
Expressive Capabilities Description Languages and Query

Rewriting Algorithms�

Vasilis Vassalosy Yannis Papakonstantinouz

Abstract

Information integration systems have to cope with a wide variety of di�erent information
sources, which support query interfaces with very varied capabilities. To deal with this problem,
the integration systems need descriptions of the query capabilities of each source, i.e., the set
of queries supported by each source. Moreover, the integration systems need algorithms for
deciding how a query can be answered given the capabilities of the sources. Finally, they need
to translate a query into the format that the source understands. We present two languages
suitable for descriptions of query capabilities of sources and compare their expressive power.
We also use one of the languages to automatically derive the capabilities description of the
integration system itself, in terms of the capabilities of the sources it integrates. We describe
algorithms for deciding whether a query \matches" the description and show their application to
the problem of translating user queries into source-speci�c queries and commands. We propose
new, improved algorithms for the problem of answering queries using these descriptions. Finally,
we identify an interesting class of source capability descriptions, for which our algorithms are
much more e�cient.

1 Introduction

Users and applications today require integrated access to multiple heterogeneous information sys-
tems, many of which are not conventional SQL database management systems. Examples of such
systems are Web sources with forms interfaces, object repositories, bibliographic databases, etc.
Some of these systems provide powerful query capabilities, while others provide limited query in-
terfaces. Systems that integrate information from multiple sources have to cope with the di�erent
and limited capabilities of the sources. In particular, integrating systems must allow users to
query the data using a single powerful query language, without having to know about the diverse
capabilities of each source.

Figure 1 illustrates a typical high level architecture of an integration system. The mediator
decomposes incoming client queries, which are expressed in some common query language, into new
common-language queries which are sent to the wrappers. Then the wrappers translate the incoming
queries into queries and commands which are expressed in the native language of the source and are
supported by it. Indeed, the queries received by the wrappers should be supported by the sources,
in the sense that they directly correspond to supported source queries. (It is counterproductive to
build wrappers that accept queries which are not directly supported by the corresponding source
[PGH96, HKWY97].) Apparently, both the wrappers and the mediators require descriptions of
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the query capabilities of the participating sources in order to correctly reduce the client query into
queries supported by the wrappers and, then, translate it into a supported native query.

In particular, a special module of the mediator, called the Capabilities-Based Rewriter (CBR),
uses the description to adapt to the query capabilities of the sources. Let us use an example to
illustrate the query processing steps followed by the mediator modules (see Figure 2). Consider
a source that exports a \lookup" catalog lookup(Employee;Manager ; Specialty) for the employees
of a company. The description indicates that this source supports only selection queries. Let us
now assume that the client query, or simply \query", requests the managers who have at least one
employee specialized in Java and at least one employee specialized in Databases. Notice that this
query is answered with a self join of the lookup table onManager. The �rst module of the mediator,
called resource locator, knows (from metadata or views or source data descriptions) that all the
data needed for answering this query reside on \lookup". Consequently it formulates an annotated
query where each relation is annotated with its origin. Notice that �nding where are the needed
data is a problem orthogonal to how they can be obtained. The problem treated in this paper is
the latter one.

Then the CBR takes as input the descriptions and the annotated query and it infers plans for
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retrieving the required data. In our running example the plan, which is executed by the mediator's
engine, could �rst retrieve the set of managers of Java employees, then the set of managers of
Database employees, and �nally it would intersect the two sets. Alternatively, the CBR may form
a sideways information passing plan: First it retrieves the set of managers of Java employees and
then, for each managerm, it issues a query to check if m has a Database employer. Indeed, the CBR
typically produces more than one candidate plans for the query. We assume that a cost optimizer
will provide cost estimates. Notice that our approach is based on a loose coupling of the CBR
with the optimizer. Systems and algorithms where a CBR module and the optimizer are tightly
coupled are described in [HKWY97] and [PGH]. At any rate, we are not concerned in this paper
with estimating the cost of our plans. Relevant work can be found in [ACPS96, DKS92].

The wrappers also need descriptions of the source capabilities in order to translate the supported
common-language queries into queries and commands understood by the source interface. In par-
ticular, each description is associated with actions that perform the translation, in the same style
with Yacc [ASU87]. Using this approach, in the TSIMMIS project at Stanford we have wrapped a
number of real life bibliographic sources [PGGMU95, JBHM+97, H+97].

It is clear that languages for describing the set of supported queries are needed. The introduction
of new languages for describing query capabilities brings up two questions studied in this paper:
(i) are these languages expressive enough? (ii) Given a description of the wrappers' capabilities,
how can we answer a client query using only queries answerable (i.e., supported) by the wrappers?
We refer to this problem as the Capabilities-Based Rewriting (CBR) problem [PGH96, HKWY97]
since the corresponding algorithm is the one run by the CBR module; it is also clearly related to
the Answering Queries Using Views problem [LMSS95, RSU95, LRU96] (see Section 4). In this
paper, we focus on sources that support conjunctive queries, i.e., their capabilities are a subset of
CQ [AHV95].

This paper extends the results of [VP97]. In particular the topics and novel contributions are
as follows:

� We introduce the description language p-Datalog, we formally de�ne the set of queries de-
scribed by p-Datalog programs, and present complete and e�cient procedures that (i) decide
whether a query is described by a p-Datalog description. This is the algorithm run by the
wrapper and note that it also �nds out what translating actions must be executed. (ii) decide
whether a query can be answered by combining supported queries (the CBR problem). This
algorithm is run by the mediator. Our algorithm runs in time non-deterministic exponential
in the size of the query and the description, a substantial improvement over the algorithm
described in [LRU96], which was non-deterministic doubly exponential.

� We study the expressive power of p-Datalog. We reach the important result that p-Datalog
can not describe the query capabilities of certain powerful sources. In particular, we show
that there is no p-Datalog program that can describe all conjunctive queries over a given
schema. Indeed, there is no program that describes all boolean conjunctive queries over the
schema. This paper presents expressiveness results that have not been reported in [VP97]
and it also provides formal proofs.

� We describe and extend RQDL [PGH96, PGH], a provably more powerful language than
p-Datalog, which also keeps the salient features of p-Datalog.

� We provide a reduction of RQDL descriptions into p-Datalog augmented with function sym-
bols. The reduction has important practical and theoretical value. From a practical point
of view, it reduces the CBR problem for RQDL to the CBR problem for p-Datalog, thus
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giving a complete algorithm that is applicable to all RQDL descriptions1. From a theoretical
point of view, it clari�es the di�erence in expressive power between RQDL and p-Datalog.
The current paper presents the reduction, as well as the algorithms for the complete RQDL
language.

Besides presenting the complete CBR algorithms, expressiveness results, and proofs the current
paper also makes the following contributions, not present in [VP97]:

� We identify an important class of descriptions, covering sources such as document retrieval
systems, lookup catalogs, and object repositories, and we show that the complexity of the
CBR problem for the speci�c class is signi�cantly lower than the complexity for the general
case.

� We provide an algorithm that takes as input descriptions of the queries supported by the
wrappers and outputs a description of all queries supported by a mediator that accesses these
wrappers. This algorithm is important when we have mediators accessing other mediators, as
in Figure 1 | hence requiring knowledge of the query capabilities of the accessed mediators.

� We investigate the expressive power relationship between the proposed description languages
and Datalog queries annotated with binding patterns. Furthermore, we provide the complete-
ness proofs and complexity arguments for a p-Datalog CBR algorithm which also produces
plans using sideways information passing.

The next section introduces the p-Datalog description language. Section 3 describes the algo-
rithm run by the wrappers. Section 4 describes a CBR algorithm run by the mediators. Section 5
studies a useful large class of descriptions, for which the CBR problem has lower computational
complexity. Section 6 discusses expressive power issues. Section 7 introduces RQDL. Section 8 dis-
cusses the RQDL description of mediator capabilities. Section 9 describes the reduction of RQDL
to p-Datalog with function symbols and Section 10 describes the wrapper and mediator algorithms
for RQDL. Section 11 discusses the related work. Section 12 gives conclusions.

2 The p-Datalog Source Description Language

It is well known that the most popular real-life query languages, like SPJ queries [AHV95] and
Web-based query forms are equivalent to conjunctive queries. A Datalog program is a natural
encoding of many sets of conjunctive queries: the set is described by the expansions of the Datalog
program. First, we describe informally a Datalog-based source description language and illustrate
it with examples. A formal de�nition follows in the next subsection.

In the simple case, when we deal with a weak information source, the source can be described
using a set of parameterized queries. Parameters, called tokens in this paper, specify that some
constant is expected in some �xed position in the query [PGGMU95, PGH96, LRU96, LRO96].
Without loss of generality, we assume the existence of a designated predicate ans that is the head
of all the parametrized queries of the description.

Example 2.1 Consider a bibliographic information source, that provides information about books.
This source exports a predicate books(isbn; author; title; publisher; year; pages). The source also
exports \indexes," author index(author name; isbn), publisher index(publisher; isbn) and

1The algorithm presented in [PGH96, PGH] only works for RQDL descriptions without the important union

metapredicate.
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title index(title word; isbn). Conceptually, the tuple (X; Y ) is in author index if the string X

resembles the actual name of an author and Y is the ISBN of a book by that author. Similarly,
(X; Y ) is in title index if X is a word of the actual title and Y is the ISBN of a book with wordX in
the title. The following parameterized queries describe the wrapper that answers queries specifying
an author, a title or a publisher.

ans(Id; Aut; T itl; Pub; Y r; Pg) books(Id; Aut; T itl; Pub; Y r; Pg); author index($c; Id)
ans(Id; Aut; T itl; Pub; Y r; Pg) books(Id; Aut; T itl; Pub; Y r; Pg); title index($c; Id)
ans(Id; Aut; T itl; Pub; Y r; Pg) books(Id; Aut; T itl; Pub; Y r; Pg); publisher index($c; Id)

where $c denotes a token. The query

ans(Id; Aut; T itl; Pub; Y r; Pg) books(Id; Aut; T itl; Pub; Y r; Pg); author index(`Smith0; Id)

can be answered by that source, because it is derived by the �rst parameterized query by replacing
$c by the constant `Smith'. 2

In the previous example, the source is described by parameterized conjunctive queries. Note that
if, for instance, the source accepts queries where values for any combination of the three indexes are
speci�ed, we would have to write 23 = 8 parameterized conjunctive queries. The next example uses
IDB predicates (i.e., predicates that are de�ned using source predicates and other IDB predicates)
to describe the abilities of such a source more succinctly. Finally, example 2.3 uses recursive rules
to describe a source that accepts an in�nite set of query patterns.

Example 2.2 Consider the bibliographical source of the previous example. Assume that the source
can answer queries that specify any combination of the three indexes. The p-Datalog program that
describes this source is the following:

ans(Id; Aut; T itl; Pub; Y r; Pg) books(Id; Aut; T itl; Pub; Y r; Pg);
ind1(Id); ind2(Id); ind3(Id) (1)

ind1(Id)  title index($c; Id)
ind1(Id)  � (2)
ind2(Id)  author index($c; Id) (3)
ind2(Id)  �

ind3(Id)  publisher index($c; Id)
ind3(Id)  � (4)

� denotes an empty body, i.e., an �{rule has an empty expansion. Notice that �{rules are unsafe
[Ull89]. In general, p-Datalog rules can be unsafe but that is not a problem under our semantics.
Note also that the number of rules is only polynomial in the number of the available indexes,
whereas the number of possible expansions is exponential.

The query

ans(Id; Aut; T itl; Pub; Y r; Pg) books(Id; Aut; T itl; Pub; Y r; Pg); author index(Smith; Id)

can be answered by that source, because it is derived by expanding rule 1 using rules 2, 3 and 4,
and by replacing $c by the constant Smith. We can easily modify the description to require that
at least one index is used. 2

In general, a p-Datalog program describes all the queries that are expansions of an ans-rule
of the program. In particular, p-Datalog rules that have the ans predicate in the head can be
expanded into a possibly in�nite set of conjunctive queries. Among the expansions generated, some
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will only refer to source predicates2. We call these expansions terminal expansions. A p-Datalog
program can have unsafe terminal expansions. We say that the p-Datalog program describes the
set of conjunctive queries that are its safe terminal expansions. (see formal de�nitions in the next
subsection).

Example 2.3 Consider again the bibliographical source of Example 2.1. Assume that there is an
abstract index abstract index(abstract word; Id) that indexes books based on words contained in
their abstracts. Consider a source that accepts queries on books given one or more words from
their abstracts. The following p-Datalog program can be used to describe this source.

ans(Id; Aut; T itl; Pub; Y r; Pg) books(Id; Aut; T itl; Pub; Y r; Pg); ind(Id)
ind(Id)  abstract index($c; Id)
ind(Id)  ind(Id); abstract index($c; Id)

2

As another example of a recursive source description, we can think of a transportation company,
such as FedEx, that has an information source capable of answering queries about ights. Assume
that the source can answer whether there exists a ight between cities A and B that makes n stops.
We can model such a source with a p-Datalog program.

2.1 Formal description of p-Datalog.

We assume familiarity with Datalog, e.g. [Ull89, AHV95]. Besides the constant and variable sorts,
we use a third disjoint set of symbols, the set of tokens.

De�nition: p-Datalog Program Syntax A parametrized Datalog rule or p-Datalog rule is an
expression of the form

p(u) p1(u1); : : : ; pn(un)

where p; p1; p2; : : : ; pn are relation names, and u; u1; u2; : : : ; un are tuples of constants, variables
and tokens of appropriate arities. A p-Datalog program is a �nite set of p-Datalog rules. 2

Tokens are variables that have to be instantiated to form a query. We now formalize the
semantics of p-Datalog as a source description language.

De�nition: Set of Queries Described/Expressible by a p-Datalog Program Let P be
a p-Datalog program with a particular IDB predicate ans. The set of expansions EP of P is the
smallest set of rules such that:

� each rule of P that has ans as the head predicate is in EP ;

� if r1: p  q1; : : : ; qn is in EP , r2: r  s1; : : : ; sm is in P (assume their variables and tokens
are renamed, so that they don't have variables or tokens in common) and a substitution � is
the most general uni�er of some qi and r then the resolvent

�p  �q1; : : :�qi�1; �s1; : : : ; �sm; �qi+1; : : : ; qn

of r1 with r2 using � is in EP .

