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Abstract

We address the problem of query rewriting for TSL, a lan-
guage for querying semistructured data. We develop and
present an algorithm that, given a semistructured query ¢
and a set of semistructured views V, finds rewriting queries,
i.e., queries that access the views and produce the same re-
sult as g. Our algorithm is based on appropriately generaliz-
ing containment mappings, the chase, and query composition
— techniques that were developed for structured, relational
data. We also develop an algorithm for equivalence checking
of TSL queries.

We show that the algorithm is sound and complete for
TSL, i.e., it always finds every non-trivial TSL rewriting
query of g, and we discuss its complexity. We extend
the rewriting algorithm to use some forms of structural
constraints (such as DTDs) and find more opportunities for
query rewriting.

1 Introduction

Recently, many semistructured data models, query and
view definition languages have been proposed [34, 13]
and are used for querying and management of Web
data [11, 1, 27], biological databases [35], integration
of heterogeneous data [15], etc.

Semistructured models are necessary because of the
flexible nature of non-database information systems.
In particular, semistructured models are useful in the
context of Web-based sources; Web data very often
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have irregular, partial or only implicit structure. The
semistructured model XML [2] is emerging as the new
standard for the modeling and exchange of Web data.

As it has been the case in the relational world,
rewriting of semistructured queries using views is a
fundamental query processing and optimization tool
for semistructured queries. In this section we first
present an abstract version of the rewriting problem
and consequently we describe its applications, including
a rewriter that was built for the TSIMMIS system [15].

The Rewriting Problem At a sufficient level of ab-
straction the rewriting problem faced by the applica-
tions listed below is as follows: Given a query g access-
ing a semistructured database! D and a set of views
V ={W,...,V,} over D, find rewriting queries, where
a rewriting query of ¢ given V is a query that accesses
at least one view of V and returns the same result as
q.? If the rewriting query uses views only (i.e., it does
not access directly the database D) then it is called a
total rewriting query.

Applications of Rewriting Algorithms Semistruc-
tured models have been used by repositories that store
semistructured data [26] and by mediators that inte-
grate heterogeneous information [30, 11]. The impor-
tance of rewriting algorithms in mediators and repos-
itories of relational systems, as described below, is a
witness to the many applications they will have in the
semistructured world.

1. Relational query rewriting algorithms are used for
answering queries using materialized views [38] and
the query cache [19].

2. Views have been used in mediator systems to de-
scribe the source contents [21]. Furthermore, the
different and limited query capabilities of the sources
are often described by “views” where the constants

1The database may be distributed over multiple sites.
2We formalize the concept of “same result” and the definition
of a rewriting query in Section 3.



are parameterized. For example, the parameterized
view SELECT * FROM R WHERE R.A=$X, where R re-
sides at source S, declares that S can answer queries
that pick all attributes of R and have R.A be bound
to a constant. Then a query over the source data
has to be rewritten to use correctly the contents and
capabilities of the sources, i.e., to correctly use the
available views [22, 17, 37]. Indeed, in that case the
query has to access only views and hence we need a
total rewriting query.

The above points highlight the importance of rewriting

algorithms in relational databases and mediators. We

believe that rewriting algorithms will be equally impor-

tant for semistructured databases and mediators.
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Figure 1: The TSIMMIS integration architecture

Rewriting in the TSIMMIS System: Capability-
Based Rewriting and Cached Queries A TSIM-
MIS mediator integrates semistructured data from mul-
tiple heterogeneous information sources into a virtual
view V,, — not to be confused with the views used by
the rewriting algorithm. The general integration archi-
tecture is shown in Figure 1.
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Figure 2: Mediator architecture

For example, a bibliographic mediator may combine
the data of multiple bibliographic sources into a single

“union” view. At run time, given a user query, the
mediator decomposes it into multiple queries which
refer to the source data. However, these bibliographic
sources are accessible through interfaces that have
varying query capabilities; the queries emitted by the
mediator must conform to these capabilities. Let us
further illustrate this issue using an example.

