
XML Query Languages:Experiences and ExemplarsEditorsMary Fernandez AT&T Labs { Research mff@research.att.comJ�erôme Sim�eon Bell Labs, Lucent Technologies simeon@research.bell-labs.comPhilip Wadler Bell Labs, Lucent Technologies wadler@research.bell-labs.comContributorsSophie Cluet INRIA Roquencourt Sophie.Cluet@inria.frAlin Deutsch Univ. of Pennsylvania adeutsch@gradient.cis.upenn.eduDaniela Florescu INRIA Rocquencourt, France Daniela.Florescu@inria.frAlon Levy University of Washington, Seattle alon@cs.washington.eduDavid Maier Oregon Graduate Institute maier@cse.ogi.eduJason McHugh Stanford University mchughj@db.stanford.eduJonathan Robie Software AG jonathan.robie@sagus.comDan Suciu AT&T Labs { Research suciu@research.att.comJennifer Widom Stanford University widom@db.stanford.eduAbstractThis paper identi�es essential features of an XML query languageby examining four existing query languages: XML-QL, YATL, Lorel,and XQL. The �rst three languages come from the database communityand possess striking similarities. The fourth comes from the documentcommunity and lacks some key functionality of the other three.This document:http://www-db.research.bell-labs.com/user/simeon/xquery.htmlhttp://www-db.research.bell-labs.com/user/simeon/xquery.pshttp://www-db.research.bell-labs.com/user/simeon/xquery.txt1 IntroductionOver the years, the database community has learned a thing or two abouthow to process queries. There has been an evolution from relational data-bases through object-oriented databases to semistructured databases, but1

many of the principles have remained the same. From the semistructuredcommunity, three languages have emerged aimed at querying XML data:XML-QL [15], YATL [11, 12], and Lorel [2, 18]. These languages were devel-oped independently by research groups thousands of miles apart, yet theyshow striking similarities of approach.Over the years, the document community has also learned a thing ortwo about searching and formatting documents. The document processingcommunity has developed models of structured text and search techniquessuch as region algebras [10]. From this community, one language that hasemerged for processing XML data is XQL [26, 25].The two communities address di�erent application areas. The databasecommunity is concerned with large repositories of data, integrating datafrom heterogenous sources, exporting new views of legacy data, and trans-forming data into common data-exchange formats. The document com-munity is concerned with full-text search, queries of structured documents,integrating full-text and structured queries, and deriving multiple presenta-tions from a single underlying document.The majority of authors of this document come from the database camp.This community has a great deal of experience studying what expressivepower is necessary to support the application areas listed above, and whatquery language features provide this expressive power. We wish to arguethat what is known regarding the expressive power of query languages shouldplay a central role in the design of a query language for XML.Of course, what the document community has learned is also relevant,but we don't feel competent to advance those lessons here, and hope theywill do so elsewhere. The database community also has learned about querycomplexity, algebras, and techniques for implementing these query languagese�ciently, but these subjects are also outside the scope of this paper.The database query languages listed above have several features that webelieve are especially important:� Queries that consist of three parts: a pattern clause, a �lter clause, anda constructor clause. The information passed between these clausescan be modeled as a relation, which has a
at and unordered structure.� Constructs to impose nesting and order upon the relations. Thesemay retain the structure of the original document, or may allow com-plete restructuring of the document | this is the key advantage ofthis approach. These constructs include nested queries ; grouping re-lated data items together via Skolem functions or explicit groupingoperators ; indexing and sorting.2

� Use of a join operator to combine data from di�erent portions of doc-uments, corresponding to the join operation on relations.� Use of tag variables or path expressions to support querying withoutprecise knowledge of the document structure and access to arbitrarilynested data.They also provide other useful features:� Constructs to process alternatives in di�erent ways and constructs tocheck for the absence of information, e.g., missing �elds.� Use of arbitrary external functions, such as aggregation functions,string comparison functions, etc.� Use of navigation operators, which simplify handling data with refer-ences.We illustrate these points by a collection of exemplars: we consider typi-cal queries for a database of books, and show how to express these in XML-QL, YATL, Lorel, and XQL. The �rst three languages almost always use thesame structure for the same query, while XQL often uses a di�erent struc-ture. In some cases, the query may not be expressible in XQL. (Of course,since XQL grew out of the needs of the document community, there are alsomany queries that can be expressed in XQL but not in XML-QL, YATL, orLorel.)We wrote this paper for the XML Query Working Group to highlightthe database research community's experience designing and implementingXML query languages. We are not suggesting that XML-QL, YATL, or Lorelbe adopted as the working group's initial language. But in light of theselanguages' striking similarities, one cannot ignore the lessons learned by thedatabase research community. Therefore, we do suggest that the commonideas and features of these languages be considered a starting point for theworking group. and serve as a yardstick against which the working group'srecommended language is compared.In this paper, we do not address several important but orthogonal issues,such as the environment in which an XML query language will be executed.Instead, we refer the reader to a comprehensive list of desirable languagefeatures and related issues [21]. We also refer the reader to a substantialbody of research, including the motivation for and typical applications ofsemistructured data, [1, 4, 27], data models for semistructured data [24],3