The set of terminal expansions TP of P is the subset of all expansions e 2 EP containing only EDB
predicates in the body. The set of queries described by P is the set of all rules �(r), where r 2 TP
and � assigns arbitrary constants to all tokens in r. The set of queries expressible by P is the set
of all queries that are equivalent to some query described by P . 2

2We stated that source predicates are the EDB predicates of our descriptions.
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Uni�cation extends to tokens in a straightforward manner: a token can be uni�ed with another
token, yielding a token. When uni�ed to a variable, it also yields a token. When uni�ed to a
constant, it yields the constant. The above de�nitions can easily be extended to accommodate
more than one \designated" predicates (like ans).

In the context of the above description semantics, we will use the terms p-Datalog program and
description interchangeably.

Informally, we observe that expansions are generated in a grammar-like fashion, by using Dat-
alog rules as productions for their head predicates and treating IDB predicates as \nonterminals"
[ASU87]. Resolution is a generalization of non-terminal expansion; rules of context-free grammars
can simply be thought of as Datalog rules with 0 arguments.

Recti�cation: For deciding expressibility as well as for solving the CBR problem the following
recti�ed form of p-Datalog rules simpli�es the algorithms. We assume the following conditions are
satis�ed:

� No variable appears twice in subgoals of the query body. Instead, multiple occurrences of the
same variable are handled by using distinct variables and making equalities explicit with the
use of the equality predicate equal.

� No variable appears twice in the head of the query. Again, equalities are made explicit with
use of the predicate equal.

� No constants or tokens appear among the ordinary3 subgoals. Instead, every constant c or
token $c is replaced by a unique variable C, and an equality subgoal equal(C; c) or equal(C; $c)
is added to equate the variable to the constant.

� No variables appear only in an equal subgoal of a query.

Example 2.4 Consider the query

ans(X;X;Z) r(X; Y; Z); p(a; Y ) (1)

which contains a join between the second columns of r and p, a selection on the �rst column of p,
and the same variable in two columns of ans. Its recti�ed equivalent is

ans(X1; X; Z) r(X; Y; Z); p(A; Y1); ; equal(X;X1); equal(Y; Y1); equal(A; a) (2)

2

Notice that we treat the equal subgoal not as a built-in predicate, but as a source predicate.
We call rules that obey these conditions recti�ed rules and the process that transforms any rule to
a recti�ed rule recti�cation. We call the inverse procedure (that would give us rule 1 from rule 2)
de-recti�cation.

In sections 3 and 4 we provide algorithms for deciding whether a query is expressible by a
description and for solving the CBR problem.

3We refer to the EDB and IDB relations and their facts as ordinary, to distinguish them from facts of the equal

relation.
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3 Deciding query expressibility with p-Datalog descriptions

In this section we present an algorithm for query expressibility of p-Datalog descriptions. In doing
that, we develop the techniques that will allow us in the next section to give an elegant and improved
solution to the problem of answering queries using an in�nite set of views described by a p-Datalog
program[LRO96].

Our algorithm, the Query Expressibility Decision algorithm, is an extension of the classic
algorithm for deciding query containment in a Datalog program that appears in [RSUV89] (also see
[Ull89]). The algorithm tries to identify one expansion of the p-Datalog program that is equivalent
to our query. We next illustrate the workings of the algorithm with an example.

Example 3.1 Let us revisit the bibliographic source of previous examples. Assume that the source
contains a table books(isbn; author; publisher), a word index on titles, title index(title word; isbn)
and an author index au index(au name; isbn). Also assume that the query capabilities of the
source are described by the following p-Datalog program:

ans(A; P )  books(Id; A; P ); ind1(Id1); ind2(Id2); equal(Id; Id1); equal(Id; Id2)
ind1(Id)  title index(V; Id); equal(V; $c)
ind1(Id)  �

ind2(Id)  au index(V; Id); equal(V; $c)
ind1(Id)  �

Let us consider the query Q

ans(X; Y ) books(Id;X; Y ); title index(`Zen0; Id); au index(`Smith0; Id)

First we produce its recti�ed equivalent

Q0 : ans(X; Y ) books(Id;X; Y ); title index(V1; Id1); au index(V2; Id2); equal(V1; `Zen0);
equal(V2; `Smith0); equal(Id; Id1); equal(Id; Id2)

Apparently the above query is expressible by the description. Intuitively, our algorithm discovers
expressibility by \matching" the Datalog program rules with the subgoals. In particular, the
\matching" is done as follows: �rst we create a DB containing a \frozen fact" for every subgoal of
the query. Frozen facts are derived by turning the variables into unique constants which will be
denoted with a bar.

Moreover, we want to capture all the information carried by equal subgoals into the DB. If, for
example, subgoals equal(X; Y ); equal(X;Z) exist in the query, we will generate \frozen" facts for
all implicit equalities as well, i.e., equal(Y;X); equal(Y;Z) etc. In the interests of space and clarity,
we will write equal(X; Y; Z) to mean that all the previously mentioned facts are in the DB. The
DB for our running example is then

books( �id; �x; �y); title index(�v1; �id1); au index(�v2; �id2); equal(�id; �id1; �id2);
equal(�v1; `Zen0); equal(�v2; `Smith0)

We then evaluate the Datalog program on the DB, deriving more facts for the IDB's. In addition, we
keep track of the set of frozen facts, called supporting set, that we used for deriving each fact. Here
is the set of facts and supporting sets derived by a particular evaluation of the Datalog program.
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< ind1(Id); fg >
< ind2(Id); fg >
(1) ::< ans(�x; �y); fbooks( �id; �x; �y); equal(�id; �id)g >
< ind1( �id1); ftitle index(�v1; �id1); equal(�v1; `Zen

0)g >
< ind2( �id2); fau index(�v2; �id2); equal(�v2; `Smith

0)g >
(2) ::< ans(�x; �y); fbooks( �id; �x; �y); title index(�v1; �id1); equal(�v1; `Zen

0);
au index(�v2; �id2); equal(�v2; `Smith

0); equal( �id; �id1; �id2)g >

Every ans fact that is identical to the frozen head of the client query \corresponds" to a query
that contains the client query. Furthermore, we can derive the containing query from the <fact,
supporting set> pair by translating \frozen" facts back into subgoals. In our running example,
the two containing queries4 correspond to (1) and (2). If the supporting set is identical to the
DB that we started with (modulo redundant equality subgoals) then the \corresponding" query is
equivalent to the client query. Indeed, the \corresponding" query to (2) is

ans(X; Y ) books(Id;X; Y ); title index(Id; `Zen0); au index(Id; `Smith0)

which is equivalent (actually identical) to our given query. 2

Algorithm QED starts by mapping the subgoals of the given query into \frozen" facts, such that
every variable maps to a unique constant, thus creating the canonical database [RSUV89, Ull89] of
the query, and then evaluates the p-Datalog program on it, trying to produce the \frozen" head of
the query. Moreover, it keeps track of the di�erent ways to produce the same fact; that is achieved
by \annotating" each produced fact f with its supporting facts, i.e., the facts of the canonical DB
that were used in that derivation of f .

We next formalize the notion of the canonical database. A formal de�nition of supporting facts
follows.

De�nition: Canonical DB of Query Q Let Q : H  G1; : : : ; Gk; : : : ; E1; : : : ; Em be a recti�ed
conjunctive query, where G1; : : : ; Gk are the ordinary subgoals and E1; : : : ; Em are the equality
subgoals. Select a mapping � that assigns to every variable X of Q a unique \frozen" constant
�(X) = �x and is the identity mapping on constants and predicate names. This way we construct k
\frozen" ordinary facts: �(G1); : : : ; �(Gk). We also constructm \frozen" facts of the EDB predicate
equal: �(E1); : : : ; �(Ek). These m facts constitute an instance of the equal relation. We create
additional equal facts so that we get the smallest set of equal facts that includes this instance and
is an equivalence relation. All the constructed facts constitute the canonical DB of query Q. 2

Notice that this DB contains two \kinds" of constants: \regular" constants and frozen constants.

Example 3.2 Consider the recti�ed query:

ans(Y ) p(X;X1); q(X2; Y; Z); equal(X;X1); equal(X1; X2); equal(X;X3); equal(Z; c)

The canonical DB produced by this query is

p(�x; �x1); q(�x2; �y; �z); equal(�x; �x1); equal(�x1; �x2); equal(�z; c); equal(�x; �x); equal(�x1; �x1);
equal(�x2; �x2); equal(�x; �x2); equal(�x2; �x); equal(�x1; �x); equal(�x2; �x1); equal(c; �z);
equal(�z; �z); equal(c; c)

24Algorithm QED uses pruning to eliminate (1) from the output.
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Shorthand notation: Before we proceed, let us formalize the shorthand notation introduced in
Example 3.1. It is obvious that if the equal facts form an equivalence relation, the constants and
frozen constants appearing in equal facts are divided in equivalence classes.

Let us look at the canonical DB of some query Q. If variables X1; : : : ; Xk appearing in the
canonical DB belong to the same equivalence class, we replace all equal facts involving X1; : : : ; Xk

by equal(X1; : : : ; Xk). For example, equal(X1; X2; X3) \stands for" all equal(Xi; Xj); 1 � i; j � 3.
The canonical DB produced by the query of Example 3.2 above can be written as

p(�x; �x1); q(�x2; �y; �z); equal(�z; c); equal(�x; �x1; �x2)

It is easy to see that

equal(Y1; : : : ; Yl) is a subset of equal(X1; : : : ; Xm) i� 8i � l; Yi 2 fX1; : : : ; Xkg

De�nition: Supporting Set of Fact Let h be an ordinary fact produced by an application of
the p-Datalog rule

r : H  G1; : : : ; Gk; E1; : : : ; Em

of a p-Datalog description P on a database DB that consists of a canonical database CDB and
other facts, and let � be a mapping from the rule into the database such that �(Gi); �(Ej) 2 DB
and h = �(H). The set Sh of supporting facts of h, or supporting set of h, with respect to P , is the
smallest set such that

� if �(Gi) 2 CDB, then �(Gi) 2 Sh,

� if �(Gi) 62 CDB and S0 is the set of supporting facts of �(Gi), then S
0 � Sh,

� if E is the set of all �(Ei) 2 Sh, then the smallest set of equality facts that includes E and is
an equivalence relation is included in Sh.

2

Let us notice that Sh is the set of leaves of a proof tree [Ull89] for h. We can further annotate the
produced fact with the \id" of the rule used in its production, thus generating the whole proof tree
for this fact.

Example 3.3 We can apply the rule

ans(X1; Z1) author(X1; Z1); publisher(Z2;W ); equal(Z1; Z2); equal(W; $w)

on the following canonical DB

author(�a;�b); author(�a; �a); publisher(�d; �f); publisher(�g; �h); equal(�b; �d); equal(�a; �g);
equal( �f; `PrenticeHall0)

to produce fact ans(�a;�b). The supporting set S is

fauthor(�a;�b); publisher(�d; �f); equal(�b; �d); equal( �f; `PrenticeHall0)g

2
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We next de�ne the notions of extended facts and extended canonical DB:

De�nition: Extended Facts and Extended Canonical DB An extended fact is a pair of
the form < h;Sh >, where h is a fact and Sh is the supporting set for h, with respect to some
description P . Let Q be a recti�ed conjunctive query. The extended canonical DB of Q is a database
of extended facts < f; ffg >, such that every f belongs in the canonical DB of Q. 2

Referring to Example 3.3, the extended fact \associated" with our production of ans(�a;�b) is

< ans(�a;�b); fauthor(�a;�b); publisher(�d; �f); equal(�b; �d); equal( �f; `PrenticeHall0)g >

We now introduce the notion of the corresponding query for a fact, that makes our intuition about
the supporting set explicit.

De�nition: Corresponding Query Let < h;Sh > be an extended fact of the DB. Then, for
every fact gi 2 Sh, we can de�ne a mapping � that is the identity on constants and predicate names
and maps every frozen constant to the variable which it came from. It is easy to see that this
mapping is well-formed. Moreover, it maps Sh into a query body and the fact h into a query head.
The query Q:�(h) �(g1); : : : ; �(gk) is called the corresponding query for extended fact < h;Sh >.
2

Intuitively, the corresponding query is an instantiated expansion of the rules of the description
that can prove h and uses only source and equality predicates.

Algorithm QED produces a set of candidate queries: these are the corresponding queries to the
produced extended facts. Candidate queries are described by the p-Datalog description; they are
the only \interesting" expansions, in that they could be equivalent to the given query. As we will
show later, each candidate query has an important property: its projection over the empty list
of attributes contains the projection over the empty list of attributes of the given query Q. Said
otherwise, the body of a candidate query contains the body of the given query. That means that
if there exists a candidate query whose head is identical to the head of Q, then obviously this a
containing query for Q with respect to P . Moreover, Q is expressible by P i� one of the candidate
queries in the set is equivalent to Q.

The algorithm is presented in detail in Figure 3. Notice that the algorithm only generates
maximal supporting sets for each produced fact. Therefore, the produced candidate queries are in
a sense \minimal". We will formalize that notion later in this section.

We proceed to give results on the correctness and running time of the algorithm. Before that,
let us just demonstrate with an example why recti�cation is necessary.

Example 3.5 To illustrate why recti�cation is necessary in identifying the candidate queries, let
us consider the query ans(X) p(X; c) and the p-Datalog description5 ans(A) p(A;B). Eval-
uating the description on the canonical DB fp(�x; c)g (without recti�cation), would produce the
extended fact < ans(�x); fp(�x; c)g >.
The corresponding query is

ans(X) p(X; c)

which is not a correct candidate query, because it is not expressible (by De�nition 2.1) by the given
description. If on the other hand we use recti�cation, we get the canonical DB fp(�x; �y); equal(�y; c)g.
Evaluating the description on it, we get the candidate query

ans(X) p(X; Y )

which is a containing query for our given query (but not equivalent). 2

5This is obviously the description of a source with a very simple query interface
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Algorithm 3.4

Input

Minimized [Ull89] (non-recti�ed) conjunctive query Q of the form H  G1; G2; : : : ; Gk,
where the head subgoal H is of the form ans(X1; : : : ; Xn).
(non-recti�ed) p-Datalog description P .

