the chase (section 3.1)

This is critical because the chase is heavily used: both
to build the universal plan and in order to check
the validity of a constraint used in a backchase step.
In section 5.2 we measure for all our experimental
configurations the time to obtain the universal plan
as a function of the size of the query and the number
of constraints. The results prove that the cost of the
(efficiently implemented) chase is negligible.

Feasibility of the backchase (section 3.2)

A full implementation of the backchase (FB) consists
of backchasing with all available constraints starting
from the universal plan obtained by chasing also with
all constraints.  This implementation exposes the
bottleneck of the approach: the exponential (in the size
of the universal plan) number of subqueries explored
in the back chase phase. A general analysis suggests
using stratification heuristics: dividing the constraints
in smaller groups and chasing/backchasing with each
group successively.

We examine two approaches to this: (1) fragment-
ing the query and stratifying the constraints by rele-
vance to each fragment (On-line Query Fragmentation
(OQF), section 3.2.1); and (2) splitting the constraints
independently of the query (Off-line Constraint Strat-
ification (OCS), section 3.2.2). In the important case
of materialized views [16], OQF can be used without
losing any plan that might have been found by the full
implementation (theorem 3.3). To evaluate and com-
pare FB, OCS and OQF strategies, we measure in sec-
tion 5.3: (1) number of plans generated, (2) the time
spent per generated plan and (3) the effect of fragment
granularity.

3.1 Chase Feasibility

Each chase step includes searching for homomorphisms
mapping a constraint into the query. A homomor-
phism from a constraint ¢ = V(@ € U) Bi(@) = 3(€ €



E) Bs(ii,€) into a query @ is a mapping from the uni-
versally quantified variables of ¢ into the variables of @
such that, when extended in the natural way to paths,
it obeys the following conditions:

1) any universal quantification u € U of ¢ corresponds
to a binding P h(u) of @ such that either h(U) and P
are the same expression or h(U) = P follows from the
where clause of Q.

for every equality P, = P» that occurs in B either
Py) and h(P.) are the same expression or h(P;) =
P,) follows from the where clause of Q).

Finding a homomorphism is NP-complete, but only
in the size of the constraint (always small in practice).
However, the basis of the exponent is the size of the
query being chased which can become large during the
chase. Since our language is more complicated than a
relational one because of dictionaries and set nesting,
homomorphisms are more complicated than just simple
mappings between goals of conjunctive queries, and
checking that a mapping from a constraint into a query
is indeed a homomorphism is not straightforward.

2)
(
(

We list below some techniques that we use to avoid
unnecessary checks for homomorphisms, and to speed
up the chase:

e Use of congruence closure, a variation of [17], for
fast checking if an equality is a consequence of the
where clause of the query.

e Pruning variable mappings that cannot become
homomorphisms by reasoning early about equality.
Instead of building the entire mapping and checking
in one big step whether it is a homomorphism, this is
done incrementally. For example, if h is a mapping
that is defined on = and y and x.A = y.A occurs in the
constraint then we check whether h(z).A = h(y).A is
implied by the where clause of the query. This works
well in practice because the ”good” homomorphisms
are typically just a few among all possible mappings.

e Implementation of the chase as an inflationary
procedure that evaluates the input constraints on
the internal representation of the input query.
The evaluation looks for homomorphisms from the
universal part of constraints into the query, and
“adds” to the internal query representation (if not
there already') the result of each homomorphism
applied to the existential part of the constraint. The
analogy with query evaluation on a small database
is another explanation of why the chase is fast.

The experimental results about the chase shown in
section 5.2 are very positive and show that even chasing
queries consisting of more than 15 joins with more than
15 constraints is quite practical.

1This is translated as a check for trivial equivalence.

3.2 Backchase Feasibility

The following analysis of a simple but important case
(just indexes) shows that a full implementation of the
backchase can unnecessarily explore many subqueries.

Example 3.1 Assume a chain query that joins n
relations R; (A,B),...,R,(4,B):
(Q)  select struct(A=r1.A, B=ry,.B)

from Ri 71,..., Rpn mp

where 7r1.B=79.Aand ... and r,_1.B=1,.A
and suppose that each of the relations has a primary
index I; on A. Let D = {d;,d; ,...,dn,d;, } be all the
constraints defining the indexes (here d; and d; are the
constraints for I;).