query-language design [2, 6, 16], query processing and optimization [22],schema languages [3, 5, 19], and schema extraction [23].The next section presents what we consider to be ten essential queries.Section 3 presents other useful, but less crucial, features.2 Ten Essential QueriesHere, we present example queries that illustrate what we believe are tenessential features of an XML query language. We illustrate our examplesusing XML-QL, YATL, Lorel, and XQL. Whenever possible, the languageproviding the most natural or simple formulation will be used �rst.We use the following running example. The XML input is in the doc-ument www.bn.com/bib.xml, containing bibliography entries described bythe following DTD.<!ELEMENT bib (book*)><!ELEMENT book (title, (author+ | editor+),publisher, price)><!ATTLIST book year CDATA #REQUIRED ><!ELEMENT author (last, first)><!ELEMENT editor (last, first, affiliation)><!ELEMENT title (#PCDATA)><!ELEMENT last (#PCDATA)><!ELEMENT first (#PCDATA)><!ELEMENT affiliation (#PCDATA)><!ELEMENT publisher (#PCDATA)><!ELEMENT price (#PCDATA)>This DTD speci�es that a book element contains one title, one or moreauthor elements or one or more editor elements, one publisher element andone price element; it also has a year attribute. An author element containsa last and a �rst name. An editor element also contains an a�liation. Atitle, last name, �rst name, publisher, or price is text.2.1 Selection and extractionOur �rst example selects all titles of books published by Addison-Wesleyafter 1991. To give a query evaluator maximum
exibility, no order is spec-i�ed for the output. In Section 2.8, we will show how to sort the titles bydocument or alphabetical order. 4

In XML-QL, YATL, and Lorel, a query consists of three parts: a patternclause, which matches nested elements in the input document and bindsvariables; a �lter clause, which tests the bound variables; and a constructorclause, which speci�es the result in terms of the bound variables. Nestedqueries may appear in a constructor. XQL supports patterns and �lters,but not constructors. XQL can apply �lters to elements and attributes, aswell as processing instructions, comments, and entity references. We notethat XML-QL, YATL, and Lorel all provide syntactic shorthands for commonidioms in queries, but for clarity, we write queries in their most general form.We assume that queries specify a �xed data source (via one or moreURLs) and return a well-formed XML tree. Of course, queries might act onother representations of XML trees, such as the DOM. For instance, XML-QL has a graph interface, and some implementations of XQL interface withthe DOM.XML-QLCONSTRUCT <bib> {WHERE<bib><book year=$y><title>$t</title><publisher><name>Addison-Wesley</name></publisher></book></bib> IN "www.bn.com/bib.xml",$y > 1991CONSTRUCT <book year=$y><title>$t</title></book>} </bib>In an XML-QL query, patterns and �lters appear in the WHERE clause,and the constructor appears in the CONSTRUCT clause. The result of theinner WHERE clause is a relation, that maps variables to tuples of values thatsatisfy the clause. In this case, the result contains all pairs of year and titlevalues bound to ($y, $t) that satisfy the clause. The result of the completequery is one <bib> element, constructed by the outer CONSTRUCT clause. Itcontains one <book> element for each book that satis�es the WHERE clauseof the inner query, i.e., one for each pair ($y, $t).YATLmake 5

bib [*book [@year [$y],title [$t]]]match "www.bn.com/bib.xml" withbib [*book [@year [$y],title [$t]],publisher [name [$n]]]where$n = "Addison-Wesley" and $y > 1991In a YATL query, the constructor appears in the make clause, patternsappear in the match clause, and �lters appear in the where clause. An* precedes any repeated element. Thus, the pattern expresses that a bibelement may have many book elements, but that each book element has oneyear attribute, one publisher element, and one title element. Here, nonested query is necessary, because the constructor indicates there is one bibelement with multiple book elements, i.e., one for each pair ($y, $t) in theresult. As in XML-QL, the meaning of the match and where clauses is arelation that maps variables to tuples of values that satisfy the clauses.Lorelselect xml(bib:{(select xml(book:{@year:y, title:t})from bib.book b, b.title t, b.year ywhere b.publisher = "Addison-Wesley" and y > 1991)})In a Lorel query, the constructor appears in the select clause, patternsappear in the from clause, and both patterns and �lters appear in the whereclause. In this query, bib is used as the entry point for the data in the XMLdocument. The from clause binds variables to the element ids of elementsdenoted by the given pattern, and the where clause selects those elementsthat satisfy the given �lters. As in XML-QL and YATL, the meaning of thefrom and where clauses is a relation that maps variables to tuples of valuesthat satisfy the clauses. The select clause constructs a new XML bookelement with a year attribute and a title element.XQLdocument("http://www.bn.com")/bib {book[publisher/name="Addison-Wesley" and @year>1991] {@year | title 6