Output

A set of candidate queries.
Method

Rectify P and Q
Construct the extended canonical DB of Q
Apply the rules of P to the facts in DB to generate all possible extended facts

using bottom up evaluation [Ull89] modi�ed in the following ways:
%items 1 and 2 guarantee the generation of extended facts

%with maximal supporting sets

1. populate IDB relations with extended facts, i.e., if fact h is produced by
the rule, compute Sh and then enter < h;Sh > in the database i�
� < h;Sh > is not already in the database and
� No < h;S0

h
> where Sh � S

0

h
is present in the DB.

2. when a new fact < h;Sh > is added to the DB, delete from the DB all
facts of the form < h;S0

h
>, where S0

h
� Sh.

3. if a rule is unsafe, i.e., some distinguished variables do not appear
in the rule body, simply leave those variables in the produced fact.

In the end:
4. if < h;Sh > is an extended fact, h is an ans fact and h contains

variables, delete the extended fact.
5. de-rectify the resulting extended facts, and the query Q.
6. Create the corresponding queries of the extended facts.

2

The treatment of unsafe rules is the same as in generalized magic sets [Ull89].

Figure 3: Algorithm QED

Now we are ready to state some formal results about algorithm QED. We ultimately formally
state and prove its correctness criterion (i.e., solving the expressibility problem) and state and
prove its computational complexity.

Lemma 3.6 Algorithm QED produces extended facts with maximal supporting sets.

By maximal, we mean that if < h;Sh >;< h;S0h > are two extended facts for the same fact h,
it cannot be that Sh � S

0
h or that S 0h � Sh. Thus lemma 3.6 directly follows from Algorithm 3.4

Theorem 3.7 Soundness and Completeness of Set of Candidate Queries Let Q be a query,
P be a p-Datalog description and fQig be the set of candidate queries that is the result of algorithm
QED on Q and P . Then the following are true:

1. For all i, �;Q � �;Qi.

2. For all i the identity mapping can map the body of Qi to the body of Q.

3. If R is a query described by P and is not in fQig then

12



� �;R does not contain �;Q or

� there exists an i such that the heads of R and Qi are identical and Qi � R. Moreover,
the identity mapping � is a containment mapping from R to Qi.

4. If R is a query described by P and is not in fQig, R � Q only if there exists i such that
Qi � Q.

Proof: (Sketch) (2) is derived directly from the Algorithm and (1) is a direct consequence of the
existence of the mapping. For (3): Algorithm QED is exhaustive, i.e., it generates all \relevant" (in
the sense of (1)) candidate queries, with the exception of those that are pruned due to Lemma 3.6.
So let R : HeadR  BodyR be \relevant" and not in the candidate set. Then, for the extended
fact6 < HeadR; BodyR >, BodyR is not a maximal supporting set. That means that there exists
an extended fact F :< HeadR;S > such that BodyR � S. It is then clear from the de�nition
of a corresponding query that the corresponding query QF to F is contained in R, and that the
mapping from R to QF is the identity.
(4) is a direct consequence of (1) and (3). 2

Theorem 3.7 says that any described query R that is not in the candidate set either is not
equivalent toQ, or there already exists a \smaller" query Qi in the candidate set that still \contains"
Q. In the above sense, the candidate set contains \minimal" queries. Moreover, it says that queries
in the candidate set are not \interesting": even if R � Q, there is always a query Qi in the candidate
set that is also equivalent to Q.

Algorithm QED produces output that allows us to correctly decide query expressibility. To that
e�ect, we prove the following:

Lemma 3.8 Expressibility Criterion Q is expressible by P i� the set of supporting facts for
some extended fact < h;Sh > of the frozen head h of Q is identical7 to the canonical DB for Q.

Proof: (Sketch)
IF: It is obvious from the way the \corresponding" query is de�ned, that if DB � Sh, then the

corresponding query is equivalent to Q.
ONLY IF: The output of algorithm QED contains candidate queries for which Theorem 3.7

holds, i.e., there is no expansion that is a \tighter �t" to the given query than the queries in the
output. If for every Sh, there exists some fact in the canonical DB that is not in that Sh set, then
the corresponding query cannot be equivalent to Q. The reason for that is that Q is minimized,
and minimization is unique up to isomorphism, so all subgoals (i.e., all facts in the canonical DB)
are necessary. 2

The number of extended facts that can be generated per \real" fact is equal to the number of
di�erent maxinal supporting sets for the fact, i.e., it is exponential in the size of the canonical DB.
The number of facts is exponential in the size of the description, so we have the following:

Theorem 3.9 Algorithm QED produces an answer in time exponential to the size of the descrip-
tion and the size of the query.

Finally, let us notice that the problem of query containment in Datalog is reducible to the prob-
lem of query expressibility described here. Query containment in Datalog is EXPTIME-complete
[RSUV89]. Hence we have the following:

Theorem 3.10 Query expressibility is EXPTIME-complete.

Therefore, Algorithm 3.4 meets the theoretical lower bound.

6Where Head;Body are \frozen".
7After de-recti�cation of both.
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3.1 Expressibility and translation

Let us consider the case of a wrapper that receives a query. It is easy to see that we could extend
Algorithm 3.4 so that it annotates each fact not only with its supporting set, but also with its proof
tree. The wrapper then can use the parse tree to perform the actual translation of the user query
in source-speci�c queries and commands, by applying the translating actions that are associated
with each rule of the description [PGGMU95, JBHM+97].

4 Answering Queries Using p-Datalog Descriptions

Mediators are faced with a tougher problem than wrappers: Given the descriptions for one or
more wrappers, the mediator has to answer the user query by sending to the wrappers only queries
expressible by the wrapper descriptions and consequently combine the answers to produce the
answer to the given query. This is the Capabilities-Based Rewriting (CBR) problem [PGH96,
HKWY96]. Notice that the mediator can combine queries using only selections, projections, and
joins. Formally, it considers rewritings of the user query that are conjunctive rules, as described
below.

De�nition: Rewriting of QueryGiven a conjunctive query Q and a set of queries fQ1; : : : ; Qng,
of the form

ansi  body i ; i = 1; : : : ; n

a rewriting of Q using fQig is a rule Q0 of the form

ans  ans1; : : : ; ansn; optional equalities

such that Q0 � Q 2

As we have said in previous sections, a source description de�nes the (possibly in�nite) set of
conjunctive queries answerable by the source. So, the CBR problem is equivalent to the problem
of answering the user query using an in�nite set of views described by a Datalog program [LRU96].

Our algorithm proceeds in two steps. The �rst step �nds a �nite set of expansions. The second
step uses an algorithm for answering queries using views [LMSS95, Qia96] to combine some of
these expansions to answer the query. The �rst step uses the Algorithm 3.4 to generate a �nite
set of expansions (see Figure 3). We prove that if we can answer the query using any combination
of expressible queries, then we can answer it using a combination of expansions in our �nite set.
In [LRU96], a solution is presented for the problem whose complexity is non-deterministic doubly
exponential in the size of the query and the description. The solution is based on \signatures" for
the expansions of the description, that divide the queries that are expressible by the description
into equivalence classes. We will show that our solution is non-deterministic exponential in the size
of the query and the description. Moreover, the proof of our solution is more intuitive and simpler.

Given a user query Q and a wrapper description P in p-Datalog, Algorithm QED produces all8

the candidate queries of Q with respect to P . We can show that there is at most an exponential
number of those:

Lemma 4.1 The output of Algorithm 3.4 contains at worst an exponential number of queries,
whose length is at most linear to the size of the given user query.

Moreover, we can prove that these are the only queries expressible9 by P that are \relevant" in
answering Q.

8modulo variable renaming
9The corresponding queries Qi, that are the output of Algorithm 3.4, actually are described by P .
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Theorem 4.2 (CBR) Assume we have a query Q and a p-Datalog description P without tokens,
and let fQig be the result of applying Algorithm 3.4 on Q and P . There exists a rewriting Q0 of
Q, such that Q0 � Q, using any fQj jQj is expressible by Pg if and only if there exists a rewriting
Q00 , such that Q00 � Q, using only fQig.

Proof: (Sketch) The if direction is trivial. For the only if: It must be that �;(Q) � �;(Qj)
[LMSS95]. Since Qj is expressible by P , Qj could be a candidate query. But fQig contains all the
\interesting" candidate queries of Q with respect to P by Theorem 3.7. This means that for any Qj ,
either Qj 2 fQig or there exists some \corresponding" Qi such that Qi � Qj , and the containment
mapping from Qj to Qi is the identity mapping. Let Q0:Qj1 ; : : : ; Qjk ; : : : ; Qjm be the rewritten
query. If we replace each Qjk with its \corresponding" Qik identi�ed above, then Q00:Qi1 ; : : : ; Qim

is also equivalent to Q. In proof:

� there exists a containment mapping from Q00 to Q. In particular, the identity mapping is a
containment mapping from Q00 to Q

� there exists a containment mapping from Q to Q0 and from Q0 to Q00, and therefore also from
Q to Q00.

Therefore, by the containment mapping theorem [CM77], Q00 and Q are equivalent. That completes
the proof of the theorem. 2

Now that we are sure that all we need to solve the rewriting problem is to compute the candidate
queries (using Algorithm 3.4) we need an algorithm to combine some of the candidate queries into
a rewriting of the given query. The problem of �nding an equivalent rewriting of a query using
a �nite number of views is known to be NP-complete in the size of the query and the view set
[LMSS95] and there are known algorithms for solving it in the absence of tokens [LMSS95, Qia96].
Hence, the total computational complexity of our CBR scheme in the worst case is

� First stage (QED): Exponential in the size of the query and the description.

� Second stage (answering queries using views): NP in the size of its input. The size of the
input is the cardinality of the candidate set times the size of the largest candidate.

Since the QED algorithm has output of exponential size, the second stage dominates and the total
complexity of the algorithm in the worst case is nondeterministic exponential. In particular, the
cardinality of the candidate set is exponential in the arity of the head of the candidate queries and,
more importantly, in the size of the canonical database. (See also subsection 5.2.)

4.1 CBR with binding requirements

The discussion in the previous section ignores the presence of tokens. To handle tokens in the
p-Datalog description, we need to modify both steps of our CBR scheme. Let us discuss what
changes are necessary.

To correctly solve the CBR problem in the presence of binding requirements, we �rst of all need
to modify the QED algorithm. Let us consider an example that will show that algorithm QED, if
used unchanged, is inadequate for the solution of the CBR problem with binding patterns.

Example 4.3 Let the \target" query be

Q : ans(X) p(c; Y ); p(Y;X)
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and let the description be
V : v(X) p($c;X)

The recti�ed query is

Q : ans(X) p(A; Y ); p(Y1; X); equal(A; c); equal(Y; Y1)

The recti�ed p-Datalog description of the source is

V : ans(W ) p(B;W ); equal(B; $c)

Algorithm QED produces the following candidate query (after de-recti�cation):

C : ans(Y ) p(c; Y )

There is no rewriting of Q using only C that is equivalent to Q. But there is a way to answer Q
using our p-Datalog description. To see that, let us rewrite the query and the view to make the
binding patterns explicit:

Q : ansfb(X;A)  p(A; Y ); p(Y;X)

V : vfb(X;A)  p(A;X)

Then we can rewrite Q as follows:

Q : ansfb(X;A) vfb(Y;A); vfb(X; Y )

This rewriting respects the binding requirements of the views, is processed by passing Y bindings,
and is equivalent to the target query. 2

Therefore, we need to modify algorithm QED. The necessary change over QED consists basically
of a pre-processing step: replace tokens in the p-Datalog description with variables, but maintain
as an extra annotation the information that these variables need to be bound. In particular, that
information can be attached to each extended fact as an extra annotation. The modi�ed algorithm
QED-T is presented in detail in Figure 4.

Applying that modi�cation to the previous example, V becomes

V : ans(W ) p(B0;W )

where B0 needs to be bound. Algorithm QED-T on this input produces two candidate queries:

C0 : ans(X) p(Y1; X)

where Y1 needs to be bound, and

C00 : ans(Y ) p(A; Y )

where A needs to be bound. Finally, QED-T uses the binding information to turn the candidate
queries into queries with binding patterns. So, C0; C00 turn into

C 0 : ansfb(X; Y1) p(Y1; X)

and
C 00 : ansfb(Y;A) p(A; Y )
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Algorithm 4.4

Input

Minimized [Ull89] (non-recti�ed) conjunctive query Q of the form H  G1; G2; : : : ; Gk,
where the head subgoal H is of the form ans(X1; : : : ; Xn).
(non-recti�ed) p-Datalog description P .

Output

A set of candidate queries with binding patterns.
Method

Rectify P and Q
Construct the extended canonical DB of Q
Replace tokens in P with variables. Annotate rules with binding information.
Apply the rules of P to the facts in DB to generate all possible extended facts

using bottom up evaluation [Ull89] modi�ed in the following ways:
1. populate IDB relations with extended facts, i.e., if fact h is produced by

the rule, compute Sh and then enter < h;Sh > in the database i�
� < h;Sh > is not already in the database and
� No < h;S0

h
> where Sh � S 0

h
is present in the DB.

2. when a new fact < h;Sh > is added to the DB, delete from the DB all
facts of the form < h;S0

h
>, where S0

h
� Sh.

3. if a rule is unsafe, i.e., some distinguished variables do not appear
in the rule body, simply leave those variables in the produced fact.

4. Update bound variables annotation for the extended fact:

A variable gets an annotation when it binds to an already annotated variable.
In the end:

5. if < h;Sh > is an extended fact, h is an ans fact and h contains
variables, delete the extended fact.

6. de-rectify the resulting extended facts, and the query Q.
7. Create the corresponding queries of the extended facts.

Use the binding information to construct their binding patterns.

2

The treatment of unsafe rules is the same as in generalized magic sets [Ull89].