In principle, any of the 2" plans obtained by either
choosing the index I; or scanning R;, for each i, is
plausible. One direct way to obtain all of them is to
chase () with the entire set of constraints D, obtain the
universal plan U (of size 2n), and then backchase it with
D. The backchase inspects top-down all subqueries of
U, from size 2n — 1 to size n (any subquery with less
than n loops cannot be equivalent to U), for a total of:
ety 4oy, =220ty Lon 1

The same 2" plans can be obtained with a different
strategy, much closer to the one implemented by
standard optimizers. For each i, handle the ith loop
of @) independently: chase then backchase the query
fragment @); of () that contains only R; with {d;,d; } to
obtain two plans for @);, one using R; the other using
the index I;. At the end, assemble all plans generated
for each fragment (Q; in all possible combinations to
produce the 2" plans for Q.

The number of plans inspected by this “stratified”
approach can be computed as follows. For each stage
i1 the universal plan for fragment (); has only 2 loops
(over R; and I;) and therefore the number of plans
explored by the subsequent backchase is 2. Thus the
work to produce all the plans for all fragments is 2n.
The total work, including assembling the plans, is then
2n + 2™. This analysis suggests that detecting classes
of constraints that do not ”interact”, grouping them
accordingly and then stratifying the chase/backchase
algorithm, such that only one group is considered at a
time, can decrease exponentially the size of the search
space explored.

The crucial intuition that explains the difference in
efficiencies of the two approaches is the following. In the
first strategy, for a given ¢, the universal plan contains at
the beginning of the backchase both R; and I;. At some
point during the backchase, since a plan containing
both is not minimal, there will be a backchase step
that eliminates R; and another backchase step, at the
same level, that eliminates I; (see figure 2). The
minimization work that follows is exactly the same
in both cases because it operates only on the rest of
the relations. This duplication of work is avoided in



the second strategy because each loop of ) is handled
exactly once. A solution that naturally comes to mind
to avoid such situations is to use dynamic programming.
Unfortunately, there is no direct way to do this in
general (we discuss this more in section 7). Instead, the
next section gives a stratification algorithm that solves
the problem for a restricted but common case.

intermediate plan

explored @
/i backchase Mg] \
A N
SN .

/ duplicate work \
+‘minimizatioh ,/ minimizatiop
/" of <rest> v \

of <rest>

Figure 2: Duplication of work during minimization

3.2.1 On-line Query Fragmentation (OQF)

The main idea behind the OQF strategy is illustrated
on the following example.

Example 3.2 Consider a slightly more complicated
version of example 2.2 shown in figure 3. The query
graph is shaped like a chain of 2 stars, star ¢ having
R; for its hub and S;; for its corners (1 < i <2, 1<
j < 3). The attributes selected in the output are the
B attributes of all corners S;;. Assume the existence of
materialized views V;(K,B1,B2) (1 <i<2,1<1<2),
where each V;; joins the hub of star i (R;) with two
of its corners (Sy and S;;41)). Each Vy selects the B
attributes of the corner relations it joins, as well as the
K attribute of R;.

VIt ST e os2t e V2

s11.Ax1.AT1 r2.A21#s21.A

S22 s22 " -

r2.A22Q,A

r2.A23=%23.A

- S12 s12 R1 r1. - R2 ;

2K

s12.A=r1.A12
S13/A=r1.A13

V1‘2" . S13s13 . S28 s _."\)22

Figure 3: Chain-of-stars query @ with views

If we apply the FB algorithm with all the constraints
describing the views we obtain all possible plans in
which views replace some parts of the original query.
However Vj; or Vj5 can only replace relations from the
first star, thus not affecting any of the relations in the
second star. If a plan P using V3; and/or V1 is obtained
for the first star, such that it "recovers” the B attributes
needed in the result of (), as well as the F attribute of Ry
needed in the join with Ry, then P can be joined back
with the rest of the query to obtain a query equivalent

to Q. We say that V7, overlaps with neither V51 nor V5s.
On the other hand this does not apply to V;1 and Via,
because the parts of the query that they cover overlap
(and any further decomposition will lose the plan that
uses both Vi3 and Vi2). @ can thus be decomposed into
precisely two query fragments, one for each star, that
can be optimized independently.

Before we give the full details of the OQF algorithm,
we need to formalize the ideas introduced in the
previous example.

Query Fragments. We define the closure Q*
of query ) as a query with the same select and
from clauses as () while the where clause consists
of all the equalities occuring in or implied by @’s
where clause. @™ is computable from ) in PTIME
and is equivalent to @ ([18] shows a congruence closure
algorithm for this construction).

Given a query ) and a subset S of its from clause
bindings we define a query fragment Q' of Q induced
by S as follows: 1) The from clause consists of exactly
the bindings in S; 2) The where clause consists of all the
conditions in the where clause of * which mention only
variables bound in S; 3) The select clause consists of all
the paths P over S that occur in the select clause of @
or in an equality P = P’ of Q*’s where clause where P’
depends on at least one binding that is not in S. In the
latter case, we call such P a link path of the fragment.