}} In this XQL query, the pattern document("http://www.bn.com")/bibselects all top-level bib elements from the input document and evaluates thenested expression for each such element. The nested pattern book selectsthe book elements that are children of a bib element and that satisfy the�lter clause in brackets. XQL does not have a constructor clause; instead thepattern expressions determine the result of the query. In this case, the resultis one bib element that contains the selected book elements; the inner-mostexpression projects only the book's year attribute and title element.2.2 FlatteningOur next query no longer �lters on publisher or year, and returns a collec-tion of all title-author pairs. The query
attens the nested structure, eachbook contributing one pair for each author. Recall that in XML-QL, YATL,and Lorel, the meaning of the patterns and �lters is a relation, which isthe Cartesian product of all variable bindings that satisfy the patterns and�lters. This results in a
attening e�ect which, as we will see in the nextsections, provides the basis for further restructuring of the document.XML-QLCONSTRUCT <results> {WHERE<bib><book><title>$t</title><author>$a</author></book></bib> IN "www.bn.com/bib.xml"CONSTRUCT<result><title>$t</title><author>$a</author></result>} </results>The WHERE clause produces one tuple for each binding of $t and $athat satis�es the pattern and �lter. Each book has one title and possibly7

multiple authors, therefore there is one tuple for each author of each book.The CONSTRUCT clause produces one result element for each pair of valuesbound to ($a, $t), i.e., the constructor's free variables.YATLmakeresults [*result [title [$t],author [$a]]]match "www.bn.com/bib.xml" withbib [*book [title [$t],*author [$a]]]When all pairs of titles and authors are unique, YATL produces the sameresult elements as the XML-QL query. If the same title and author occursin di�erent books, however, YATL would preserve these duplicates whereasXML-QL would eliminate them. This is because YATL has a bag semantics,which permits duplicates in the intermediate relation, but XML-QL has aset semantics, which eliminates duplicates.Lorelselect xml(results:(select xml(result:{title: t,author: a})from bib.book b, b.title t, b.author a))In this Lorel query, the from clause binds variable b to each book in theinput document. All title, author pairs for each book are bound to variablest and a. We create a new element for each pair with the tag result usingthe xml construct. This resulting element has two subelements, one for thetitle and one for the author.XQLFlattening does not exist in XQL, because the results of patterns and �ltersare not modeled by an intermediate relation. The result of an XQL querymust maintain the original nesting of the nodes in the input document.8

2.3 Preserving structureThe previous example returns one result for each possible title-author pair.The next one preserves the grouping of results by title.XQLIn XQL, grouping is preserved automatically, because the result of a queryis always a projection of the original document.document("http://www.bn.com")/bib->results {book->result {title | author}} For each book element, the above query creates a result element usingthe renaming operator ->. The children of this result element are all titleand author elements contained in the book element, with document orderpreserved.YATLIn YATL, this query is written as:makeresults [*result [title [$t],$as]]match "www.bn.com/bib.xml" withbib [*book [title [$t],*($as) author]]This query uses two variables, $t and as, to extract the title and theauthors. Because of the *($as) author construct, $as is bound to the listof all author elements in a book rather than successively to each author.LorelThis query can be expressed in Lorel as:select xml(results:select xml(result:{b.title, b.author})from bib.book b) 9

The pattern expression b.author denotes the set of values for author;similarly, b.title denotes the set of titles, if there are more than one. Eachbinding for b produces a new book element with, as its sub-elements, theset of titles and authors for that book.XML-QLIn XML-QL, one way to preserve the original document structure is with anested query:CONSTRUCT <results> {WHERE<bib><book><title>$t</title></book> CONTENT_AS $b</bib> IN "www.bn.com/bib.xml"CONSTRUCT<result><title>$t</title>{ WHERE <author>$a</author> IN $bCONSTRUCT <author>$a</>}</result>} </results>Here, CONTENT_AS binds the variable b to the book element's content, acollection of elements. The inner WHERE clause selects the author elementsfrom $b. It is also possible to preserve structure in XML-QL without nestedqueries by using an explicit grouping construct (see Section 2.5).2.4 Changing structure by nestingSometimes the result of a query needs to have a structure di�erent thanthe original XML document. The next query illustrates restructuring bygrouping each author with the titles he or she has written. This requiresjoining elements on their author values; the example query treats two au-thors as equal when they have the same last and �rst names. We will seemore examples of joins in Section 2.6.10

XML-QLCONSTRUCT <results> {WHERE<bib><book><author><last>$l</last><first>$f</first></author></book></bib> IN "www.bn.com/bib.xml"CONSTRUCT<result><author><last>$l</last><first>$f</first></author>{ WHERE<bib><book><title>$t</title> // join on $l and $f<author><last>$l</last><first>$f</first></author></book></bib> IN "www.bn.com/bib.xml"CONSTRUCT <title>$t</title>}</result>} </results>In this XML-QL query, the occurences of $l and $f in the outer WHEREclause causes them to be bound, while their occurrence in the inner WHEREclause tests for equality. One result element is constructed for each lastname, �rst name pair and contains one author element and one or moretitle elements, which are constructed by the nested query.YATLmakeresults [*result [author [last [$l], first [$f]],(make*title [$t]match "www.bn.com/bib.xml" withbib [*book [*author [last [$l], first [$f]],11

title [$t]]])]]match "www.bn.com/bib.xml" withbib [*book [*author [last [$l], first [$f]]]]Like XML-QL, YATL uses a nested query to join author elements ontheir �rst and last names.Lorelselect xml(results:(select xml(result:{author: a,(select xml(title: t)from bib.book b, b.title twhere b.author.first = a.first andb.author.last = a.last)})from bib.book.author a))Like XML-QL and YATL Lorel uses a nested query to join author ele-ments on their �rst and last names.XQLEven though XQL can express joins (see Section 2.6), it cannot express thisquery, which requires
attening multiple instances of an author's name toproduce a single element for each author.This query demonstrates the importance of the cross-product semanticschosen by the other three languages. To restructure data completely, onemust �rst
atten the data and then reconstruct it in a new way.2.5 Changing structure by explicit groupingIn addition to grouping by nesting, XML-QL, YATL, and Lorel provide otherconstructs to support grouping, which may sometimes be easier to use. YATLhas a grouping operator, while XML-QL and Lorel both provide Skolemfunctions for this purpose. We show how to rewrite the query of the previoussection using these operators. As before, the query groups each author withthe titles he or she has written. 12