Figure 4: Algorithm QED-T

C and C0 together with Q are the input to the second stage of our CBR scheme, which per
Section 4 is an algorithm for answering queries using views. The algorithms [LMSS95, Qia96]
proposed in the previous section do not deal properly with tokens. As we have mentioned in
Section 2, tokens describe binding requirements. Therefore, we need to take into account the
binding requirements of candidate queries. [RSU95] studies the problem of answering queries
using views with binding requirements. The authors use binding patterns to describe binding
requirements. They show that the problem is NP-complete and they also describe an algorithm
for it. The algorithm takes as input a �nite set of conjunctive views with binding patterns and a
\target" query with a binding pattern and rewrites the query using the views in a way that respects
the view binding patterns. Example 4.3 is an example of query rewriting using views with binding
patterns.

We use this algorithm, henceforth referred to as the AnsBind algorithm, for the second part of
our CBR scheme, that is, to �nd a rewriting of the user query using the candidate queries. Using
Q;C0; C00 as input to AnsBind, we obtain the correct and e�cient rewriting of Q that is shown in
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Example 4.3.

Theorem 4.5 (CBR-tokens) Assume we have a query Q and a p-Datalog description P with
tokens, and let fQig be the result of applying Algorithm 4.4 on Q and P . There exists a rewriting
Q0 of Q, such that Q0 � Q, using any fQj jQj is expressible by Pg if and only if there exists a
rewriting Q00 , such that Q00 � Q, using only fQig.

Proof: (Sketch) The only issue is that QED-T is \missing" some candidate queries by \ignoring"
tokens. But it is easy to see that any candidate query we are thus \missing" is identical to one of the
queries in the candidate set of QED-T, modulo equality subgoals. Moreover, if there is a rewriting
of a query using some candidate Qi with some binding pattern, then there is also a rewriting of the
query using Qi without a binding pattern. The theorem then follows. 2

The solution for the CBR problem with binding requirements is also non-deterministic expo-
nential.

5 An interesting and more e�cient class of p-Datalog descrip-

tions

We identify an interesting class of p-Datalog descriptions with a simple syntactic characterization,
for which the CBR algorithm of Section 4 is much more e�cient. In particular, for this class of
descriptions the output of the QED algorithm is only exponential in the arity of the candidate
query head, and does not depend on the size of the canonical database. Hence, the second stage
of the CBR scheme is more e�cient, since it receives smaller input. Overall, the CBR scheme for
this class is non-deterministic exponential in the arity of the head predicate.

De�nition: A p-Datalog description P belongs in Ploop if and only if

� P contains only one IDB predicate

� If p is the IDB predicate and

R : p(X1; : : : ; Xn) pred1(A11; : : : ; A1m1
) : : : ; p(Y1; : : : ; Yn); : : : ; predk(Ak1; : : : ; Akmk

)

is any rule where p appears, Yi is actually Xi for all i.

2

Descriptions in Ploop therefore consist of simple loops and exit rules.

Example 5.1 Let us repeat the description of the source of Example 2.3. The source accepts
queries on books given one or more words from their abstracts, assuming there exists an abstract
index abstract index(abstract word; Id) The following p-Datalog program is used to describe this
source.

ans(Id; Aut; T itl; Pub; Y r; Pg) books(Id; Aut; T itl; Pub; Y r; Pg); ind(Id)
ind(Id)  abstract index($c; Id)
ind(Id)  ind(Id); abstract index($c; Id)

The above description clearly belongs in Ploop.10 2

We use lattices to help explain why the output of QED on descriptions in Ploop does not depend
on the size of the canonical database but it solely depends on the arity of the ans facts. The next
subsection is a short reminder about lattices.

10The description also happens to be monadic[AHV95]. Descriptions in Ploop in general don't have to be.
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Supporting sets of length  1

Supporting sets of length  3

Figure 5: Supporting set lattice for fact f for a database of size 5

5.1 Lattice Framework

Let us consider the subset relation � between sets.
We denote a lattice with set of elements (supporting sets in this section) L and the subset

relation � by hL;�i. For elements a and b of a lattice hL;�i, a � b means that a � b and a 6= b.
The ancestors and descendants of an element of a lattice hL;�i, are de�ned as follows:

ancestor(a) = fb j a � bg

descendant(a) = fb j b � ag

Note that every element of the lattice is its own descendant and its own ancestor. The immediate
proper ancestors of a given element a in the lattice belong to a set we shall call next(a). Formally,

next(a) = fb j a � b; 6 9c; a � c; c � bg

It is common to represent a lattice by a lattice diagram, a graph in which the lattice elements
are nodes and there is an edge from a below to b above if and only if b is in next(a). Thus, for any
two lattice elements x and y, the lattice diagram has a path downward from y to x if and only if
x � y.

Figure 5 shows the lattice diagram for the possible supporting sets of a fact f for a database
of size 5. The next subsection discusses the size of the output of the QED algorithm for the Ploop
class of p-Datalog descriptions.

5.2 QED and Ploop

The cardinality of the candidate set produced by QED can in general be exponential in the size of
the canonical database. Figure 5 gives a graphical explanation for the potential exponentiality of
supporting sets of even �xed size for a fact f . Therefore, the number of candidate queries can also
be exponential in the size of the canonical database.

For descriptions in Ploop, let us make the following crucial observation: Let Si and Sj be two
supporting sets for fact f that are produced by algorithm QED with a description P that is in
Ploop. Let S be their least common ancestor, as in Figure 6. Then, S is also produced by QED for
f . Since QED only keeps extended facts with maximal supporting sets, the extended fact < f;S >
will be kept for f , and it will replace the extended facts < f;Si > and < f;Sj >.

Thus, it is easy to see that only one extended fact per fact f will be generated, and therefore
just one candidate query. Therefore, the output of the QED algorithm for Ploop, and thus the
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Supporting sets of length  1

Supporting sets of length  3

Figure 6: Supporting sets and least common ancestor

complexity of the second stage of the CBR scheme, is only exponential in the arity of the head of
the candidate queries, and not in the size of the canonical database.

The importance of the class lies in the fact that we have observed that it is expressive enough
to describe a large number of common sources, such as document retrieval systems and Web-based
sources.

6 Expressive Power of p-Datalog

We have illustrated the use of p-Datalog programs as a source description language. In this section,
we explore some limits of its description capabilities. It should be noted that although we focus
here on the description of conjunctive queries, similar results hold when negation and disjunction
are introduced.

Clearly, there are sets of conjunctive queries that cannot be described by any p-Datalog de-
scription. Moreover:

Lemma 6.1 There exist recursive sets of conjunctive queries that are not expressible by any p-
Datalog description.

Proof: As we have seen in the previous section, the decision procedure for the description
semantics of p-Datalog is exponential. Therefore, any recursive set of conjunctive queries with a
membership function that is super-exponential is not expressible by any p-Datalog description. 2

However, the practical question is whether there are recursive sets of conjunctive queries, that
correspond to \real" sources, and cannot be expressed by p-Datalog programs. We show next that
some common sources (intuitively the \powerful" ones) exhibit this behavior. Before we prove this
result, we demonstrate the expressive abilities and limitations of p-Datalog.

Let us start with an observation: For every p-Datalog description program P , the arity of the
result is exactly the arity of the ans predicate. This restriction is somewhat arti�cial, since we
can de�ne descriptions with more than one \answer" predicate. However, even in that case, a
given program would still bound the arities of answers. Furthermore, a more serious bound is the
number of variables that occur in any one of the rules of the program. We will see that this bound
is imposing severe restrictions on the queries that can be expressed.

But �rst, if we bound the number of variables, we can show the following:
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Theorem 6.2 Let k be some integer. Let p1; : : : ; pm be the EDB predicates of a database. There
exists a p-Datalog program P that describes all conjunctive queries with at most k variables11 on
this database.

Proof: (Sketch) We show the construction for k = 3 and for the case where p1; : : : ; pm are each
predicates of arity two. The program P that can describe all conjunctive queries is the following:

ans3(Xi; Xj ; Xl)  temp(X1; : : : ; Xk); 8i; j; l� k (3)

ans2(Xi; Xj)  ans3(Xi; Xj; Xj); 8i; j � k (4)

ans1(Xi)  ans2(Xi; Xi); 8i � k (5)

ans0()  ans1(X) (6)

temp(X1; : : : ; Xk)  pl(Xi; Xj); temp(X1; : : : ; Xk) 8l � m; 8i; j � k (7)

temp(X1; : : : ; Xk)  pl(Xi; $c); temp(X1; : : : ; Xk) 8l � m; 8i � k (8)

temp(X1; : : : ; Xk)  pl($c;Xj); temp(X1; : : : ; Xk) 8l � m; 8j � k (9)

temp(X1; : : : ; Xk)  pl($c1; $c2); temp(X1; : : : ; Xk) 8l � m (10)

temp(X1; : : : ; Xk)  � (11)

where X1; : : : ; Xk are distinct variables. It is easy to see that a similar construction can provide
the program that describes all conjunctive queries for k > 3 and larger arities. 2

As mentioned above, a �xed p-Datalog program bounds the arity of the results, but this bound
is not the only cause of limitation. Even if we focus on arity-0 results, i.e., queries that answer yes
or no and do not provide data, p-Datalog is limited. The limitation is related to the number of
variables. Let FOk be the set of sentences of �rst order logic [AHV95] with at most k variables.
Note that the same variable can be \reused" as much as wanted using quanti�cation. The following
relates the queries described by a p-Datalog program to formulas expressible in �rst-order logic with
a bounded number of variables. It states that although one such query may use an arbitrary number
of variables, with appropriate \reuse" only a bounded number of variables su�ce.

Lemma 6.3 Let P be a Datalog program and k the maximum number of variables occurring in a
rule of P . Then for each Q expressible by P , Q is equivalent to a query in FOk (using only ^ and
9).

Proof: (Sketch) Let x1; : : : ; xk be the variables appearing in the rules of description P . Also, let

Q0 : ans(u1) p1(u2); p2(u3); : : : ; pn(un)

be in descr(P ) such that Q � Q0. We will show that Q0 is equivalent to a �rst order sentence with
only k variables.

The proof is by induction on the number of resolution steps used to construct a rule. If Q0 is a
rule of P , then the claim is true. Otherwise, when doing a step of the resolution, let qi be the literal
that is uni�ed with some rule head. Then, the variables not used in qi can be reused existentially
quanti�ed for the extra variables in the rule. 2

The limitation on the number of variables of the program prohibits the description of the set
of all conjunctive queries over a schema | a set that is supported by common powerful sources.

11We disregard repeated variables in the head of the conjunctive queries, so we assume that the result predicate
has arity at most k.
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Theorem 6.4 Let the database schema S have a relation of arity at least two. For every p-Datalog
description P over S, there exists a boolean query Q over S, such that Q is not expressible by P .
(So, in particular, there is no p-Datalog description that could describe a source that can answer
all conjunctive queries, even if we �x the arity of the answer.)

In order to prove this, we �rst need to prove the following lemma:

Lemma 6.5 Let a database consist of a binary relation G that contains no self loops. The question
\is there a k-clique in G" can be expressed by a conjunctive query (with k variables) but is not in
FOk�1.

Proof: (Sketch) The question is clearly expressed by the following query:

ans()  G(x1; x2); : : : ; G(x1; xk); : : : ;
G(xi; x1); : : : ; G(xi; xi�1); G(xi; xi+1); : : : ; G(xi; xk)
G(xk; x1); : : : ; G(xk; xk�1)

This query cannot be expressed [AHV95] by an FOk�1 formula, as can be shown by playing an
Ehrenfeucht-Fraiss�e game (see [AHV95]), on the following two structures: G1, a k-clique without
self-loop and G2, a k-1 clique without self-loop. 2

Now we are ready to prove Theorem 6.4.

Proof: Let S (without loss of generality) contain the binary predicate G. Suppose such a
description P exists. Let k be the maximum number of variables in a rule of P . Then each
conjunctive query expressible with P is in FOk by Lemma 6.3. But then the k + 1 clique without
self-loop is not in P . 2

The theorem 6.4 points out a rather serious limitation of p-Datalog descriptions.

7 The RQDL description Language

Given the limitations of p-Datalog for the description of powerful information sources, we are
proposing the use of a more powerful query description language. RQDL (Relational Query De-
scription Language) is a Datalog-based rule language used for the description of query capabilities.
It was �rst proposed in [PGH96] and used for describing query capabilities of information sources.
[PGH96] shows its advantages over Datalog when it is used for descriptions that are not schema
speci�c, i.e., the description does not refer to speci�c relations or arities in the schema of the speci�c
source. In this way the descriptions are more concise and they gracefully handle schema evolution.

In this paper we present a formal speci�cation of extended-RQDL, which provably allows us to
describe large sets of queries. For example, we can prove that the extended-RQDL (from now on,
we will by default refer to the extended-RQDL as RQDL), unlike p-Datalog, can describe the set
of all conjunctive queries. Furthermore, we reduce RQDL descriptions to terminating p-Datalog
programs with function symbols. Consequently, the decision on whether a given conjunctive query
is expressed by an RQDL description is reduced to deciding expressibility of the query by the
resulting p-Datalog program.

Note, the reduction of RQDL to Datalog with function symbols is important because

� It reduces the comparison between the expressive power of p-Datalog and RQDL to a com-
parison between Datalog and Datalog with function symbols.

� It reduces the decision procedure for expressibility to Algorithm 3.4. That allows us to give
a complete solution to the CBR problem for RQDL.
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Subsections 7.1 and 7.2 demonstrate the use of RQDL for the description of source capabilities
and de�ne the syntax and semantics of RQDL. Section 9 describes the reduction of RQDL descrip-
tions to p-Datalog programs with function symbols and Section 10 proceeds to give algorithms for
query expressibility by RQDL description and for the CBR problem for RQDL descriptions.

7.1 Using RQDL for query description

To support schema independent descriptions, RQDL allows the use of predicate tokens12 in place
of the relation names. Furthermore, to allow tables of arbitrary arity and column names, RQDL
provides special variables called vector variables, or simply vectors, that match with sets of relation
attributes that appear in a query. Vectors can \stand for" arbitrarily large sets of attributes. It is
this property that eventually allows the description of large, interesting sets of conjunctive queries
(like the set of all conjunctive queries).