The user query requests all “SIGMOD 97” publica-
tions. Then the mediator will decompose the user query
into multiple “SIGMOD 97" queries where each one of
them is source-specific, i.e., it refers to one source only
(see Figure 2). To do the decomposition correctly and
efficiently the mediator must figure out, using the ca-
pabilities of the underlying sources, how to extract the
necessary information from the sources. This decision
is made by the Capability-Based Rewriter (CBR) mod-
ule. In our running example, if one source only sup-
ports queries on “year”, the CBR will decide that a
query that retrieves the “97” publications will be sent
to this source. The rest, i.e., filtering for “SIGMOD”,
will be done at the mediator. After such decisions are
made, and the mediator formulates a query plan that re-
spects the query capabilities of the sources, each query
is sent to a wrapper, where it is translated into the na-
tive query language of the corresponding source. Then
the individual query results, namely the “SIGMOD 977
publications each source contains, are collected, the in-
formation about each of them is appropriately consoli-
dated into one entity by the mediator and the combined
result is presented to the user.

The TSIMMIS system uses parametrized views to
describe query capabilities. The mediator employs a
version of our rewriting algorithm to accomplish its
task [25]. Note that the existence of parameters in
the views does not seriously affect the complexity of
the problem [37]. The considerations introduced by
parameters are also addressed in [25]. For presentation
clarity we work in this paper with plain semistructured
views - as opposed to parametrized ones.

Use of Rewriting in semistructured repositories

Our rewriting algorithm can be used to answer
queries using materialized views and cached queries of
repositories for semistructured data, such as Lore [26].

For example, if a cached query result contains
all “SIGMOD?” publications, our rewriting algorithm
can create a rewriting query where “SIGMOD 97"
publications are obtained by filtering the cached query
for “1997” publications. The rewriting algorithm only
needs the query and the cached query statements - it
does not need to examine the source data. The cached
queries play in this case the role of views.?

3Given the autonomy of the bibliographic sources and the
mediator, the rewriting query may deliver a stale result to the



Materialized views and cached queries were the main
original motivation for relational query rewriting [38],
and we believe they are as important for semistructured
databases. Indeed our algorithm is applicable to
repositories of Web data stored using the XML [2] data
model, which is very similar to our data model. The
query language — TSL, for Tree Specification Language

that we are working with is very similar to recent
proposals for an XML query language [8].

Use of Rewriting in Web site management
and structured Web search  Recent work [11]
has applied concepts from information integration to
the task of building complex Web sites that serve
information derived from multiple data sources. In this
scenario, a Web site is a declaratively-defined site graph
over the semistructured data graph of the contents of
the information sources. If we only have access to the
information through the Web site(s), queries asked over
the data graph need to be rewritten as queries over
the Web site structure and contents. The Web site
definitions are just view definitions over the data graph;
the necessary query rewriting can thus be handled by
our algorithm.

Results We propose an algorithm that solves the
rewriting problem by outputting a finite set Q of
rewriting queries, i.e., queries equivalent to g that have
at least one condition referring to one of the views.
Note that for every rewriting query ¢, that does not
appear in Q there is a “trivial” ¢, € Q such that every
view that is used by ¢/ is also used by ¢,.. Under any
reasonable cost model, ¢ will be at least as efficient as
¢ (it will be more efficient if it uses strictly fewer views)
and hence we do not include ¢, in Q. We will say that
the algorithm returns all rewriting queries, though we
actually mean that it returns a set of rewriting queries
Q with the above properties.

The rewriting algorithm makes use of structural
constraints on the source data. In particular, we
consider constraints that can easily be expressed by
standards such as the XML DTDs or the newly
proposed XML-Data. The existence of such constraints
allows us find rewritings in cases where, in the absence
of constraints, the algorithm would fail.

The algorithm is based on extending containment
mappings, the chase, and composition from the rela-
tional to the semistructured world. In doing so, we ben-
efit from a vast body of knowledge on relational query
rewriting. Furthermore, we obtain insight on how to in-

user. This result may still be very useful to the user. Furthermore,
if an update-propagation system is in place, it can account for the
“deltas” between the cache and the sources [39]. In this paper we
will not deal any further with these consistency issues. Instead
we focus on the rewriting algorithm.
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Figure 3: Example OEM objects

terface with the optimizer of the TSIMMIS system (sce
Figure 2).