YATLmakeresults [*($l,$f) result [author [last [$l],first [$f]],*title [$t]]]match "www.bn.com/bib.xml" withbib [*book [title [$t],*author [last [$l],first [$f]]]]As before, the match clause produces one tuple for each binding of $t,$l, and $f that satis�es the pattern. Previously, this led to a
atteninge�ect. Here, the results are nested again by grouping over the last and�rst name, as indicated by writing ($l,$f) between * and result in themake clause. This expresses more compactly the same result as the previousnested query.XML-QLCONSTRUCT <results> {WHERE<bib><book><title>$t</title><author><last>$l</last><first>$f</first></author></book></bib> IN "www.bn.com/bib.xml"CONSTRUCT<result ID=author($l,$f)><title>$t</title><author><last>$l</last><first>$f</first></author></result>} </results>In XML, attributes with type ID uniquely identify the elements whichbear them: only one element in the document can have an ID attribute withthe given value. In XML-QL, the distinguished attribute ID is taken to havetype ID and is used to control grouping. Here the value of the attribute isauthor($l,$f), which denotes some unique function of the last and �rstname, called a Skolem function. This causes all of the separate result13

elements with the same last and �rst names to be grouped together, theresult being a single element with one author and multiple titles.Lorelselect Root()->result->Author(l,f),Author(l,f)->author->a,Author(l,f)->title->tfrom bib.book b, b.author a, a.first f, a.last l, b.title tThe syntax for Skolem functions in Lorel re
ects its underlying datamodel and is somewhat di�erent from that presented in earlier queries. Thisquery uses two Skolem functions to create the desired structure. The RootSkolem function, which accepts no parameters, creates a single element,with multiple result sub-elements. One result sub-element is created bythe Author Skolem function for each distinct pair of bindings of l and f.The elements created by Author have sub-elements for the authors and titlesof their books.XQLXQL does not support an explicit grouping operator.2.6 Combining data sourcesNow, we will see how to combine information collected from di�erent por-tions of documents, which is necessary to merge information from multipledocuments. For the next query, assume that we have a second data source atwww.amazon.com/reviews.xml that contains book reviews and prices, withthe following DTD:<!ELEMENT reviews (entry*)><!ELEMENT entry (title, price, review)><!ELEMENT title (#PCDATA)><!ELEMENT price (#PCDATA)><!ELEMENT review (#PCDATA)>The example query lists all books with their prices from both sources.14

XML-QLCONSTRUCT <books-with-prices> {WHERE<bib><book><title>$t</title><price>$pb</price></book></bib> IN "www.bn.com/bib.xml",<reviews><entry><title>$t</title><price>$pa</price></entry></reviews> IN "www.amazon.com/reviews.xml"CONSTRUCT<book-with-prices><title>$t</title><price-amazon>$pa</price-amazon><price-bn>$pb</price-bn></book-with-prices>} </books-with-prices>Note that the use of the same variable $t for both titles causes a joinbetween the two data sources.Even though this join operation may look expensive, numerous tech-niques have been developed to evaluate joins e�ciently [20].YATLmakebooks-with-prices*book-with-prices [title [$t],price-amazon [$pa],price-bn [$pb]]match "www.bn.com/bib.xml" withbib [*book [title [$t],price [$pb]]],"www.amazon.com/reviews.xml" withreviews [*entry [title [$t],15

price [$pa]]]Again, this query is almost identical to the one in XML-QL.LorelFor the corresponding Lorel query, we will use the entry point reviews toaccess the data in the second XML document.select xml(books-with-prices:(select xml(book-with-prices: { title: t,price-amazon: pa,price-bn: pb }from bib.book b, b.title tb, b.price pb,reviews.entry e, e.title ta, e.price pawhere tb = ta)))Note that Lorel uses an explicit equality predicate on book titles toperform the join.XQLThe XQL query is:document("www.bn.com/bib.xml")/bib -> books-with-prices {book->book-with-prices[$t:=title] {title | price -> price-bn |document("www.amazon.com/reviews.xml")/reviews/entry[title=$t] {price -> price-amazon}}} In XQL, a join is performed by assigning and using variables. First, thevariable assignment $t:=title binds the variable $t to book titles, then thepredicate title=$t selects the corresponding titles from the reviews. Thisexplicit assignment followed by its use in a selection suggests an evaluationstrategy.Indeed, the more symmetric syntax of the other languages preserves thetradition of well-known query languages, such as SQL and OQL [7], whichseparate a query's semantics from the mechanics of its evaluation.16