Example 7.1 illustrates RQDL's ability to describe source capabilities without referring to a
speci�c schema. Example 7.2 demonstrates an RQDL program that describes all conjunctive queries
over any schema. Subsection 7.2 describes the formal syntax and semantics of RQDL. Before we
go ahead with the examples, let us introduce some notation.

Named Attributes in Conjunctive Queries: For notational convenience, we slightly modify
the query syntax so that we can refer to the components of tuples by attribute names instead of
column numbers. For example, consider the relation book with schema book(title; isbn). We will
write book subgoals by explicitly mentioning the attribute names; instead of writing

ans() book(X;Z); equal(X;DataMarts)

we will write
ans() book(title : X; isbn : Z); equal(X; DataMarts)

We will be using named attributes in the rest of this paper. Every predicate will then have a
set of named attributes (and not a list of attributes). The connection of this scheme to SQL syntax
is evident.

Example 7.1 Consider a source that accepts queries that refer to exactly one relation and pose
exactly one selection condition over the source schema.

ans() $r(
!

V ); item(
!

V ; $a;X 0); equal(X 0; $c)

The above RQDL description13 describes, among others, the query

ans() books(title : X; isbn : Z); equal(X; DataMarts)

because, intuitively, we can map $r to relation books,
!

V to the set of attribute-variable pairs

ftitle : X; isbn : Zg, X 0 to X , and $c to DataMarts . The metapredicate item(
!

V ; $a;X 0) declares

that the variable X 0 maps to one of the variables in the set of attribute-variable pairs that
!

V is
mapped to, i.e., X 0 maps to one of the variables of the subgoal $r. The token $a maps to the

attribute name of the variable X 0 in
!

V . $a can map to any of the attribute names and hence X 0

can map to either X or Z.

12Predicate tokens belong to the same sort as tokens.
13Notice that both the RQDL descriptions and the queries are recti�ed.

23



RQDL descriptions do not have to be completely schema independent. For example, let us
assume that we can put a selection condition only on the title attribute of the relation. Then we
modify the above RQDL description as follows:

ans() $r(
!

V ); item(
!

V ; name;X
0); equal(X 0; $c) (12)

The replacement of $a by name forces the selection condition to refer to the name attribute only.
2

Next we present the RQDL description PCQ that describes all conjunctive queries over any
schema.
Example 7.2

(i) ans(
!

V 1)  cond(
!

V );
!

V 1 �
!

V

(ii) cond(
!

V )  $p(
!

V1); cond(
!

V2);
!

V =
!

V1 [
!

V2

(iii) cond(
!

V )  item(
!

V ; $a;X); equal(X; $c); cond(
!

V )

(iv) cond(
!

V )  item(
!

V ; $a1; X1); item(
!

V ; $a2; X2); equal(X1; X2); cond(
!

V )

(v) cond(
!

V )  $p(
!

V )

Given any recti�ed conjunctive query (without arithmetic), the description above describes it. Each
rule deals with a particular capability: The �rst rule describes arbitrary projection capabilities over
any \condition". The third rule describes a selection on an attribute of a condition. The fourth
rule describes a join over one variable. The second rule \augments" conditions as necessary with
new literals, to create conditions that are conjunctions of predicates of arbitrary length. The union
metapredicate \carries" of the attribute list of the augmented condition. 2

7.2 Formal Syntax and Semantics of RQDL

The full syntax of RQDL appears in Appendix A, Fig. 8. An RQDL description is a �nite set of
RQDL rules. The description semantics of RQDL are a generalization of the description semantics
of p-Datalog, to account for the existence of vectors and metapredicates. We start by de�ning what
is an expansion of an RQDL description.

De�nition: Let P be an RQDL description with a particular IDB predicate ans. The set of
expansions EP of P is the smallest set of rules such that:

� each rule of P that has ans as the head predicate is in EP ;

� if r1: p  q1; : : : ; qn is in EP , r2: r  s1; : : : ; sm is in P , and a substitution � is the most
general uni�er of some qi and r then the resolvent

�p  �q1; : : :�qi�1; �s1; : : : ; �sm; �qi+1; : : : ; qn

of R1 with R2 using � is in EP .

2

Uni�cation: Uni�cation extends to vectors in the following way:

1. a vector can unify with another vector, yielding a vector;

2. a vector can unify with a set consisting of attribute-variable pairs, yielding that set; for

example p(
!

V ) can unify with p(attr1 : X; attr2 : Y ) yielding

p(attr1 : X; attr2 : Y )
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Metapredicates: There are three metapredicates, and their argument list has to be of a speci�c
type: We de�ne

union(
!

V ;
!

V1;
!

V2) to mean
!

V =
!

V1 [
!

V2 (13)

where
!

V is a vector and
!

V1;
!

V2 can be vectors, or sets of attribute-variable pairs. We also de�ne

item(
!

V ; $a;X) to mean
!

V [$a] � X; (14)

and
item(

!

V ; a;X) to mean
!

V [a] � X (15)

which means that the variable X belongs to the set of attribute-variable pairs that
!

V maps to, with

attribute name $a (or a). a is a constant. $a is a token. X is a variable.
!

V can be a vector or a
set of attribute-variable pairs. Finally, we de�ne

subset(
!

V ;
!

V1) to mean
!

V �
!

V1 (16)

where
!

V and
!

V1 can be vectors or sets of attribute-variable pairs
!

V can only appear in the head of
the rule (in addition to the subset subgoal). The intuition behind subset is that it allows us to do
arbitrary projections.

We call a metapredicate that does not contain any vectors ground.

Safety: Metapredicates must observe some binding pattern constraints. In particular, all vectors
that appear in metapredicates must be safe as de�ned below:

� If a vector appears in an EDB or IDB subgoal then it is safe.

� If a vector
!

V appears in a subgoal union(
!

V ;
!

V1;
!

V2) and
!

V1 and
!

V2 are safe, then
!

V is also
safe.

� If a vector
!

V appears in a subgoal subset(
!

V ;
!

V1) and
!

V1 is safe, then
!

V is also safe.

Following the de�nition of description semantics of Section 2, we now de�ne the description
semantics of RQDL.

De�nition: Set of Queries Described by an RQDL Program The set of terminal expansions
TP of P is the subset of all expansions e 2 EP containing only EDB predicates or predicate tokens
in the body. A valid terminal expansion is a terminal expansion where all ground metapredicates
evaluate to true

The set of instantiated terminal expansions IP of RQDL description P is the set of all (recti�ed)
conjunctive queries �(r), where r belongs to the set of terminal expansions of P and � is a mapping
of the RQDL rule r to a conjunctive query, that:

1. maps every token $c to a constant c. (Note, we consider relation names to be of constant
type.)

2. maps every vector
!

V to a set of attribute-variable pairs f(a1 : X1); : : : ; (an : Xn)g such that

(a) after we replace every predicate subgoal p(
!

V ) with p(a1 : X1; : : : ; an : Xn) no variable
appears in more than one predicate subgoals,
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(b) for every subgoal of the form union(
!

V ;
!

V1;
!

V2), �(
!

V ) = �(
!

V1)[ �(
!

V2),

(c) for every subgoal of the form item(
!

V ; a;X), �(
!

V ) includes a pair (a : X),

(d) for every subgoal of the form item(
!

V ; $a;X), �(
!

V ) includes a pair (a;X), for some a,

(e) for every subgoal of the form subset(
!

V ;
!

V1), � maps
!

V to a subset of �(
!

V1).

3. and drops all metapredicate subgoals.

The set of described queries of an RQDL description P with \designated" predicate ans (when
ans is understood), is the set of safe instantiated terminal expansions of P . 2

Example 7.3 Let us refer to the RQDL description PCQ of Example 7.2. The RQDL rule

R : ans(
!

V 0) $p1(
!

V 1); $p2(
!

V 2); union(
!

V ;
!

V 1;
!

V 2); item(
!

V ; $a1; X1); item(
!

V ; $a2; X2);

equal(X1; X2); subset(
!

V 0;
!

V )

is a terminal expansion of that RQDL description. In particular, this rule is derived from the RQDL
description PCQ by using rules (i), (iv), (ii) and (v) in that order. The conjunctive query

Ri : ans(a1 : X; a2 : Y ) p(a1 : X; b : Z); q(a2 : Y; c : Z
0); equal(Z; Z 0)

is an instantiated terminal expansion of the RQDL description, since it is an instantiation of rule
R. In particular,

� $p1; $p2 map to predicate names p; q respectively.

� $a1; $a2 map to attribute names b; c respectively.

�
!

V 1 maps to (a1 : X; b : Z),
!

V 2 maps to (a2 : Y; c : Z
0) and

!

V maps necessarily to their union,
namely to (a1 : X; a2 : Y; b : Z; c : Z

0).

� X1; X2 map to Z; Z0 respectively.

�
!

V 0 maps to (a1 : X; a2 : Y ).

All metapredicate subgoals are dropped. 2

If Q is a conjunctive query with head predicate ans and P is an RQDL description, we say that
Q is expressible by P , if there exists Q0 described by P , such that Q � Q0.

Referring to Example 7.3, query

Q : ans(a1 : A; a2 : B) p(a1 : A; b : Z); q(a2 : B; c : Z
0); q(a2 : W; c : U); equal(Z; Z 0)

is expressible by the description PCQ, since it is equivalent to Ri.
Note here that RQDL can be easily extended (e.g., allowing not only tokens but also variables

in place of predicate names) to describe the capabilities of information sources that understand and
can process higher order logics, for example sources that understand HiLog [CKW93] or F-Logic
[KL89]. We do not pursue this issue further in this paper.

The next section explains how to use RQDL to describe the capabilities of networks of mediators.
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8 RQDL and mediator capabilities

Let us revisit the mediation architecture of Figure 1. In a dynamic environment such as the
Internet, or the intranet of a big organisation, when integrating information we would like to be
able to leverage existing integration \machinery" [Wie92]. Speci�cally, if a mediator exists that
o�ers an integrated view of some information we want to access, we would like to be able to use it,
instead of accessing each one of the sources it integrates. This is why networks of mediators, as in
Figure 1, are possible and necessary. Using a mediator as a \source" to another mediator means
of course that we must be able to describe mediator capabilities. As explained in the introduction,
we assume that mediators have query processing capabilities that allow them to \handle" every
conjunctive query over the data that they integrate. Given the expressiveness results of Section 6,
p-Datalog cannot describe the capabilities of such a mediator. RQDL is powerful enough for that
task. Let us consider a mediator M that integrates sources S1; : : : ; Sn and let the descriptions of
these sources be D1; : : : ; Dn. Also, assume that each wrapper understands one answer predicate,
and let these be ans1; : : : ; ansn. Then, the RQDL program DM that describes the capabilities of
the mediator is the following:

ans(
!

V 1)  cond(
!

V );
!

V 1 �
!

V

cond(
!

V )  choose(
!

V1); cond(
!

V2);
!

V =
!

V1 [
!

V2

cond(
!

V )  item(
!

V ; $a;X); equal(X; $c); cond(
!

V )

cond(
!

V )  item(
!

V ; $a1; X1); item(
!

V ; $a2; X2); equal(X1; X2); cond(
!

V )

cond(
!

V )  choose(
!

V )

choose(
!

V )  ans1(
!

V )
...

choose(
!

V )  ansn(
!

V )
D1
...
Dn

The similarity of this description to PCQ of Example 7.2 is evident. DM describes all conjunc-
tive queries that the mediator can answer: that is any conjunctive query that combines results
from queries that are accepted by the sources the mediator integrates; thus the concatenation of
D1; : : : ; Dn in DM . Given D1; : : : ; Dn, the description DM can obviously be automatically gener-
ated.

Next we will discuss an e�cient algorithm for deciding whether a query is expressible by an
RQDL description. The algorithm is based on a reduction of both the query and the description
into a simple standard schema which facilitates reasoning about relations and attribute names.

9 Reducing RQDL to p-Datalog with function symbols

Deciding whether a query is expressible by an RQDL description requires \matching" the RQDL
description with the query. This is a challenging problem because vectors have to match with
non-atomic entities, i.e., sets of variables, hence making matching much harder.

In [PGH96], where that problem is also identi�ed, a brute force approach is used, that in e�ect
tries to generate instantiated terminal expansions bottom up, so vectors actually match with sets
during the derivation. Unfortunately, this approach soon leads to complicated problems which
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forced [PGH96] to restrict the applicability of matching algorithms to a subset of RQDL descrip-
tions. A particularly tough problem is the existence of unsafe rules that have vectors in the head.
A brute force approach may then derive extended facts where a vector is \half-speci�ed", i.e., we
know some of the attr-variable pairs that it should contain but not all of them. Note that [PGH96]
is not applicable to RQDL descriptions that may exhibit this behavior.

In this section we present an algorithm that avoids these problems by reducing the problem
of query expressibility by RQDL descriptions to the problem of query expressibility by p-Datalog
with function symbols, i.e., we reduce the RQDL description into a corresponding description in
p-Datalog with function symbols. The reduction is based on the idea that every database DB can
be reduced into an equivalent database DB0 such that the attribute names and relation names of
DB appear in the data (and not the schema) of DB0. We call DB0 a standard schema database.
We then rewrite the query so that it refers to the schema of DB0 (i.e., the standard schema) and
we also rewrite the description into a p-Datalog description with function symbols which refers to
the standard schema as well.

Subsection 9.1 presents the conceptual reduction of a database into a standard schema database.
Subection 9.2 presents the rewriting of queries and subsection 9.3 presents the rewriting of RQDL
descriptions. Each of the subsections starts with one or two examples and continues with a formal
de�nition of the reduction which can be skipped at the �rst reading.

9.1 Reduction of any database to standard schema database

In order to reason with the relation names and attribute names of the queries, we conceptually
reduce the original database into a standard schema database where the relation names and the
attribute names appear as data and hence can be manipulated without the need of higher order
syntax. First we present a reduction example and then we formally de�ne the reduction of a
database into its standard schema counterpart.