Skeletons. While in general the chase/backchase al-
gorithm can mix semantic with physical cosntraints, in
the remainder of this section we describe a stratifica-
tion algorithm that can be applied to a particular class
of constraints which we call skeletons. This class is
sufficiently general to cover the usual physical access
structures: indexes, materialized views, ASRs, GMAP-
s. Each of these can be described by a pair of comple-
mentary inclusion constraints. We define a skeleton as
a pair of complementary constraints:

d=VY(7 €R)[Bi(z) = 3(7 € V) Bs(,7) ]

d~ = V(¥ € V) 3(F € R) B1(%) and B»(7,7)
such that all schema names occuring among V belong to
the physical schema, while all schema names occuring
among R belong to the logical schema.

Algorithm 3.1 (Decomposition into Fragments.)
Given a query @ and a set of skeletons V:

1. Construct an interaction graph G as follows: 1) there
is a node labeled (V. h) for every skeleton V = (d,d™)
in ¥V and homomorphism h from d to @Q; 2) there is an
edge between (Vi,hq) and (V3, ho) iff the intersection
between the bindings of h(d;) and h(ds) is nonempty.
2. Compute the connected components {C1,...,Ci} of
G.

3. For each Cpn = {(Vi,h1),--,(Va,hn)} (1 < m < k) let
S be the union of the sets of bindings in h;(d;) for
all 1 < i < n and compute F;, as the fragment of @
induced by S.



4. The decomposition of ) into fragments consists of
Fy, ..., F}, together with the fragment F}; induced by
the set of bindings that are not covered by Fi, ..., Fj.

The resulting fragments are disjoint, and @ can be
reconstructed by joining them on the link paths.

Now we are ready to define the on-line query
fragmentation strategy:

Algorithm 3.2 (OQF) Given a query Q and a set V
of skeletons:

1. Decompose @ into query fragments {Fi, ..
based on V using Algorithm 3.1.

2. For each fragment F; find the set of all minimal
plans by using the chase/backchase algorithm

3. A plan for ) is the ”cartesian product” of
sets of plans for fragments (cost-based refinement: the
best plan for @ is the join of the best plans for each
individual fragment)

S Fn}

Theorem 3.3 For a skeleton schema, OQF produces
the same plans as the full backchase (FB) algorithm.

In the limit case when the physical schema contains
skeletons involving only one logical schema name (such
as primary/secondary indexes), OQF degenerates s-
moothly into a backchase algorithm that operates in-
dividually on each loop of the query to find the access
method for that loop. One of the purposes of the experi-
mental configuration EC1 is to demonstrate that OQF
performs well in a typical relational setting. Howev-
er, OQF can be used in more complex situations, such
as rewriting queries with materialized views. While in
the worst case when the views are strongly overlapping,
the fragmentation algorithm may result in one fragment
(the query itself), in practice we expect to achieve rea-
sonably good decompositions in fragments. Scalability
of OQF in a setting that exhibits a reasonable amoun-
t of non-interaction between views is demonstrated by
using the experimental configuration EC2.

3.2.2 Off-line Constraint Stratification

One disadvantage of OQF is that it needs to find the
fragments of a query (). While this has about the same
complexity as chasing @ ? (and we have argued that
chase itself is not a problem) in practice there may be
situations in which interaction between constraints can
be estimated in a pre-processing phase that examines
only the constraints in the schema. The result of this
phase is a partitioning of constraints into disjoint sets
(strata) such that only the constraints in one set are
used at one time by the algorithm.

As opposed to OQF this method tries to isolate
the independent optimizations that may affect a query

2The chase also needs to find all homomorphisms between
constraints and the query.

by stratifying the constraints without fragmenting the
query. During the optimization the entire query is
pipelined through stages in which the chase/backchase
algorithm uses only the constraints in one set. At each
stage different parts of the query are affected.

We first give the algorithm that computes the
stratification of the constraints.

Algorithm 3.4 (Stratification of Constraints.) Given

a schema with constraints, do:

1. Construct an interaction graph G as follows:
a) there is a node labeled ¢ for every constraint c.
b) there is an edge between nodes ¢; and ¢ if there
is a homomorphism?® from the tableau of ¢; into that
of ¢a, or viceversa. The tableau T'(c) of a constraint
c=VY@ e U) Bi(@) = 3(€ € E) Ba(i,& is obtained
by putting together both universally and existentially
quantified variables and by taking the conjunction of
all conditions: T(c) = V(@ € U) ¥(¢ € E) B1(@) A B2(i, &).