2.7 IndexingElements in an XML document are ordered. In some cases, it might beimportant to refer to the order in which elements appear, to preserve theorder in the output, or to impose a new order. Our next query returns eachbook with its title and the �rst two authors, and an <et-al/> element ifthere are more than two authors.XQLdocument("www.bn.com/bib.xml")/bib/book {title | author[1 to 2] | author[3]->et-al { }} XQL uses subscripts to indicate indexes. A subscript can contain singlenumbers, ranges, or any combination of these. For instance, the expressionauthor[1 to 2] selects the �rst two authors. The third author element isrenamed to an empty et-al element.Lorelselect xml(bib:(select xml(book:{ title: t,(select b.author[1-2]),(select xml(et-al {})where exists b.author[3]) })from bib.book b, b.title t))Lorel uses two nested queries to construct the result. The �rst selectsauthors with index one or two. The second produces an <et-al/> elementif there exists an author of index three.XML-QLCONSTRUCT <bib> {WHERE<bib><book><title>$t</title><author[$i]>$a</author></book></bib> IN "www.bn.com/bib.xml",17

CONSTRUCT<book ID=title($t)><title>$t</title>{ WHERE $i <= 2 CONSTRUCT <author>$a</author> }{ WHERE $i = 3 CONSTRUCT <et-al/> }</book>} </bib>For this query, XML-QL uses index variables. The pattern binds threevariables: the title $t and author $a are as before, and the index $i is boundto the position of the author element in the list of all its siblings. Indexingstarts from zero, and there is always a title element before the authors, sothe �rst author gets index one, the second gets index two, and so on. Theconstructor contains two nested queries. The �rst selects authors with indexone or two. The second produces an <et-al/> element if and only if thereexists an author of index three.YATLmakebib *book [title [$t],(make *author [$a]match $as with *($$i) author [$a]where $$i <= 2),(make [et-al]match $as with *($$i) authorwhere $$i = 3)]match "www.bn.com/bib.xml" withbib [*book [title [$t],*($as) author]]In YATL, the index variable is denoted by $$. We start by retrievingthe title and the list of authors in variables $t and $as respectively. Themake clause contains two nested queries: the �rst one returns the �rst twoauthors by selecting those whose index in $$i is less than 2, the second onecreates an element et-al whenever a third author exists.2.8 SortingOur �rst example selected all titles of books published by Addison-Wesleyafter 1991. In that example, output order was not speci�ed. Here we go back18

and show how to modify the query so that the titles are listed alphabetically.XML-QLCONSTRUCT <bib> {WHERE<bib><book year=$y><title>$t</title><publisher><name>Addison-Wesley</name></publisher></book></bib> IN "www.bn.com/bib.xml",$y > 1991ORDER-BY $tCONSTRUCT<book year=$y><title>$t</title></book>} </bib>This query is identical to the one in Section 2.1, except for the newORDER-BY clause, which speci�es that the resulting elements should be sortedby their titles (as opposed to, say, their years).YATLmakebib [*o($t) book [@year [$y],title [$t]]]match "www.bn.com/bib.xml" withbib [*book [@year [$y],title [$t]],publisher [name [$n]]]where$n = "Addison-Wesley" and $y > 1991This is identical to the YATL query in Section 2.1, except for the newphrase o($t), which speci�es that the resulting elements should be sortedby their titles. 19

Lorelselect xml(bib:(select xml(book:{@year:y, title:t})from bib.book b, b.title t, b.year ywhere b.publisher = "Addison-Wesley" and y > 1991order by t))The order by clause sorts the elements satisfying the from and whereclause by book titles before creating the output document in the selectclause.XQLXQL does not currently have a sorting construct. Several proposals arebeing considered.Combining sorting with the indexes of the previous section can be usedto list the titles in the same order as the input document. Unlike XQL, whichalways preserves document order, ordering in XML-QL, YATL and Lorel isexplicit. This is a deliberate choice, because ordering is usually expensive.2.9 Tag variablesBecause an XML document does not always come with a DTD, we needsome means to query documents without a priori knowledge of its structureor the tags of its elements.The next query selects books in which some element tag matches theregular expression '*or' (e.g. author, editor, author) and whose value is"Suciu". The result of the query preserves the original tag.XML-QLCONSTRUCT <bib> {WHERE<bib><book><title>$t</title><$a>Suciu</></book></bib> IN "www.bn.com/bib.xml",$a LIKE '*or' 20

CONSTRUCT<book><title>$t</title><$a>Suciu</></book>} </bib>In XML-QL, tag variables are used to query document structure. Here,the variable $a is bound to the tag of each sub-element of book. The tagmustmatch the regular expression '*or'. The constructor produces elementswith the same tag names. Note that the element expressions beginning withtag variables are closed by </>, since the opening tag is not known.YATLmakebib [* book [title [$t].$$a ["Suciu"]]]match "www.bn.com/bib.xml" withbib [* book [title [$t],*$$a [$l]]]where $l = "Suciu" and$$a like "*or"In YATL, tag variables are denoted by a $$ symbol.Lorelselect xml(bib:(select xml(book: {title: t, xml(LabelOf(a)): l})from bib.book b, b.%or@a l , b.title t))This query uses the path variable a, which is bound to the paths from bto l that match the regular expression %or. The LabelOf function returnsthe string representation of the a path. Path variables are more generalthan tag variables and can be bound to an arbitrary path in the document.Tag variables allow manipulation of tags as values. For example, as-sume that both our data sources contain information about various types ofproducts, e.g., books, cds, etc. In www.bn.com/bib.xml, a product type ismodeled by an element, but in www.amazon.com/reviews.xml, a producttype is modeled by the value of a type element. Using tag variables, we can21