Contents The following section introduces the OEM
data model and our query language for semistructu-
red data. Section 3 states the rewriting problem and
describes our algorithm. Section 4 presents an algo-
rithm for equivalence testing of TSL queries. Section 5
proves the correctness of our rewriting algorithm for
TSL queries and views and discusses the complexity of
the rewriting problem. Finally, Section 6 discusses re-
lated work and Section 7 offers some concluding remarks
and discusses future work.

2 The OEM Data Model and the
TSL Query Language

In the OEM data model, the data are represented as
a rooted graph with labeled nodes (also called objects)
that have unique object ids.

Figure 3 illustrates some bibliographic data repre-
sented in OEM. Atomic objects have an atomic value
(e.g., SIGMOD) while the value of the other objects
(called set objects) is the set of objects (not just ob-
ject ids) pointed to by the outgoing edges. Notice that
this definition is inherently recursive, since the value of
an object is part of the object: the value of a set object
o is essentially the OEM subgraph rooted at 0.* The
roots of the graph are illustrated as top level objects.
They are the starting points for querying the sources.
Note that we ignore objects that are not reachable from
the roots of the graph.

The object ids are typically atomic data. In the
general case they are terms from the Herbrand universe
composed from

4Excluding o itself.



e a set of atomic data, which includes but is not
necessarily confined to, the atomic data appearing
as labels and values and

e an arbitrary set of uninterpreted function symbols.
For example, £(&10, ashish) is a possible object
id, and the function symbol £ “defines” the term.

Object ids may be symbols with no particular
meaning, or they may have a semantic meaning. For
example, if the object is a Web page then it is
typically a good idea to have the URL be the object id.
Furthermore, meaningful term object ids can facilitate
the integration tasks.

Even though OEM can model data that can naturally
be represented as an arbitrary graph, we expect that in
many applications, especially those dealing with XML
data, data will instead be naturally represented as a
directed acyclic graph, or as a tree.

A TSL query is a rule that defines the query result
using minimal model semantics. A rule consists of a
head followed by a :- and a body, in the style of Datalog
[36]. Intuitively, the head describes the result objects
in the answer graph, whereas the body describes one
or more conditions that must be satisfied by the source
objects. The head and the body conditions are based
on object patterns of the form <object-id label value>.
The wvalue field can be either a term (variable, atomic
constant, or function symbol followed by a term list)
or a set value pattern which contains zero or more
object patterns. Terms that appear in an object id
field in the head of a TSL query must be unique. This
restriction forces TSL to produce fresh object ids for
the objects in the query result. It also forces TSL
to produce answer trees instead of arbitrary graphs as
query results. We discuss removing this restriction (and
the resulting language) in Section 6.

Semantics and power of TSL We illustrate the
semantics with the following example.

(Q1) <£(P) female {<f(X) Y Z>}> :-
<P person {<G gender female> <X Y Z>}>@db

The semantics of the above query are

if there is a tuple of bindings p, g, x, y and z for the
variables P, G, X, Y, and Z such that
e the data source db contains a person top-level
(root) object identified by p,
e the p object has a gender subobject with value
female and object id g, and
e the p object has a y subobject with value z and
object id x
%the object p may also have other subobjects
then the query result has

e a female object, with object id £(p),

e a y subobject of the £(p) object, with value z and

object id £(x).
%the object £(p) may have subobjects other than y
%because the result of another rule may “fuse” more
% subobjects into the object £(p).

Note that z could be a subgraph of the data in
db. The answer to query (Q1) is an object with a
new, unique object id and the structure denoted by
the query head. In general, a TSL query can construct
answer objects that are tree restructurings of source
data, hence we refer to the result of a TSL query as an
answer tree. Because of the copying semantics of TSL,
(e.g., z above could be a subgraph of the data), the
query result can actually be a graph: a constructed tree
with (perhaps cyclic) subgraphs potentially hanging off
some branches. Note finally that a TSL query may refer
to more than one data source, e.g., one condition may
refer to db1l and a second one to db2.