Example 9.1 Consider the following database DB with schema b(au ; isbn) and f(subj ; isbn).

b

au isbn

Smith 123

Jones 345

f

subj isbn

Logic 123

Theology 345

The corresponding standard schema databaseDB0 consists of two relations tuple(table name; tuple id)
and attr(tuple id ; attr name ; value) which are common to all standard schema databases. In the
running example DB0 is

tuple

table name tuple id

b b(au,Smith,isbn,123)

b b(au,Jones,isbn,345)

f f(subj,Logic,isbn,123)

f f(subj,Theology,isbn,345)
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attr

tuple id attr name value

b(au,Smith,isbn,123) au Smith

b(au,Smith,isbn,123) isbn 123

b(au,Jones,isbn,345) au Jones

b(au,Jones,isbn,345) isbn 345

f(subj,Logic,isbn,123) subj Logic

f(subj,Logic,isbn,123) isbn 123

f(subj,Theology,isbn,345) subj Theology

f(subj,Theology,isbn,345) isbn 345

Notice above how we invented one tuple id for each tuple of the original database. 2

De�nition: Given a database DB, we say that the standard schema database corresponding to
DB is the smallest database DB0 such that

1. its schema is tuple(table name; tuple id) and attr (tuple id ; attr name; value), and

2. for every tuple t(a1 : v1; : : : ; an : vn) in DB, there is a tuple tuple(t; t(a1; v1; : : : ; an; vn)) in
DB0 and for every attribute ai; i = 1; : : : ; n there is a tuple attr (t(a1; v1; : : : ; an; vn); ai; vi) in
DB0.

2

9.2 Reduction of queries to standard schema queries

The RQDL expressibility algorithm �rst reduces a given conjunctive query Q over some database
DB into a corresponding query Q0 over the standard schema database DB0. The reduction is
correct in the following sense: the result of asking query Q0 on DB0 is equivalent, modulo tuple-id
naming, to the reduction into standard schema of the result of Q on DB.

To illustrate the query reduction, let us consider a couple of examples. We �rst consider a
boolean query Q over the schema of Example 9.1.

ans() b(au : X; isbn : S1); f(subj : A; isbn : S2); equal(S1; S2); equal(A; Theology)

Query Q is reduced into the following query Q0:

tuple(ans; ans())  tuple(b; B); tuple(f; F ); attr(B; isbn; S1); attr(F; isbn; S2); equal(S1; S2);
attr(F; subj; A); equal(A; Theology)

Notice that for every ordinary subgoal we introduce a tuple subgoal and invent a tuple id. For
every attribute we introduce an attr subgoal. The tuple id for the result relation ans is simply
ans() because the result relation has no attributes. When the query head has attributes, a sin-
gle conjunctive query is reduced to a non-recursive Datalog program. For example, consider the
following query that returns the authors and ISBNs of books if their subject is Theology.

ans(au : X; isbn : S1)  b(au : X; isbn : S1); f(subj : A; isbn : S2); equal(S1; S2);
equal(A; Theology)

This query is reduced to the following program Q0 where the �rst rule de�nes the tuple part of the
standard schema answer and the last two rules describe the attr part.
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tuple(ans; ans(au;X ; isbn;S1))  tuple(b; B); tuple(f; F ); attr(B; isbn; S1); attr(F; isbn; S2);
equal(S1; S2); attr(B; au;X); attr(F; subj; A);
equal(A; Theology)

attr(ans(au;X ; isbn; S1); au;X)  tuple(b; B); tuple(f; F ); attr(B; isbn; S1); attr(F; isbn; S2);
equal(S1; S2); attr(B; au;X); attr(F; subj; A);
equal(A; Theology)

attr(ans(au;X ; isbn; S1); isbn; S1)  tuple(b; B); tuple(f; F ); attr(B; isbn; S1); attr(F; isbn; S2);
equal(S1; S2); attr(B; au;X); attr(F; subj; A);
equal(A; Theology)

In general, the reduction is accomplished by the following procedure:

Procedure 9.2 (Reduction) If Q's head is ans(a1 : V1; : : : ; an : Vn), generate a program with n+1
rules such that

1. one rule has head tuple(ans; ans(a1; V1; : : : ; an; Vn)),

2. for every attribute ai; i = 1; : : : ; n there is a rule with head attr (ans(a1; V1; : : : ; an; Vn); ai; Vi),
and

3. all rules have the same body which is constructed by the following steps:

(a) For every subgoal of Q of the form r(a1 : X1; : : : ; am : Xm), invent and associate to it
a unique variable T . The variables such as T bind to tuple id's of the standard schema
database and hence we call them tuple id variables.,

(b) include in the standard schema query body the subgoal tuple(r; T ),

(c) and for every attribute ai; i = 1; : : : ; m include in the standard schema query the subgoal
attr(T; ai; Xi).

(d) Add to that body all equality subgoals of the original query.

2

Xi can be a variable, a token or a constant. It is easy to see that under a few obvious constraints
there exists the inverse reduction.

Next we show how we reduce RQDL descriptions into p-Datalog descriptions over standard
schema databases.

9.3 Reduction of RQDL programs to Datalog programs operating on standard
schema

In the previous sections we showed how schema information, i.e., relation and attribute names,
becomes data in standard schema databases. Based on this idea, we will reduce RQDL descriptions
into p-Datalog descriptions that do not use higher order features such as metapredicates and vectors.
In particular, we \reduce" vectors to tuple identi�ers. Intuitively, if a vector matches with the
arguments of a subgoal, then the tuple identi�er associated with this subgoal is enough for �nding

all the attr-variable pairs that the vector will match to. Otherwise, if a vector
!

V is the result of

a union of two other vectors
!

V1 and
!

V2, then we associate with it a new constructed tuple id, the

function u(T1; T2) where T1 and T2 are the tuple id's that correspond to
!

V1 and
!

V2. As we will
see later, the reduction carefully produces a program which terminates despite the use of the u
function.
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Example 9.3 Let us �rst consider a simple but interesting one-rule description:

ans(
!

V ) $p(
!

V ); item(
!

V ; name;X)

This RQDL rule describes all conjunctive queries that refer to any schema over one relation, with
the constraint that the schema of the relation contains an attribute \name". This description
reduces to the following p-Datalog description:

tuple(ans; ans(T ))  tuple($p; T ); attr(T1; name;X); equal(T; T1)
attr (ans(T ); $a;X)  tuple(ans; ans(T )); attr(T1; $a;X); equal(T; T1)

The vector variable
!

V is reduced to the variable T which matches with a tuple id. The metapredicate

item(
!

V ; name;X), is reduced to the predicate attr(T; name;X).
2

Example 9.4 The description of Example 7.2 describes all boolean conjunctive queries. It reduces
into the following p-Datalog description (with function symbols):

tuple(ans; ans(T )) cond(T ) (i)
cond(T ) tuple($p; T1); cond(T2); valid(T; T1; T2)
cond(T ) attr(T 0; $a;X); equal(X; $c); cond(T ); equal(T 0; T )
cond(T ) attr(T1; $a1; X1); attr(T2; $a2; X2); equal(X1; X2); cond(T ); equal(T; T1); equal(T; T2)
cond(T ) �

and subset flag(i;T ) = 1.
The reduction of each rule is independent from the reduction of other rules. In the second rule,

notice that we reduced
!

V to T , which is \produced" by the predicate valid, given T1 and T2.
valid is a predicate de�ned by the rules of Fig. 9 (see Appendix B), which have to be included in
all reduced p-Datalog descriptions. valid constructs a new tuple id of a restricted form, that has
\associated" with it all the attributes associated with T1 or T2. The role of valid is to \simulate"
the union that it replaces, by not allowing generation of arbitrary u terms14 but only those that
follow the order mentioned below.

The intuition behind valid terms is the following: tuple id variables bind either to tuple ids or to
constructed tuple ids, i.e., u terms \built" from tuple ids. Assuming that there is a total order for
the tuple ids of the standard schema database, valid(T;T1; T2) creates a u term in which all tuple
ids appear in sorted order, and none are repeated. For example, valid(T; u(t2; u(t3; t4)); u(t3; t5))
will bind T to u(t2; u(t3; u(t4; t5))).

Finally, the description has to include the \default" rules15 of Fig. 7, that make sure that all
attributes of tuple with ids T1 and T2 are also attributes of tuples with id T , constructed from
T1; T2. 2Formally, an RQDL description P is reduced to a p-Datalog description P 0 by the following steps:

1. Include in P 0 the rules of Figures 7 and 9.

2. Reduce each rule r of the description to p-Datalog with functions as follows:

(a) Reduce predicates that do not involve vectors as described in subsection 9.2.

14The analogy is that union includes attr-var pairs only once.
15Notice that, because of its simplicity, we did not need to include these rules in Example 9.3.
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(b) For each subgoal of the form r(
!

V ) include in the reduced rule a subgoal tuple(r; T ). T

is the reduction of
!

V .

(c) For each subgoal of the form item(
!

V ; a;X), where a is a token or a constant, include in

the reduced rule the subgoal attr(T; a;X), where T is the reduction of
!

V .

(d) For each subgoal of the form union(
!

V ;
!

V1;
!

V2), replace in the reduced rule all instances

of
!

V with T and include the subgoal valid(T; T1; T2), where T1 and T2 are the reductions

of
!

V1 and
!

V2.

(e) For each subgoal of the form subset(
!

V 1;
!

V ), let T1 be the reduction of
!

V 1 and T be the

reduction of
!

V . Replace T1 by T in the rule where subset appears, set the subset ag
for the variable T and the rule to 1 (see below) and drop the subset subgoal.

(f) If the head is of the form ans(
!

V ) then reduce it to tuple(ans; T ).

(g) If the head is of the form ans(attr-var set) then follow Procedure 9.2 to generate all the
p-Datalog rules that r reduces to.

The intuition behind the subset ag of a rule and a variable is as follows: Assume the existence

of a subgoal subset(
!

V 1;
!

V ) in rule r. As we have said earlier,
!

V 1 must appear in the rule head,

so let the head of r be p(
!

V 1), and
!

V must appear in an ordinary subgoal, say q(
!

V ). The subset
subgoal means that the RQDL rule r describes all conjunctive queries whose head attribute set is
any projection of the attribute set of relation q. In the reduction, we replace T1 (the reduction of
!

V 1) by T (the reduction of
!

V ), saying e�ectively that the attribute set of p must be the same as
the attribute set of q. That's why we set a ag on the rule for that variable, the subset ag, to
make sure we also consider described those conjunctive queries that include projections on q.16

Theorem 9.5 Let P be an RQDL description and P 0 its reduction in p-Datalog with functions.
Let also DB be a canonical standard schema database of a query Q. Then P 0 applied on DB

terminates.

Crux: It su�ces to see that the generation of u terms cannot fall into an in�nite loop, since no
tuple id present in the database can appear twice in any constructed tuple id. 2

In the remaining sections, we will denote p-Datalog with functions with p-Datalogf . The next
section explains the semantics of p-Datalog with functions, and shows how to solve the CBR
problem for RQDL using the algorithms developed for p-Datalog in Sections 3 and 4.

16Another way to handle the subset metapredicate is by de�ning an ordering among constructed tuple ids, i.e.by

de�ning what Ti < Tj means if Ti; Tj are not atomic values. Then subset(
!

V 1;
!

V ) would just be reduced to T1 < T ,

where T1; T are correspondingly the reductions of
!

V 1 and
!

V .

attr(T; $a;X) attr (T1; $a;X); valid(T; T1; T2)
attr(T; $a;X) attr (T2; $a;X); valid(T; T1; T2)

Figure 7: Default rules for generation of attr tuples
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10 QED and CBR for RQDL descriptions

The reduction presented in the previous section allows us to formulate a solution to the expressibility
problem for RQDL descriptions. In particular, we show that we can use QED with small changes
for p-Datalogf ; we prove that the modi�ed QED is sound and complete over the fragment of p-
Datalogf that is generated by the RQDL reduction. We then proceed to discuss the CBR scheme
for RQDL; that also uses the RQDL reduction to reduce the CBR problem for RQDL to the CBR
problem for p-Datalogf .

We �rst illustrate QED for RQDL with an example. Notice that there are now two \designated"
predicates, the predicates tuple and attr.

Example 10.1 Consider the query Q: ans(a : X) books(au : X; titl : Y ) and the description

ans(a : X)  $r(au : X; titl : Y )
ans(b : Y )  $r(au : X; titl : Y )

The reduction of the query is

tuple(ans; ans(a;X))  tuple(p; T0); attr(T1; au;X); attr(T2; titl; Y ); equal(T0; T1); equal(T0; T2)
attr(ans(a;X); a;X)  tuple(p; T ); attr(T; au;X); attr(T; titl; Y ); equal(T0; T1); equal(T0; T2)

The canonical DB is

tuple(books; t0); attr(t1; au; x); attr(t2; titl; y); equal(t0; t1; t2)

The reduction of the description (after recti�cation) is

tuple(ans; ans(X))  tuple($r; T ); attr(T1; au;X); attr(T2; titl; Y ); equal(T;T1); equal(T;T2)
attr(ans(X); a;X)  tuple($r; T ); attr(T1; au;X); attr(T2; titl; Y ); equal(T;T1); equal(T;T2)
tuple(ans; ans(Y ))  tuple($r; T ); attr(T1; au;X); attr(T2; titl; Y ); equal(T;T1); equal(T;T2)
attr(ans(Y ); b; Y )  tuple($r; T ); attr(T1; au;X); attr(T2; titl; Y ); equal(T;T1); equal(T;T2)

Notice that we didn't include the rules of Figures 7 or 9 (valid rules) in the reduced description,
since the original description didn't contain any metapredicates.

If we run the Algorithm 3.4 on the canonical DB, the following extended facts are produced:

(1) < tuple(ans; ans(x)); ftuple(books; t0); attr(t1; au; x); attr(t2; titl; y); equal(t0; t1; t2)g >
(2) < attr(ans(x); a; x); ftuple(books; t0); attr(t1; au; x); attr(t2; titl; y); equal(t0; t1; t2)g >
< tuple(ans; ans(y)); ftuple(books; t0); attr(t1; au; x); attr(t2; titl; y); equal(t0; t1; t2)g >
< attr(ans(y); b; y); ftuple(books; t0); attr(t1; au; x); attr(t2; titl; y); equal(t0; t1; t2)g >

The output of the algorithm includes extended facts with the same tuple id. We \group"
together the extended facts with the same tuple id. We notice that group consisting of the extended
facts (1) and (2) corresponds to the exact two conjunctive queries that are the reduction of Q. We
therefore say that Q is expressible by our description. 2

Before presenting the theorem that states the condition for RQDL expressibility, let us make
the following important observations:

� Lemmata 3.6 and 3.8 and Theorem 3.7 still hold for p-Datalogf .
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� Let Q be a conjunctive query and let fQi; i � ng be the set of standard schema queries it
reduces to. Let Hi be the heads of those queries. As we pointed out in Section 9.2, all Qi

have the same body. Moreover, for Q1, H1 is of the form tuple(ans; T ), where T is a term
that denotes a tuple id, and for Qi; i 6= 1, Hi are of the form attr(T; ci; Xi) for the same T.
We call T the query id. In reference to the previous example, the query id is ans(a;X).