2. Compute the connected components {C,...,Cy}
of G. Each C; is a stratum.

Using algorithm 3.4, we define the following refine-
ment of the C&B strategy, the off-line constraint strat-
ification (OCS) algorithm:

Algorithm 3.5 (OCS) Given a query Q and a set of
constraints C:

1. Partition C into disjoint sets of constraints
{Si}1<i<k by using algorithm 3.4.

2. Let Py = {Q}. For every 1 <i < k, let P; be the
union of the sets of queries obtained by chase/backchase
each element of P;_; with the constraints in S;.

3. Output Py as the set of plans.

Algorithm 3.4 makes optimistic assumptions about
the non-interaction of constraints: even though there
may not be any homomorphism between the con-
straints, depending on the query they might still inter-
act by mapping to overlapping subqueries at run time.
Therefore, the OCS strategy is subsumed by the on-line
query fragmentation but it has the advantage of being
done before query optimization.

Cl)rigir;al query: .
Class1 Class2 Classn O—>0—>0—>0 ...0—0
l‘ l‘ . ﬁ] Fl’lansz(after INV optimization):

n

P
D 0«—O0—0—0O  O—O
. 2" plans

O« O« 0+ 0..0¢ 0

Figure 4: Inverse Relationships

Example 3.3 Consider 3 classes (see figure 4 with
n = 3) described by dictionaries Mj, My, M3. Each V;
includes a set-valued attributed N ("next”) and a set-
valued attribute P (”previous”). For each i = 1,2, there

3Similar to those defined in section 3.1.



exists a many-many inverse relationship between M; and
M;1+1 that goes from M; into M;;1q1 by following the N
references and comes back from M; 1 into M; by following
the P references. The inverse relationship is described
by two constraints, INV;y and INV,p, of which we show
below the first:

V(k € domM;)V(o € M;[k].N)

(k" € domM;41)3(0’ € M;41[k'].P) k' =oand o’ =k

By running algorithm 3.4 we obtain the following s-

tratification of constraints into two strata: {INV;y,INV;p}

and {INV,x,INV5p}. Suppose now that the incoming
query @) is a typical navigation, following the N refer-

ences from class M, to class M5 and from there to Ms:
select struct(F = k1, L = 02)
from  domM; k1, Mi[k1].N 01, domMz k2, Ma[k2].N 02
where 01 = ko

By chase/backchasing () with the constraints of the
first stratum, {INV;y,INV;p}, we obtain, in addition
to @, query ()1 in which the sense of navigation from
M; to My following the N attribute is ”flipped” to a
navigation in the opposite sense: from M; to M; along
the P attribute.

(Q1) select struct(F =01, L = 02)
from domM»> ko, MQ[kQ}.P 01, M2 [kQ].N 02

In the stage corresponding to stratum 2, we chase and
backchase {Q, @1} with {INVyy,INVyp}, this time
flipping in each query the sense of navigation from M,
to M3 via N to a navigation from Mz to My via P. The
result of this stage consists of four queries: the original
@ and @)1 (obtained by chasing and then backchasing
with the same constraint), plus two additional queries.

One of them, obtained from ), is shown below:
select struct(F = 01, L = k3)
from  domMs k3, M3[k3].P 03, domMs ko, Ma[k2].P 01
where 03 = ko

The OCS strategy does not miss any plans for this
example (see also the experimental results for OCS
with EC2), but in general it is just a heuristic. Our
algorithm 3.4 makes optimistic assumptions about the
non-interaction of constraints, which depending on the
input query, may turn out to be false, therefore it is
not complete. EC2 is an example of such a case and
we leave open the problem of finding a more general
algorithm for stratification of constraints.

4 The Architecture of the Prototype

The architecture of the system that implements the
C&B technique (about 25,000 lines of Java code), is
shown in figure 5. The arrowed lines show the main
flow of a query being optimized, constraints from the
schema, and resulting plans. The thick lines show
the interaction between modules. The main module
is the plan generator which performs the two basic
phases of the C&B chase and backchase. The
backchase is implemented top-down by removing one
binding at a time and minimizing recursively the

subqueries obtained (if they are equivalent). Checking
for equivalence is performed by verifying that the
dependency equivalent to one of the containments
is implied by the input constraints?. The module
that does the check, dependency implication shown in
the figure as D = d, uses the chase. The most
salient features of the implementation are summarized
below:

e queries and constraints are compiled into a (same!)
internal congruence closure based canonical database
representation (shown in the figure as DB(Q) for
a query @, respectively DB(d) for a constraint D)
that allows for fast reasoning about equality.