Formally, for an OEM database D, let Pp be the set
of all subgraphs® of D, O be the set of all object ids
in D, and C be the set of all labels and atomic values.
Let Vo be the set of all object id variables® and Vi
be the set of all other (label and value) variables, with
VoNVe = 0. Let V = Vo UV be the set of all variables.
The meaning of the query body is the set of assignments
0 :V — OUC U Pp that satisfy all conditions in the
body. Each assignment maps object id variables to O,
label variables to C' and value variables to C'U Pp.

The meaning of the query head is as follows. We
create and label the new nodes of the answer tree, and
make the top-level object pattern of the query the root
of the answer tree. In particular, for each object pattern
<f(X1,...,Xmm) L V>. in the query head, and for each
assignment 6 above, create a new object with object id
f(O(Xq),...,0(Xy)), label O(L) and value 0(V). If
instead of V', the object pattern above has {o;...0,},
the value of the created object is {6(01),...0(0,)}.

Notice that when two assignments produce the same
term as the object id of an object, the same object
is “returned”, and the values of the two objects are
“fused”.

TSL can be translated to Datalog with function sym-
bols and limited recursion over a fixed schema. It can
be shown to be less expressive than StruQL and thus
less expressive than linear datalog [11]. TSL queries
can be computed in polylogarithmic parallel time with
polynomially many processors (i.e., TSL C QNC).

In the rest of this paper, we only consider positive
TSL queries without cyclic object patterns in the

5Remember that the value of a set object is essentially the
OEM subgraph rooted at that object.

6object id variables are variables appearing in the object id
field of object patterns.



body conditions (i.e., without object patterns that look
for cycles in the OEM database). To simplify the
presentation, we focus on normal form queries, defined
next. Every TSL query can be easily converted into
normal form, hence the focus on normal form does not
limit the power of the language.

Definition: Normal Form TSL Queries are the
TSL queries in whose body all set-valued wvalue fields
contain at most one object pattern. Additionally, a
normal form query with just one condition in its body
is called a single path query. O

The query (Q1) can be easily transformed into the
following normal form query:

(Q2) <£(P) female {<f(X) Y Z>}> :-
<P person {<G gender female>}>@db AND
<P person {<X Y Z>}>@db

Safe TSL queries A TSL query is safe if every
variable appearing in the query head also appears in the
query body. Thus, the same simple syntactic test that
is used by [36] to define safety of conjunctive queries
can be used to define safety in TSL. In the remainder
of this paper we are only discussing safe TSL queries.

TSL views are defined simply by TSL queries. Each
view defines its own OEM database, with its own space
of unique object ids. That can easily be accomplished
for example by qualifying the object ids by the name of
the view.

It is important to point out that TSL has features
essential for querying and integrating semistructured
data, namely the ability to query and copy arbitrarily
nested schema-less data, the ability to restructure such
data through the use of semantic object ids, and the
ability to query the “structure” of the data through the
use of label variables.

3 TSL Query Rewriting

Given a TSL query @ referring to an OEM database D
and conjunctive views V = Vi,...,V,, also referring to
D, the rewriting problem is to find a TSL query @’ such
that (i) Q' refers to at least one of V1, ..., V, and (ii) for
all OEM databases D, the result of @ is equivalent to
the result of @’. (See definition of equivalence below.)

We call Q' the rewriting query. In general, there
may be more than one rewriting queries. We start
our discussion with a straightforward definition of
equivalence of OEM databases.

Equivalence of two OEM databases D; and D,
Two OEM databases D; and Ds are equivalent if they
are identical, i.e., they have the same set of object ids
and for every object id = the two objects identified by

2 in Dy and Dy (i) have the same label { (ii) both of
them have an atomic value or both of them have a set
value (iii) if they are atomic objects they have the same
atomic value v and (iv) if they are set objects they have
identical sets of subobjects.

Apparently the above definition carries to equivalence
of query results and views. It is possible to define OEM
database equivalence up to object id renaming. We
discuss this issue in Section 6.

3.1 Rewriting of Queries with Single Path
Condition

We informally present an algorithm which decides
whether a query @ having one single path condition can
be rewritten using a single view V' that has one or more
path conditions. This algorithm, though a special case
of the complete rewriting algorithm (see Section 3.4),
illustrates the basic steps of our technique. The general
algorithm is proven sound and complete for TSL and
its complexity is studied in Section 5.