generalize the join query from Section 2.6 over all item types by joining el-ement tags and element values. In the XML-QL version below, $e is boundto the tag of product elements in one source and to the value of the typeelement in the other source. The Lorel and YATL formulations are similar.CONSTRUCT <items-with-prices> {WHERE<bib><$e><title>$t</title><price>$pb</price></></bib> IN "www.bn.com/bib.xml",<reviews><entry><title>$t</title><type>$e</type><price>$pa</price></entry></reviews> IN "www.amazon.com/reviews.xml"CONSTRUCT<$e><title>$t</title><price-amazon>$pa</price-amazon><price-bn>$pb</price-bn></>} </items-with-prices>This query is particularly powerful, because it can be applied to thesources without knowing all the product types (i.e., element tags or valuesof the type element) a priori. If a new product type is added to eithersource, this query still works without modi�cation.XQLXQL does not support tag variables and therefore cannot express thesequeries. 22

2.10 Regular-path expressionsSome queries may be conveniently speci�ed by constraining the path throughthe tree, via the use of a regular-path expression. For example, the followingDTD de�nes a self-recursive element section.<!ELEMENT chapter (title, section*)><!ELEMENT section (title, section*)><!ELEMENT title (#PCDATA)>A section element may contain other nested section elements to an ar-bitrary depth. Regular-path expressions are used to match paths of arbitrarydepth. The next query retrieves all section or chapter titles containingthe word \XML", regardless of the nesting level at which it occurs.XML-QLCONSTRUCT <results> {WHERE<chapter.(section)*><title>$t</title></> IN "books.xml",$t LIKE '*XML*'CONSTRUCT<title>$t</title>} </results>Here, chapter.(section)* is a regular-path expression, and matchesa chapter element followed by a sequence of zero or more nested sectionelements. Regular-path expressions are combined with the alternation (|),concatenation (.), and Kleene-star (*) operators.Lorelselect xml(results:(select xml(title:t)from chapter(.section)* s, s.title twhere t like "*XML*"))The path expression component chapter(.section)* s binds the vari-able s to all elements reachable by following a chapter and a sequence ofsection elements. 23

XQLXQL does not support regular-path expressions but it does support accessto immediate children and descendants using the / and // operators respec-tively. This allows queries of arbitrary depth over unconstrained paths.The following query selects the title of chapters and sections that thatcontain the string 'XML', but does not require section elements to be con-tained within a chapter.document("books.xml")->results {chapter[title contains "XML"] { title } |.//section[title contains "XML"] { title }}YATLYATL does not currently provide regular-path expressions.With regular-path expressions, it is possible to write queries that potentiallyare expensive to evaluate, e.g., one that returns the entire document. Tech-niques exist, however, to evaluate certain classes of regular-path expressionse�ciently [9, 17].3 Additional FeaturesWe believe all the examples in the previous section illustrate the essentialfeatures of an XML query language. In this section, we present several otheruseful, but less crucial, features.3.1 External functions and aggregationDi�erent application domains often require specialized operations. For in-stance, decision support applications need aggregate functions and integra-tion applications require approximate comparison between string values [14].For instance, the following XML-QL query accesses a price list collectedfrom multiple bibliographies and returns the minimum price for each book.24

XML-QLCONSTRUCT <results> {WHERE <book><title>$t</title><price>$p</price></book> IN "books.yahoo.com/prices.xml"CONSTRUCT <minprice ID=title($t)>MIN($p)</minprice>} </results>This query extracts all title and price pairs, then it groups prices forthe same book together via a Skolem function. Finally the MIN aggregatefunction returns the corresponding minimal price.YATLThe following YATL query computes the average number of authors for allbooks.makeavg([*count($as)])match "www.bn.com/bib.xml" withbib [* book [*($as) author]]YATL uses a functional approach in which aggregate functions are simplyfunctions on collections. This query uses two aggregate functions: countreturns the size of its input collection (here the list of authors in each book)and avg for the average.3.2 Processing of alternativesXML DTDs provide constructs to describe alternative structure. For in-stance, the books in our bibliography have either authors or editors. In thenext query, we want to extract from each book, either the full content ofauthor elements or the a�liation of the editors.This can be written in YATL as:YATLmakebib * (match $b with| *($as) author 25

makebook [title [$t],$as]| * editor [affiliation [$af]]makereference [title [$t],org [$af]])match "www.bn.com/bib.xml" withbib [* book($b)]The nested query matches each book from the bibliography with two dif-ferent patterns separated by the alternative construct |. This is similar topattern-matching in functional programming languages or case statementsin imperative languages. If the book matches *($as) author then the �rstmake clause is applied, keeping the book title and its authors. If it matchesthe * editor [affiliation [$af]] pattern, then a reference con-taining the title and the organization is created.In XML-QL, alternatives are handled using parallel, nested queries. Eachnested query handles one alternative, but they are not mutually exclusive.XML-QLWHERE <bib><book><title>$t</title></book> CONTENT_AS $b</bib> in "www.bn.com/bib.xml"CONSTRUCT <bib> {{ WHERE <author>$a</author> in $bCONSTRUCT <book ID=Book($t)><title>$t</title><author>$a</author></book>}{ WHERE <editor><affiliation>$af</affiliation></editor> in $bCONSTRUCT <reference><title>$t</title><org>$af</org></reference>}} </bib> 26