e compiling a query @ into the canonical database
is implemented itself as a chase step on an empty
canonical database with one constraint having no
universal but one existential part isomorphic to @’s
from and where clauses put together. Hence, the
query compiler, constraint compiler and the chase
modules are basically one module.

e a language for queries and constraints that is in the
spirit of OQL.

e a script language that can control the constraints
that are fed into the chase/backchase modules. This
is how we implemented the off-line stratification
strategy and various other heuristics.
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Figure 5: C&B Optimizer Architecture

5 Experiments

In this section we present our experimental configu-
ration and report the results for the chase and the
backchase. Finallly, we address in section 5.4 the ques-
tion whether the time spent in optimization is gained
back at execution time.

5.1 Experimental configurations

We consider for our experiments three different settings
that exhibit the mix of physical structures and semantic

4The other containment is always true.



constraints that we want to take advantage of in
our optimization approach. = We believe that the
scenarios that we consider are relevant for many
practical situations.

Experimental Configuration EC1:  The first
setting is used to demonstrate the use of our optimizer
in a relational setting with indexes. This is a simple
but frequent practical case and therefore we consider it
as a baseline.

The schema includes n relations, each relation R; with
a key attribute K on which there is a primary index PI;,
a foreign key attribute N, and additional attributes. The
first j of the relations have secondary indexes SI; on N,
thus the total number of indexes in the physical schema
ism = n+ j. As in Example 3.1 we consider chain
queries, of size n, in which there is a foreign key join
(equating attributes N and K) between each R; and R; 1.
The scaling parameters for EC1 are n and m.

Experimental Configuration EC2: The second
setting is designed to illustrate experimental results in
the presence of materialized views and key constraints.
We consider a generalization of the chain of stars query
of examples 2.2 and 3.2 in which we have i stars with
Jj corner relations, S;1,...,8S;;, that are joined with the
hub of the star R;. The query returns all the B attributes
of the corner relations. For each we assume v < j — 1
materialized views V;1,...,V;, each covering, as in the
previous examples, three relations. We assume that the
attribute K of each R; is a primary key. The scaling
parameters are i, j and v.

Experimental Configuration ECS3: This is
an object-oriented configuration with classes obeying
many-to-many inverse relationship constraints. We use
it to show how we can mix semantic optimization based
on the inverse constraints to discover plans that use
access support relations (ASRs). The query that we
consider is not directly "mappable” into the existing
ASRs, and the semantic optimization ”component” of
C&B enables rewriting the query into equivalent queries
that can map into the ASRs.

We generalize here the scenario of example 3.3 by
considering n classes with inverse relationships. The
queries ) (see figure 4) that we consider are long
navigation queries across the entire database following
the N references from class M; to class M,,. In addition
we have, as part of the physical schema, access support
relations (ASRs) that are materialized navigation joins
across three classes going in the backwards direction
(i.e. following two P references). Each ASR is a binary
table storing oids from the beginning and from the end
of the navigation path. Plans obtained after the inverse
optimization phase are rewritten in the second phase
into plans that replace a navigation chain of size 2
with one navigation chain of size 1 that uses an ASR
(thus being likely better plans). The parameter of the

configuration is the number of classes n. There are "T_l

non-overlapping ASRs that cover the entire navigation
chain.

Experimental settings. All the experiments have
been realized on a dedicated commodity workstation
(Pentium III, Linux RH-6.0, 128MB of RAM). The op-
timization algorithm is run using IBM JRE-1.1.8. The
database management system used to execute queries is
IBM DB2 version 6.1.0 (out-of-the-box configuration).
For EC2, materialized views have been produced by
creating and populating tables. All times measured are
elapsed times, obtained using the Unix shell time com-
mand. In all the graphs shown in this section, whenev-
er values are missing, it means that the time to obtain
them was longer than the timeout used (2 mins).

5.2 Chase Feasibility: Experiments

We measured the complexity of the chase in all our
experimental configurations varying both the size of the
input query and the number of constraints.