Theorem 10.2 A query Q is expressible by an RQDL description P without the subset metapred-
icate if and only if there exists a maximal set fQ0

i; i � ng 17 of queries described by the reduced
description P 0, where all Q0

i have the same id, such that Q0
i � Qi; 8i � n. Maximal means that

fQ0
ig includes all described queries with that same query id.

Referring again to Example 10.1, the maximal set fQ0
ig is the set of the corresponding queries to

extended facts (1) and (2).
Let us observe that the exact \value" of tuple ids is not important: their use is to identify

components (i.e., attributes) of the same relation. Therefore, we say that a reduced query Q in
p-Datalogf is expressible by a reduced p-Datalogf description P if and only if there exists Q0

equivalent to Q up to tuple-id naming that is described by P .

Proof: (Sketch) The above theorem is easy to see in the case where the RQDL description
contains no vectors. When the RQDL description contains vectors, the intuition is as follows: Let
Q be a conjunctive query without projection18, and let fQi; i � ng be the set of standard schema
queries it reduces to. Also let P be the RQDL description and Pred be the reduced p-Datalogf

description.
For the IF direction: The reduction directly maps the RQDL rules to rules \producing" tuple

subgoals, so it ensures that if Q is expressible by P , then Q1 is expressible by Pred. Because of this
and by use of the \default" rules of Figure 7, all fQig are also expressible.

The ONLY IF direction is straightforward in the absence of a subset subgoal. In the presence
of subset, the crux is that fQig is the maximal set of described queries with the same query id.
The result follows from this together with Theorem 3.7. 2

Because of Theorems 9.5 and 10.2, we can use Algorithm QED (see Section 3 to answer the
expressibility question in RQDL. QED generates all possible extended facts for tuple and attr. We
then check whether (i) all and only the necessary \frozen" tuple and attr facts are produced and
have the same id, and (ii) their corresponding queries are equivalent to the Qi's. For the algorithm
to work properly, a change needs to be made to the de�nition19 of the supporting set of a fact: due
to the reduction introduced in Sections 9.2 and 9.3, there is an implicit \connection" between a fact
tuple(const1; T ) and facts attr(T; const2; X), i.e., between the tuple fact and the attribute facts
that are created by the reduction. We make that connection explicit by modifying the de�nition
of supporting set as follows:

De�nition: Supporting Set - Modi�ed Let h be an ordinary fact produced by an application
of the p-Datalogf rule

r : H  G1; : : : ; Gk; E1; : : : ; Em

of a (reduced) p-Datalogf description P on a database DB that consists of a canonical database
CDB and other facts, and let � be a mapping from the rule into DB such that �(Gi); �(Ej) 2 DB
and h = �(H). The set Sh of supporting facts of h, or supporting set of h, with respect to P , is the
smallest set such that

17If subset exists, then it could be fQ0
i; i � mg with m � n.

18Projection is taken care of with the subset metapredicate, that directly maps to the subset flag.
19We could have the same e�ect by correspondingly changing the RQDL to p-Datalogf reduction procedure.
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� if �(Gi) 2 CDB, then �(Gi) 2 Sh,

� if �(Gi) 62 CDB and S0 is the set of supporting facts of �(Gi), then S
0 � Sh,

� if tuple(c; t) 2 Sh for some20 c and t, then for all c0; x, if attr(t; c0; x) is in the canonical DB,
then attr(t; c0; x) 2 Sh,

� if E is the set of all �(Ei) 2 Sh, then the smallest set of equality facts that includes E and is
an equivalence relation is included in Sh.

2

Modi�cations in the presence of subset subgoals: We have already explained that a subset(
!

V ;
!

V
0

)
subgoal is reduced into a statement setting a subset flag \attached" to the rule for the variable

T that
!

V reduces to. During execution of the QED algorithm, whenever a tuple fact is generated
from this rule, we set a subset flag annotation on its tuple id. That annotation is used after the
execution is complete together with Theorem 10.2 to determine expressibility.

Let us now consider the following example.

Example 10.3 If our RQDL description is

ans(
!

V ) p(
!

V ); item(
!

V ; au;X)

as in Example 9.3 then the query Q : ans(au : X) p(au : X; subj : Y ) is not expressible by our
description. The reduction of the description is

tuple(ans; T )  tuple(p; T ); attr(T1; au;X); equal(T; T1)
attr(T; $a;X)  attr(T1; $a;X); valid(T; T2; T3); equal(T1; T2)
attr(T; $a;X)  attr(T1; $a;X); valid(T; T2; T3); equal(T1; T3)

plus the rules de�ning the valid predicate (see Appendix B)21. and the reduction of the query (i.e.,
the set fQig) is

tuple(ans; ans(au;X))  tuple(p; T ); attr(T; au;X); attr(T; subj; Y )
attr(ans(au;X); au;X)  tuple(p; T ); attr(T; au;X); attr(T; subj; Y )

The canonical DB is then

tuple(p; t0); attr(t1; au; �x); attr(t2; subj; �y); equal(t0; t1; t2)

The extended facts produced by Algorithm 3.4, taking into account the modi�cation of the de�nition
of supporting sets introduced above, are

(1) < tuple(ans; t0); ftuple(p; t0); attr(t1; au; �x); attr(t2; subj; �y); equal(t0; t1; t2)g >
(2) < valid(t0; t0; t0) ftuple(p; t0); attr(t1; au; �x); attr(t2; subj; �y); equal(t0; t1; t2)g >
(3) < attr(t0; au; �x) ftuple(p; t0); attr(t1; au; �x); attr(t2; subj; �y); equal(t0; t1; t2)g >
(4) < attr(t0; subj; �y) ftuple(p; t0); attr(t1; au; �x); attr(t2; subj; �y); equal(t0; t1; t2)g >

Let us look in more detail into how extended fact (1) was produced. Application of the �rst rule
of the p-Datalogf program generates < tuple(ans; t0); ftuple(p; t0); attr(t1; au; �x); equal(t0; t1)g >.

20c and t can be frozen or regular constants.
21The reduction presented in Example 9.3 is simpli�ed

35



Then, a valid rule �res and generates < valid(t0; t0; t0)ftuple(p; t0); attr(t1; au; �x); equal(t0; t1)g >.
The second rule of the program consequently �res and gives

< attr(t0; au; �x)ftuple(p; t0); attr(t1; au; �x); equal(t0; t1)g >

and
< attr(t0; subj; �y)ftuple(p; t0); attr(t2; subj; �y); equal(t0; t2)g >

Then, according to the modi�ed de�nition of supporting set, we need to augment the supporting
set of tuple(ans; t0), to include attr(t2; subj; �y), thus getting extended fact (1). Performing the
augmentation step cannot take more than exponential amount of time. Finally, a valid rule �res
again to generate (2), and then the second rule of the program �res, to generate (3) and (4).

Even though both standard schema queries of the reduction are expressible by our reduced
description, the original query as pointed out is not expressible by the RQDL description. That
is because the only maximal set of described queries produced (consisting of the corresponding
queries for (1),(3) and (4)) is larger than the set of reduced queries.

On the other hand, if the description were

ans(
!

V ) p(
!

V 1); item(
!

V ; au;X); subset(
!

V ;
!

V 1)

then Q is described by the modi�ed description. The reduction of the description would be exactly

the same, but we would set the subset flag for
!

V on the rule. Then, using the modi�cation
described previously and following Theorem 10.2, the algorithm would decide correctly that Q is
described by the modi�ed description. 2

Let us consider a more complicated example.

Example 10.4 The following source can accept queries that perform a join between relation q

with any other relation over any set of attributes. The description of this source is a simpli�cation
of description PCQ, of Example 7.2.

ans(
!

V )  cond(
!

V )

cond(
!

V )  q(
!

V 1); union(
!

V ;
!

V 1;
!

V 2); cond(
!

V 2)

cond(
!

V )  item(
!

V ; $a1; X1); item(
!

V ; $a2; X2); equal(X1; X2); cond(
!

V )

cond(
!

V )  $r(
!

V )

The reduction of the description, after recti�cation, is

tuple(ans; T )  cond(T )
cond(T )  tuple(q; T1); cond(T2); valid(T;T3; T4); equal(T1; T3); equal(T2; T4)
cond(T )  attr(T; $a1; X1); attr(T1; $a2; X2); equal(X1; X2); cond(T2);

equal(T; T1); equal(T; T2)
cond(T )  tuple($r; T )
attr(T; $a;X)  attr(T1; $a;X); valid(T;T2; T3); equal(T1; T2)
attr(T; $a;X)  attr(T1; $a;X); valid(T;T2; T3); equal(T1; T3)

plus the rules in Fig. 9 (see Appendix B).
The user query submitted to the source is the following:

ans(au : X; ln : X; subj : Z) q(au : X; subj : Z); s(ln : X)
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(where ln stands for last name) which produces the extended canonical DB

tuple(q; t0); attr(t1; au; �x); attr(t2; subj; �z); tuple(s; t3); attr(t4; ln; �x1); equal(t0; t1; t2);
equal(t3; t4); equal(�x; �x1)

The standard schema reduction of the user query is

tuple(ans; ans(au;X; ln;X; subj; Z))  tuple(q; Q); tuple(s; S); attr(Q1; au;X);
attr(Q2; subj; Z); attr(S1; ln;X1); equal(S; S1);
equal(X;X1); equal(Q;Q1; Q2)

attr(ans(au;X; ln;X; subj; Z); au;X)  tuple(q; Q); tuple(s; S); attr(Q1; au;X);
attr(Q2; subj; Z); attr(S1; ln;X1); equal(S; S1);
equal(X;X1); equal(Q;Q1; Q2)

attr(ans(au;X; ln;X; subj; Z); ln;X)  tuple(q; Q); tuple(s; S); attr(Q1; au;X);
attr(Q2; subj; Z); attr(S1; ln;X1); equal(S; S1);
equal(X;X1); equal(Q;Q1; Q2)

attr(ans(au;X; ln;X; subj; Z); subj; Z)  tuple(q; Q); tuple(s; S); attr(Q1; au;X);
attr(Q2; subj; Z); attr(S1; ln;X1); equal(S; S1);
equal(X;X1); equal(Q;Q1; Q2)

Running Algorithm 3.4 on the canonical DB produces the following extended facts22:

< valid(u(t0; t4); t0; t4); ftuple(q; t0); attr(t1; au; �x); attr(t2; subj; �z); tuple(s; t3);
attr(t4; ln; �x1); equal(t0; t1; t2); equal(t3; t4)g >

< cond(t4); ftuple(s; t3); attr(t4; ln; �x1); equal(t3; t4)g >
< cond(u(t0; t4)); ftuple(q; t0); attr(t1; au; �x); attr(t2; subj; �z); tuple(s; t3);

attr(t4; ln; �x1); equal(t0; t1; t2); equal(t3; t4)g >
< cond(u(t0; t4)); ftuple(q; t0); attr(t1; au; �x); attr(t2; subj; �z); tuple(s; t3);

attr(t4; ln; �x1); equal(t0; t1; t2); equal(t3; t4); equal(�x; �x1)g >
(1) < tuple(ans; u(t0; t4)); ftuple(q; t0); attr(t1; au; �x); attr(t2; subj; �z); tuple(s; t3);

attr(t4; ln; �x1); equal(t0; t1; t2); equal(t3; t4); equal(�x; �x1)g >
< valid(u(t0; t4); u(t0; t4); u(t0; t4)); ftuple(q; t0); attr(t1; au; �x); attr(t2; subj; �z); tuple(s; t3);

attr(t4; ln; �x1); equal(t0; t1; t2); equal(t3; t4); equal(�x; �x1)g >
(2) < attr(u(t0; t4); au; �x) ftuple(q; t0); attr(t1; au; �x); attr(t2; subj; �z); tuple(s; t3);

attr(t4; ln; �x1); equal(t0; t1; t2); equal(t3; t4); equal(�x; �x1)g >
(3) < attr(u(t0; t4); ln; �x1) ftuple(q; t0); attr(t1; au; �x); attr(t2; subj; �z); tuple(s; t3);

attr(t4; ln; �x1); equal(t0; t1; t2); equal(t3; t4); equal(�x; �x1)g >
(4) < attr(u(t0; t4); subj; �z) ftuple(q; t0); attr(t1; au; �x); attr(t2; subj; �z); tuple(s; t3);

attr(t4; ln; �x1); equal(t0; t1; t2); equal(t3; t4); equal(�x; �x1)g >

The maximal set of described queries with query id u(t0; t4) (corresponding to (1),(2),(3) and(4))
is equal to the set of the standard schema queries that are the reduction of the user query. Therefore,
the user query is expressible by our RQDL description, by Theorem 10.2. 2

10.1 The CBR problem for RQDL

We solve the CBR problem for a given query and a given (reduced) RQDL description in two steps:

22We are only showing some of the extended facts that could be produced, for the sake of brevity.
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� We generate the set of relevant described queries from the output of the Algorithm 3.4, by
\glueing" together the tuple and attr subgoals that have the same supporting set. In other
words, we create the corresponding standard schema queries for the extended facts and then
do the inverse reduction on the sets of those that have the same id and body (thus ending up
with some queries on the original schema). These are the relevant queries of the description
with respect to the given query.

� When we have the given query (over some schema) and a number of relevant queries (or
views) over the same schema, we can apply an answering queries using views algorithm
[Qia96, LMSS95] or [RSU95] on that problem.