3.3 Universal quanti�cationIn some queries, it might be useful to check whether a property holds for allelements of a collections. For instance, the next query asks for all couplesof books having exactly the same set of authors. This query requires theability to compare sets of values.This can be done in Lorel with the following query:Lorelselect xml(original: x, copy: y)from bib.book x, bib.book ywhere for all z in x.author: exists w in y.author: z = w andfor all t in y.author: exists s in x.author: t = s;The �rst �lter veri�es that the authors of x are also authors of book y,and the second �lter checks for the opposite set inclusion. The predicatefor all is used to universally quantify over all authors.In YATL, one can use directly set equality for the same purpose:YATLmake* [original [$b1],copy [$b2]]match URL with*book($b1) { *($a1) author },URL with*book($b2) { *($a2) author },where $a1 = $a2The variables $a1 and $a2 contain the sets of authors for each book $b1and $b2. The �lter $a1 = $a2 tests for the set equality.XML-QL can express this with a rather complex, nested query, whichuses negation and the isEmpty predicate. This predicate returns true if itssub-query evaluates to an empty answer. By checking whether there doesnot exist an author which is in one book and not in the other, XML-QLcan provide functionalities similar to universal quanti�cation. XQL cannotexpress this query. 27

3.4 Data models and navigationNow imagine a slight change to our database. For each author, we maintainnot only the name, but also an a�liation and an e-mail address. To avoidduplicating this information, we assign a unique ID to each author, andchange the book elements to refer to the authors by their ID. Here is therevised DTD. (We omit the title, editor, publisher,price, first, last,affiliation, and e-mail elements, which just contain text.)<!ELEMENT bib (book*, person*)><!ELEMENT book (title, publisher, price)><!ATTLIST book year CDATA><!ATTLIST book author IDREFS><!ATTLIST book editor IDREFS><!ELEMENT person (last, first, affiliation?, e-mail?)><!ATTLIST person ID ID>Now, author is an attribute of type IDREFS, which refers to the corre-sponding person elements. This example illustrates that the same data canbe represented in XML in various ways. A complex value can be representeddirectly by a sub-element or indirectly by a reference. An atomic value canbe represented by a sub-element or by an attribute.Typically, query languages are de�ned with respect to a data model, notthe data's physical representation. A data model can be used to unify thesedi�erent representations. XQL supports a document-based model whichdistinguishes between representations. XML-QL and YATL both supporta graph data model, which uni�es embedded components and references.Lorel supports both models and can unify attributes and sub-elements.The advantage of a unifying data model is that queries can be writtenindependently of the underlying representation.LorelFor example, with the graph-based model, the following query from Sec-tion 2.2 can be used unchanged:select xml(results:(select xml(result:{title: t,author: a})from bib.book b, b.title t, b.author a))28

However, with the document-based model, the queries must be changedcompletely. The modi�ed query requires an explicit join to access the refer-enced elements:select xml(results:(select xml(result:{title: t, author: p})from bib.book b, b.title t, b.author a, bib.person pwhere p.ID = a))The from clause binds a to author attribute and binds p to the contentof person elements. The where clause selects the person whose ID attributeequals a, i.e., it is a join on bib.book.author and bib.person.ID. The out-put document constructs an author element whose contents is the contentsof the corresponding person.XML-QLBecause XML-QL uses the graph-based model, the query from Section 2.2still applies to the newly reorganized data:CONSTRUCT <results> {WHERE<bib><book><title>$t</title><author>$a</author></book></bib> IN "www.bn.com/bib.xml"CONSTRUCT<result><title>$t</title><author>$a</author></result>} </results>YATLmakeresults [*result [title [$t]author [$a]]]match "www.bn.com/bib.xml" with29

bib [*book [title [$t],@author [*$a]]]The YATL query requires a small modi�cation to access the author at-tribute. The variable $a is bound to the referenced element.XQLSuppose we wish to modify the following query to make it work on the newdocument:document("http://www.bn.com")/bib->results {book->result {title | author}} Even those XQL uses a document-based model, it provides an explicitindirection operation, the id() function, which takes a string and returnsthe element whose id matches the parameter:document("www.bn.com/bib.xml")/bib/book {title | author/id(@IDREF)}4 ConclusionIn this paper, we have presented features from four XML query languagesthat support the requirements of various applications that will process, in-tegrate, and transform XML data sources.Based on our experience designing, implementing, and using databasequery languages, we think these languages provide a good compromise be-tween expressive power, simplicity and performance. We believe an XMLquery language should take advantage of this experience.Although this paper emphasizes the expressive power and declarativityof these languages, we are con�dent that these features can be evaluatede�ciently. Many well-known optimization techniques exist for the mostexpensive features described, such as joins [20], nested queries [13], pathexpressions [9, 17], and aggregation functions [8].30