In EC1 (figure 6, left) the constraints used in the
chase are the ones describing the primary (2 con-
straints/index) and/or secondary (3 constraints/index)
indexes. For example, chasing with 10 indexes, there-
fore 20+ constraints, takes under 1s. For EC2 (figure 6,
middle) the variable is the number of relations in the
from clause, giving a measure of the query size. The
number of constraints comes from the number of views
(2 constraints/view) and the number of key constraints
(1 constraint/star hub). For EC3 (figure 6, right) the
variable is the number of classes n (measuring both the
size of the schema and that of the queries we use). The
chase is done with the inverse relationship constraints
and with the ASR constraints. Chasing with 8 classes
(20 constraints) takes 3s. Overall, we conclude that the
normalized chase time grows significantly with the size
of the query and the number of constraints. In compar-
ison, numbers for the chase time are much smaller than
those of the backchase.
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Figure 6: Chase time

5.3 Backchase Feasibility: Experiments

To evaluate and compare the two stratification strate-
gies (OQF and OCS) and the full approach (FB) we
measure the following;:



e The number of plans generated measures the
completeness with respect to FB. We found that
OQF was complete for all experimental configura-
tions considered, beyond what theorem 3.3 guaran-
tees, while OCS is not complete for EC2.

e The time spent per generated plan allows for
a fair comparison between all three strategies. We
measured the time per plan as a function of the
query size and number of constraints. Moreover, we
studied the scale-up for each strategy by pushing the
values of the parameters to the point at which the
strategy became ineffective. We found that OQF
performed much better than OCS which in turn
outperformed FB.

e The effect of fragment granularity on opti-
mization time is measured by keeping the query
size constant and varying the number of strata in
which the constraints are divided. This evaluates
the benefits of finding a decomposition of the query
into minimal fragments. The OQF strategy per-
forms best by achieving the minimal decomposition
that doesn’t lose plans. The results also show that
OCS is a trade-off giving up completeness for opti-
mization time.

Number of generated plans. This experiment
compares for completeness the full backchase algorithm
with our two refinements: OQF (section 3.2.1) and OCS
(section 3.2.2). We measured the number of generated
plans, as a function of the size of the query and the
number of constraints. The three strategies yielded
the same number of generated plans in configurations
EC1 and EC3. The table below shows some results
for configuration EC2 in which OCS cannot produce
all plans. However, the time spent for generating the
plans differs spectacularly among the three techniques,
as shown by the next experiment.

[s]c[v]FB]OQF ] OCS |
1(5]1 2 2 2
1152 4 4 3
1(5]3 7 7 5
1|15]|4 13 13 8
2151 4 4 4

Time per plan. This experiment compares the three
backchase strategies by optimization time. Because not
all strategies are complete and hence output different
numbers of plans, we ensured fairness of the comparison
by normalizing the optimization time which was divided
by the number of generated plans. This normalized
measure is called time per plan and was measured as
a function of the size of the query and the number of
constraints. The results are shown in figures 7 and 8.
By running the experiment in configuration EC1
we showed that for the trivial yet common case of
index introduction, our algorithm’s performance is
comparable to that of standard relational optimizers.

Time per plan (s)

Figure 7 shows the results obtained for three query sizes:
3, 4 and 5. By varying the number of secondary indexes
for each query size, we observed an exponential behavior
of the time per plan for the FB strategy, but a negligible
time per plan for both OQF and OCS.

For configuration EC3, OQF degenerates into FB
because the images of the inverse constraints overlap.
We show a comparison of FB(=0QF) and OCS. OCS
outperforms the other two strategies on this example
because each pair of inverse constraints ends up in its
own stratum. This stratification results in a linear time
per plan (each stratum flips one join direction).

The most challenging configuration is EC2, dealing
with large queries and numerous constraints: the point
[2,3,5] of figure 8 corresponds to a query with 17 joins,
6 views (12 constraints), and 3 key constraints. Figure 8
divides the points into 3 groups, each corresponding
to the same number of views per star. This value
determines the size of the query fragments for OQF
and is the most important factor influencing its time
per plan®. While all strategies exhibit exponential time
per plan, OCS is fastest, while FB cannot keep pace
with the other two strategies ©.
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Figure 7: Comparison of FB, OQF, OCS for EC1, EC3

The effect of stratification. This experiment was
run in configurations EC2 and EC3 by keeping the
query size constant and varying the number of strata
in which the constraints are divided”. For EC3, we
considered two queries: one navigating over 5 classes
and one over 6 classes, with 8, respectively 10 applicable
constraints. The query considered in EC2 joins three
stars of 3 corners each, with one view applicable per star
(for a total of 9 constraints). The results are shown in
figure 9 and exhibit the exponential reduction inferred
in example 3.1.

50CS achieves a finer stratification than OQF, but misses the
best plan, which uses all the views.

6We only measure time per plan here, not the quality of the
plans. We compare the two in 5.4.

7Stratum size 1 corresponds for EC3 to OCS.
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5.4 The Benefit of Optimization

Next we measure, in EC2, the real query processing
time (optimization time plus execution time). Since
we didn’t implement our own query execution engine,
we made use of DB2 as follows. Queries are optimized
using the OQF strategy and resulting plans are fed into
DB2 to compare their processing times.