Let us notice that, in the presence of subset subgoals in the RQDL description, the QED
algorithm produces candidate queries that can have set the subset flag annotation. In principle,
these annotations can be ignored for the solution of the CBR problem, since we assume that the
mediator has the capability to do projections locally (i.e., projections can always be handled by
the �nal rewriting at the mediator).

The complexity of this procedure is non-deterministic exponential in the input size.
It is obvious that the discussion of subsection 4.1 about binding requirements holds for RQDL

as well.

Example 10.5 We consider a source that expects a selection condition on attribute au or on
attribute subj, but not both. The RQDL description for this source is

ans(
!

V )  $r(
!

V ); item(
!

V ; au; $c)

ans(
!

V )  $r(
!

V ); item(
!

V ; subj; $c)

The description reduces to

tuple(ans; T )  tuple($r; T ); attr(T1; au;X); equal(T; T1)
tuple(ans; T )  tuple($r; T ); attr(T1; subj;X); equal(T;T1)
attr(T; $a;X)  attr(T1; $a;X); valid(T; T2; T3); equal(T1; T2)
attr(T; $a;X)  attr(T1; $a;X); valid(T; T2; T3); equal(T1; T3)

plus the rules in Fig. 9 (see Appendix B).
Let the user query be

Q : ans(subj : X; au : Y; isbn : Z) books(subj : X; au : Y; isbn : Z); equal(X; Logic); equal(Y; Smith)

It is obvious that Q can be answered with a combination of queries expressible by the description:
First send the selection condition on au, then on subj and �nally intersect the two results. Q

reduces to

tuple(ans; ans(subj;X; au; Y; isbn; Z))  tuple(books; T ); attr(T; au;X); attr(T; subj; Y );
attr(T; isbn; Z); equal(X;Logic); equal(Y; Smith)

attr(ans(subj;X; au; Y; isbn;Z); subj;X)  tuple(books; T ); attr(T; au;X); attr(T; subj; Y );
attr(T; isbn; Z); equal(X;Logic); equal(Y; Smith)

attr(ans(subj;X; au; Y; isbn;Z); au; Y )  tuple(books; T ); attr(T; au;X); attr(T; subj; Y );
attr(T; isbn; Z); equal(X;Logic); equal(Y; Smith)

attr(ans(subj;X; au; Y; isbn;Z); isbn; Z)  tuple(books; T ); attr(T; au;X); attr(T; subj; Y );
attr(T; isbn; Z); equal(X;Logic); equal(Y; Smith)
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The canonical DB is then23

tuple(books; t); attr(t; subj; �x); attr(t; au; �y); attr(t; isbn; �z); equal(�x; Logic); equal(�y; Smith)

The following extended facts are generated24 by algorithm QED-T:

< tuple(ans; t); ftuple(books; t); attr(t; subj; �x); attr(t; au; �y); attr(t; isbn; �z; equal(�x; Logic)g >
< tuple(ans; t); ftuple(books; t); attr(t; subj; �x); attr(t; au; �y); attr(t; isbn; �z; equal(Y; Smith)g >
< attr(t; subj; �x) ftuple(books; t); attr(t; subj; �x); attr(t; au; �y); attr(t; isbn; �z; equal(�x; Logic)g >
< attr(t; au; �y) ftuple(books; t); attr(t; subj; �x); attr(t; au; �y); attr(t; isbn; �z; equal(�x; Logic)g >
< attr(t; isbn; �z) ftuple(books; t); attr(t; subj; �x); attr(t; au; �y); attr(t; isbn; �z; equal(�x; Logic)g >
< attr(t; subj; �x) ftuple(books; t); attr(t; subj; �x); attr(t; au; �y); attr(t; isbn; �z; equal(�y; Smith)g >
< attr(t; au; �y) ftuple(books; t); attr(t; subj; �x); attr(t; au; �y); attr(t; isbn; �z; equal(�y; Smith)g >
< attr(t; isbn; �z) ftuple(books; t); attr(t; subj; �x); attr(t; au; �y); attr(t; isbn; �z; equal(�y; Smith)g >

The result (after the inverse reduction) is two candidate conjunctive queries, with binding infor-
mation:

C1 : ans
bff (subj : X; au : Y; isbn : Z) books(subj : X; au : Y; isbn : Z)

and
C2 : ans

fbf (subj : X; au : Y; isbn : Z) books(subj : X; au : Y; isbn : Z)

Using Q and C1; C2 as input to algorithm AnsBind, we get the expected answer. 2

11 Related Work

Many projects have dealt with data integration of structured sources (e.g., [LMR90, A+91, HM93,
K+93, T+90].) These projects ignored the problem of the di�erent and limited query capabilities
of information sources, which is important for integration systems that deal with heterogeneous
sources. In what follows, we discuss the approaches taken by a newer generation of projects and
we also discuss some theoretical work in this area.

HERMES [S+] decribes the capabilities of sources by using some literals to explicitly specify the
parameterized calls that are sent to the sources. Unfortunately, this reduces the interface between
the integration system and the sources to a limited set of explicitly listed parameterized calls.

[PGGMU95] suggested a grammar-like approach for describing query capabilities and [LRU96]
used a Datalog with tokens for the same purpose. These works are focused on showing how we can
compute a query Q given a capabilities description P . The algorithm presented in [PGGMU95]
only applies to speci�c classes of descriptions. We already mentioned that we improved upon the
result of [LRU96] for the problem of answering a query using an in�nite number of views. Moreover,
our paper also studies RQDL, which is more powerful than p-Datalog, and also gives expressiveness
results.

RQDL was proposed by [PGH96] to allow capabilities descriptions that are not schema speci�c.
Furthermore, [PGH96, PGH] proposed the mediator architecture which includes a CBR. In this
paper we show that RQDL is more expressive than p-Datalog. Furthermore, we present CBR
algorithms which also include arbitrary use of the \union" and \subset" metapredicates and we
provide proofs and complexity results.

23For brevity we are not doing full recti�cation.
24We are only showing the extended facts of interest.
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The Information Manifold [LRO96] focuses on the capabilities description of sources found on
the Web; hence it does not consider recursion. The expressive power of its capabilities-describing
mechanism is strictly less than p-Datalog.

The DISCO system [TRV95] describes the capabilities of the sources using context-free gram-
mars appropriately augmented with actions. DISCO enumerates plans initially ignoring limited
wrapper capabilities. It then checks the queries that appear in the plans against the wrapper
grammars and rejects the plans containing unsupported queries. DISCO's strategy can be much
more expensive than doing capabilities-based rewriting, which ensures that the queries emitted to
the wrappers are indeed answerable by the source.

The Garlic system [HKWY97] combines capabilities-based rewriting with cost-based optimiza-
tion. The assumption is made that all the variables mentioned in a query are always available by
the wrapper. This compromises the expressiveness of the description language but greatly simpli�es
the proposed algorithm. It is also interesting that capabilities descriptions are given in terms of
plans supported by the wrappers. Additional assumptions are made at this point regarding the
class of plans that can be described.

RQDL's handling of constructed tuple ids is based on a use of Skolem functions that is close to
the ideas in [Mai86, KL89].

The following subsection discusses the use of tokens for the description of binding requirements
and compares that approach to the use of binding patterns [RSU95, Ull89].

11.1 Describing binding requirements in p-Datalog

As we have already noticed, sources can often only answer queries that have speci�c binding require-
ments. As mentioned in section 2, we are using tokens to specify that some constant is expected
in some �xed position in the query, i.e., to implicitly de�ne the binding requirements of described
queries. In contrast, [RSU95] uses explicit enumeration of accepted binding patterns [Ull89] for
each described query to achieve the same goal.

Example 11.1 Let us consider the following p-Datalog rule:

ans(X; Y ) p(X;Z; $c1); q(Y; Z; $c2;W ) (17)

Rule 17 describes a join query that requires two bindings, one for the third argument of relation p
and one for the third argument of relation q. Using the notation of [RSU95], also used in [Ull89],
we could write rule 17 above as follows:

ansffbb(X; Y;A;B) p(X;Z;A); q(Y;Z; B;W ) (18)

This rule describes the same binding requirements as rule 17. 2

Explicitly specifying accepted binding patterns as in rule 18 presents a number of problems. In
particular, it obscures the distinction between variable and constant in the rule. This complicates
answering the query expressibility question. Moreover, and more importantly, explicit speci�cation
of binding patterns does not generalize in the presence of recursion. When query capabilities
are described with a p-Datalog program, it is not even possible to enumerate all posssible binding
patterns: the description encodes a possibly in�nite number of described queries that have di�erent
bound variables.

On the other hand, using tokens allowed us to naturally extend the description of binding
requirements to the case of p-Datalog programs. The di�erence is made clearer by the following
example.
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Example 11.2 Let us revisit Example 2.3, that describes a particular bibliographic source. The
p-Datalog description for that source is the following25

ans(I; A; T; P; Y; Pg) books(I; A; T;P; Y; Pg); ind(I)
ind(I)  abstract index($c; I)
ind(I)  ind(I); abstract index($c; I)

The source describes the following in�nite family of conjunctive queries:

ans(I; A; T; P; Y; Pg) books(I; A; T;P; Y; Pg)
ans(I; A; T; P; Y; Pg) books(I; A; T;P; Y; Pg); abstract index(c1; I)
ans(I; A; T; P; Y; Pg) books(I; A; T;P; Y; Pg); abstract index(c1; I); abstract index(c2; I)
etc.

The queries in this family have an increasing number of bound variables, so their binding
patterns would look like this:

ffffff ,
ffffffb,
ffffffbb,
etc.

The use of tokens allows us to describe the binding requirements succinctly. 2

12 Conclusions and Future Work

We discussed the problems of (i) describing the query capabilities of sources and (ii) using the
descriptions for source wrapping and mediation. We �rst considered a Datalog variant, called p-
Datalog, for describing the set of queries accepted by a wrapper. We also provide algorithms for
solving (i) the expressibility and (ii) the CBR problems. The �rst algorithm decides whether a
given query is equivalent to one of the queries described by a p-Datalog program. This algorithm
is used by the wrapper. The second algorithm is run by the mediators and it �nds out if a given
query can be computed using queries which are expressible by a p-Datalog program.

We then study the expressive power of p-Datalog. We show that it is more powerful than using
binding patterns but we also reach the important negative result that p-Datalog can not describe
the query capabilities of certain powerful sources. In particular, we show that there is no p-Datalog
program that can describe all conjunctive queries over a given schema. Indeed, there is no program
that describes all boolean conjunctive queries over the schema. A direct consequence of our result
is that p-Datalog can not model a fully-edged relational DBMS.

We subsequently describe and extend RQDL, which is a provably more expressive language
than p-Datalog. The extra power is mainly a result of vector variables which can match to sets of
attributes of arbitrary length. One consequence of the extra power is the ability to automatically
derive a description of the capabilities of the mediator, given the descriptions of the wrapper capa-
bilities. However, the existence of vector variables makes very hard a brute force implementation of
mediator and wrapper algorithms using RQDL. We get around this problem by providing a reduc-
tion of RQDL descriptions into p-Datalog augmented with function symbols. Using this reduction
we discuss complete algorithms for solving the expressibility and the CBR problem.

We have focused exclusively on conjunctive queries. We plan to extend our work to non-
conjunctive queries, i.e., queries involving aggregates and negation.

25Variable names are changed
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A RQDL Grammar

The following table contains the complete syntax of RQDL.

B De�nition of the valid predicate

The next �gure contains the rules that de�ne the predicate valid (see subsection 9.3).
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(0) hdescriptioni ::= (hans query templateijhrule templatei)�
(1) hans query templatei ::= ans()  hsubgoal listi
(2) hrule templatei ::= hpredicate namei ( hargumentsi )  hsubgoal listi
(3) hsubgoal listi ::= hsubgoali (; hsubgoali)�
(4) hsubgoal listi ::= h�i%subgoal list may be emtpy
(5) hsubgoali ::= hpredicatei ( hargumentsi ) %predicate
(6) hsubgoali ::= hmetapredicate namei ( hargumentsi ) %metapredicate
(7) hsubgoali ::= htokeni ( hargumentsi ) %token as predicate

(8) hargumentsi ::= hargumenti(;hargumenti)�
(9) hargumenti ::= hvectorijhvariableijhidenti�erijhtokeni
(10) hpredicate namei ::= hidenti�erijhtokeni
(11) hmetapredicate namei ::= unionjset itemjsubset
(12) hnonterminal namei ::= hidenti�eri
(13) htokeni ::= $hidenti�eri

Figure 8: RQDL syntax

valid(u(T1; T2); T1; T2) tuple(N1; T1); tuple(N2; T2); T1 < T2
valid(u(T2; T1); T1; T2) tuple(N1; T1); tuple(N2; T2); T2 < T1
valid(T; T; T ) tuple(N1; T )
valid(u(T1; T ); u(T1; T 01); T2) tuple(N1; T1); tuple(N2; T2); T1 < T2; valid(T;T 01; T2)
valid(u(T2; u(T1; T

0
1)); u(T1; T

0
1); T2) tuple(N1; T1); tuple(N2; T2); T2 < T1

valid(u(T; T1); u(T; T1); T ) tuple(N; T ); valid(u(T;T1); T; T1)
valid(u(T1; u(T2; T

0
2)); T1; u(T2; T

0
2)) tuple(N1; T1); tuple(N2; T2); T1 < T2

valid(u(T2; T ); T1; u(T2; T 02)) tuple(N1; T1); tuple(N2; T2); T2 < T1; valid(T;T1; T 02)
valid(u(T; T1); T; u(T;T1)) tuple(N; T ); valid(u(T;T1); T; T1)
valid(u(T1; u(T2; T )); u(T1; T

0
1); u(T2; T

0
2)) tuple(N1; T1); tuple(N2; T2); T1 < T2; valid(T;T

0
1; T

0
2)

valid(u(T2; u(T1; T )); u(T1; T 01); u(T2; T
0
2)) tuple(N1; T1); tuple(N2; T2); T2 < T1; valid(T;T 01; T

0
2)

valid(u(T; T 0); u(T; T1); u(T; T2)) tuple(N; T ); valid(T 0; T1; T2)

Figure 9: Default rules for the generation of valid u� terms.
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