References[1] S. Abiteboul. Querying semi-structured data. In Proceedings of the Inter-national Conference on Database Theory, pages 1{18, Deplhi, Greece, 1997.Springer-Verlag.http://cosmos.inria.fr:8080/cgi-bin/publisverso?what=abstract&query=103[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel querylanguage for semistructured data. International Journal on Digital Libraries,1(1):68{88, April 1997.ftp://db.stanford.edu/pub/papers/lorel96.ps[3] C. Beeri and T. Milo Schemas for Integration and Translation of Structuredand Semi-Structured Data. In Proceedings of the International Conference onDatabase Theory, Jerusalem, Israel, 1999. Springer Verlag.ftp://ftp.math.tau.ac.il/pub/milo/icdt99-2.ps.Z[4] P. Buneman. Tutorial: Semistructured data. In Proceedings of ACM Sympo-sium on Principles of Database Systems, pages 117{121, 1997.http://www.acm.org/pubs/citations/proceedings/pods/263661/p117-buneman/[5] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure tounstructured data. In Proceedings of the International Conference on DatabaseTheory, pages 336{350, Deplhi, Greece, 1997. Springer Verlag.http://www.research.att.com/~mff/files/icdt97.ps.gz[6] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query languageand optimization techniques for unstructured data. In Proceedings of ACM-SIGMOD International Conference on Management of Data, pages 505{516,1996.[7] R. G. Cattell The Object Database Standard: ODMG 2.0. Morgan Kaufmann,1997.[8] S. Chaudhuri and K. Shim An Overview of Cost-based Optimization of Querieswith Aggregates. In Data Engineering Bulletin 18(3), 1995.http://www-db-in.research.bell-labs.com/~shim/bulletine95.ps.gz[9] V. Christophides, S. Cluet and G. Moerkotte Evaluating Queries with Gen-eralized Path Expressions. In Proceedings of ACM-SIGMOD InternationalConference on Management of Data, 1996.http://cosmos.inria.fr:8080/cgi-bin/publisverso?what=abstract&query=080[10] C. L. A. Clarke, G. V. Cormack and F. J. Burkowski An algebra for structuredtext search and a framework for its implementation. In The Computer Journal,38(1), 1995.[11] S. Cluet, C. Delobel, J. Sim�eon and K. Smaga Your Mediators Need DataConversion! In Proceedings of ACM-SIGMOD International Conference onManagement of Data, 177-188, 1998.http://cosmos.inria.fr:8080/cgi-bin/publisverso?what=abstract&query=13831

[12] S. Cluet, S. Jacqmin and J. Sim�eon The New YATL: Design and Speci�cations.Technical Report, INRIA, 1999.[13] S. Cluet and G. Moerkotte Nested Queries in Object Bases In Proceedings ofInternational Workshop on Database Programming Languages, 1993.http://cosmos.inria.fr:8080/cgi-bin/publisverso?what=abstract&query=064[14] W. W. Cohen: Integration of Heterogeneous Databases Without CommonDomains Using Queries Based on Textual Similarity. In Proceedings of ACM-SIGMOD International Conference on Management of Data, 1998.[15] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A querylanguage for XML. In International World Wide Web Conference, 1999.http://www.research.att.com/~mff/files/final.html[16] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boatwith Strudel: experience with a web-site management system. In Proceedingsof ACM-SIGMOD International Conference on Management of Data, 1998.http://www.research.att.com/~mff/files/sigmod98.ps.gz[17] M. Fernandez and D. Suciu Optimizing Regular Path Expressions Using GraphSchemas. In Proceedings of International Conference on Data Engineering,1998.http://www.research.att.com/~mff/files/icde98.ps.gz[18] R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML:Migrating the Lore data model and query language. In Proceedings of the 2ndInternational Workshop on the Web and Databases (WebDB '99), Philadel-phia, Pennsylvania, June 1999.[19] R. Goldman and J. Widom. DataGuides: enabling query formulation andoptimization in semistructured databases. In Proceedings of Very Large DataBases, pages 436{445, September 1997.[20] G. Graefe Query Evaluation Techniques for Large Databases. In ComputingSurveys 25(2), 1993.[21] D. Maier. Database Desiderata for an XML Query Language. In W3C Work-shop on Query Languages for XML.http://www.w3.org/TandS/QL/QL98/pp/maier.html[22] J. McHugh and J. Widom. Query Optimization for XML. In Proceedings ofVLDB, Edinburgh, UK, September 1999.http://www-db.stanford.edu/~mchughj/publications/qo short.ps[23] S. Nestorov, S. Abiteboul, and R. Motwani. Inferring structure in semistruc-tured data. In Proceedings of the Workshop on Management of Semi-structuredData, 1997.http://www.research.att.com/~suciu/workshop-papers.html32

[24] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchangeacross heterogeneous information sources. In IEEE International Conferenceon Data Engineering, pages 251{260, March 1995.http://www.db.ucsd.edu/publications/icde95.ps[25] J. Robie. The design of XQL, 1999.http://www.texcel.no/whitepapers/xql-design.html[26] J. Robie, editor. XQL '99 Proposal, 1999.http://metalab.unc.edu/xql/xql-proposal.html[27] D. Suciu. An overview of semistructured data. SIGACT News, 29(4):28{38,December 1998.http://www.research.att.com/~suciu/strudel/external/files/ F242554565.ps

33