Parameters measured We denote by OptT the
time taken to generate all plans; by ExT the execution
time of the query given to DB2 in its original form (no
C&B optimizaton); and by ExTBest, the DB2 execution
time of the best plan generated by the C&B. We assume
that the cost of picking the best plan among those
generated by the algorithm is negligible. Figure 10 gives
the details of the plans generated and their ExT values
for a setting with 3 stars, each with 2 corners and 1
view. OptT is 8s; plan 8 is the original query. For each
plan, we present the views and corner relations used (in
addition to the star hubs which appear in all plans).

Plan ExT | Views Corner relations
1 5.54s | V11,V21,Va1
2 66.39s | V11,Vo1 S31,932
3 33.13s | V11,V31 S21,522
4 143.758 | Vi1 S21,522,531,532
5 105.82s | Va21,V31 S11,912
6 61.458 | Va1 S11,512,531,532
7 43.54s | V31 S11,512,5931,532
8 132.90s S11,512,521,522,531,532

Figure 10: Generated plans.

Performance indices We define and display in
figure 11, for increasing complexity of the experimental

parameters, the following performance indices:
Redux ExT—(ExTBest+OptT)
ExT

ReduxFirst EXT*(EXTBeStE;ErOptT/#plans))

Redux represents the time reduction resulting from
our optimization with respect to ExT assuming that no
heuristic is used to stop the optimization as soon as
reasonable. ReduxFirst represents the time reduction
resulting from our optimization with respect to ExT
assuming that a heuristic is used to return the best
plan first and stop the optimization. Our current
implementation of OQF (similar for OCS) is able
to return the best plan first for all the experiments
presented in this paper (see section 7 for a discussion).

Dataset used These performance indices correspond
to experiments conducted on a small size database with
the following characteristics®:

Ril | ISigl | o(RimaS;;) | o(Ri> Ripa)
5000 tup. | 5000 tup. | 4% | 2%
Time Reduction [EC2] W Redux
100% @ ReduxFirst]
90%
80%
70%
5 60%
B s0% —
8 4%
30%
20%
10%

21 R R4 B2 B3N B4 232 42 B42
[ #Stars, #Corner relations per star, #Views per star ]

Figure 11: Time reduction (negative Redux not shown).

Our current implementation is not tuned for maxi-
mum performance, thus skewing the results against us.
Using C or C++ and embedding the C&B as a built-
in optimization (e.g. inside DB2) would lead to even
better performance. We obtain excellent results never-
theless, proving that the time spent in optimization is
well worth the gained execution time.

Even without the heuristic of stopping the optimiza-
tion after the first plan, the C&B posts significant time
reductions (40% to 90%), up to optimizing chain of s-
tars queries with 9 joins, using 4 views ([2,4,2] in fig-
ure 11). The practicality range is extended even further
when using the “best plan first” heuristic, with reduc-
tions of 60% to 95%, up to optimizing queries with 14
joins, using 6 views ([3,4,2] in figure 11).

6 Related work

There are many papers that discuss semantic query
optimization for relational systems([6, 13, 4] and the

80n a larger database, the benefits of C&B should be even
more important.



references therein). The techniques most frequently
used are [6] index introduction, join elimination, scan
reduction, join introduction, predicate elimination and
detection of empty answers. Of these, scan reduction,
predicate elimination and empty answers use boolean
and numeric bounds reasoning of a kind that we have
left out of our optimizer for now. We have shown
examples of index and join introduction in section 2
and [13] contains a nice example of join introduction.
The C&B technique covers index and join introduction
and in fact extends them by trying to introduce any
relevant physical access structure. The experiments
with EC2 and EC3 are already more complex than
the examples in section 2 and [13]. It also covers
join elimination (at the same time as tableau-like
minimization) as part of subquery minimization during
the backchase. The work that comes closest to ours
in its theoretical underpinnings is [14] where chasing
with functional dependencies, tableau minimization and
join elimination with referential integrity constraints
are used. Surprisingly, very few experimental results
are actually reported in these papers. [6] reports on
join elimination in star queries that are less complex
than our experiments with EC2. Examples of SQO
for OO systems appear in [8, 2, 10, 13, 7]. A general
framework for SQO using rewrite rules expressed using
OQL appears in [12, 11].

Techniques for using materialized views in query
optimization are discussed in [5, 11, 12, 20, 3]. A
survey of the area appears in [16]. From our perspective,
the work on join indexes [21] and precomputed access
support relations [15] belongs here too. The general
problem is forced by data independence: how to
reformulate a query written against a ”user”-level
schema into a plan that also/only uses physical access
structures and materialized views efficiently.  The
GMAP approach [20] works with a special case of
conjunctive queries (PSJ queries). The core algorithm
is exponential but the restriction to PSJ is used to
provide polynomial algorithms for the steps of checking
relevance of views and checking a restricted form of
query equivalence. However, the results we report here
on using the chase show that there is no measurable
practical benefit from all these restrictions. In the end,
the exponential behavior of the GMAP algorithm and
the difficulties we had to resolve for the backchase phase
are closely related.

Our experiments include schemas, views and queries
of significantly bigger complexity than those reported
in [22, 20, 5]. Their experiments show that using views
can be done and in the case of [20] that it can produce
faster plans. But [22] measures only optimization time
and [20] does not separate the cost of the optimization
itself, so they do not offer any numbers that we can
compare with our time reduction figures (section 5.4).

[5] shows a very good behavior of the optimization
time as a function of plans produced, but cannot be
compared with our figures because the bag semantics
they use restricts variable mappings to isomorphisms
thus greatly reducing the search space.

7 Discussion and Extensions

Dynamic programming and cost-based pruning.
Dynamic programming can only be applied when a
problem is decomposable into independent subproblem-
s, where common subproblems are solved only once
and the results reused. Unfortunately, the minimiza-
tion problem lacks common subproblems of big enough
granularity: one cannot minimize in general a subpart
of a subquery independently of how the subpart inter-
acts with the rest of the query. In general, each subset
of the bindings of the original query explored by the
backchase must be considered as a different subprob-
lem.

The non-applicability of dynamic programming is in
general a problem for rewriting queries using views.
What [20, 5] mean by incorporate optimization with
views/GMAPs into standard System R-style optimizer
is actually the blending of the usual cost-based dynamic
programming algorithm with a brute-force exponential
search of all possible covers. The algorithms remain
exponential but cost-based pruning can be done earlier
in the process.

Our optimizer can be easily extended in the same
way. We have not yet done this, nor have we added any
cost-based pruning to our system/experiments because
we considered valuable as a first step to measure the
effect of the C&B-specific issues in isolation. On the
other hand, OQF already incorporates the principle of
dynamic programming in the sense that it identifies
query fragments that can be minimized independently.

Top-down vs bottom-up. In the top-down,
full approach, the backchase explores only equivalent
subqueries (call them candidates), and tries to remove
one from binding at a time until a candidate cannot
be minimized anymore (all of its subqueries are not
equivalent). The main advantage of this approach is
that through depth-first search it finds a first plan
fast while the main disadvantage is that the cost of
a subquery explored cannot be used ? for cost-based
pruning because a backchase step further might improve
the cost. In the bottom-up approach the backchase
would explore non-equivalent candidates. It would
assemble subqueries of the universal plan by considering
first candidates of size 1 then of size 2 and so on, until
an equivalent candidate is reached. Then cost-based
pruning is possible because a step of the algorithm
can only increase the cost. A best-first strategy can

9We are ignoring here heuristics that need preliminary cost
estimates.



be easily implemented by sorting the fragments being
explored based on cost. The main disadvantage of this
strategy is that it involves breadth-first search and the
time for finding the first plan can be long.

In practice one could combine the two approaches:
start top-down, find the first plan, then switch to
bottom-up (combined with cost-based pruning) using
the cost of the first plan as the cost of the best plan.
While our FB implementation is a top-down approach
now, we plan to extend it to include both strategies.

Other extensions. The two stratification strategies
(OQF and OCS) introduced here are a first promis-
ing step in the direction of a deeper understand-
ing of how the interference of constraints affects the
chase/backchase rewrites. This is an attractive theoret-
ical problem which we believe to be more tractable than
the study of interference of rules in arbitrary rule-based
optimizers. We intend to explore backchase strategies
that are complete for query reformulation with other
commonly used physical structures and integrity con-
straints.

Conclusion. In this work, we report on the
implementation and evaluation of the uniform approach
to semantic optimization and physical independence
proposed in [9]. We developed and evaluated two
refinements of the full C&B algorithm: OQF, a strategy
preserving completeness in restricted but common
scenarios, and OCS, a heuristic which achieves the
best running times. Our experiments show that the
strategies are practical and that OQF scales reasonably
well, while OCS scales even better.

Finally, we remark that our comprehensive approach
to optimization tries to exploit more optimization
opportunities than common systems, thus trading
optimization time for quality of generated plans. The
experiments clearly show the benefits of this trade-
off, even though we used a prototype rather than an
implementation tuned for performance.
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