Step 1: Find Candidate Queries We first find map-
pings from the view to the condition and then we
develop a candidate query for each mapping. Note
that for the special case of queries with a single path
condition there may be at most one mapping and
consequently at most one candidate query.

Step 1A: Find Mappings Find, if it exists, the
mapping from the body of V' to the body of Q.
Our mappings extend [7] to cope with object
nesting. A formal definition can be found in
[31]. If a mapping exists, then we can be sure
that, if there is a variable binding that satisfies
the body of @, then there is also a binding that
satisfies the body of V. Hence mappings are
a necessary condition for the relevance of the
view to the query condition. Furthermore, the
mapping indicates which conditions of @ do not
appear in V; these conditions will have to be
checked by the rewriting query. Notice that there
can be at most one mapping from the body of V/
to the one single path condition in the body of Q.
However, in the general case (Section 3.4) we may
have multiple mappings.

Example 3.1 Consider the view (V1), which
restructures the person objects, labeled p, of db
into objects that “group” their labels in property
subobjects, labeled pr (for brevity) and their
values in value subobjects, labeled v. Notice that
(V1) “loses” information in the sense that it only
shows the labels and values that appear in db but
the label-value correspondence has disappeared.
Queries such as (Q3), that ask whether the value



leland appears in the database, can be answered
using the view (V1) because they do not need
information on the label-value correspondence.
The example shows how our algorithm finds a
rewriting query for (Q3).

(V1) <g(P") p {<pp(P’,Y) pr Y'>
<h (X)) v 2>} -
<P’ p {<X' Y Z'>}>edb
(Q3) <£(P) stanford yes> :-
<P p {<X Y leland>}>@db

The only mapping from the body of (V1) to the
body of (Q3) is (M2). Intuitively, (M2) indicates
that the condition Z’ = leland must be enforced
on the view in order to get objects relevant to the
query.

(M2) [P — P, X — X, YV — Y, Z — leland]

O

Step 1B: Generate Candidate Queries Apply
the mapping to V, resulting in an “instantiation”
of V, namely V’. Then build the rewriting query
Q@' as follows: The head of Q' is identical to the
head of Q. The body of @’ is the head of V.

Example 3.1 continued The only candidate
rewriting query (Q4) is created from the head of
(Q3) and the result of applying (M2) to the head
of (V1).

(Q4) <£(P) stanford yes> :-
<g(P) p {<pp(P,Y) pr Y>
<h(X) v leland>}>@V;

Step 2: Test Correctness of Candidate Query

Check whether the composition of V' and @’, denoted
by Vo @’ is equivalent to Q. Step 2 is accomplished
in two sub-steps:

Step 2A: Computation of Composition The
composition V o @’ of the rewriting query with

the view is computed. We compute V o @’ using
a query-view composition algorithm based on ex-
tending resolution and unification for semistruc-
tured data. This algorithm in essence takes ex-
ponential time in the size of the query. The com-
position algorithm is illustrated using an example
below. For a formal presentation, see [31].

Step 2B: Testing Equivalence of V o @', Q The
general idea of equivalence testing is to find (1) a
mapping that maps V o @’ into @, i.e., (i) it maps
the head of V o @’ into the head of @ and every
condition of Vo' is mapped into a condition of

and (2) a mapping that maps @ into Vo @’. Note
that the V o @' and @ have to be in normal form
in order to test equivalence as described above.”

Example 3.1 continued We test whether (Q4)
is a valid rewriting query by first transforming
it into the normal form (Q4),, then composing
it with (V1), and finally comparing the resulting
query (V1)o(Q4), to (Q3). Indeed, (V1)o(Q4), is
equivalent to (Q3) because (i) the mapping (M3)
maps (V1)o(Q4),, to (Q3) and (ii) the mapping (M4)
maps (Q3) to (V1)o(Q4),).

(Q4),, <£(P) stanford yes> :-
<g(P) p {<pp(P,Y) pr Y>}> AND
<g(P) p {<h(X) v leland>}>
(V1)o(Q4), <£(P) stanford yes> :-
<P p {<X' Y Z/>}> AND
<P p {<X” Y” leland>}>

(M3) [P — P, ¥ — X, Y — Y, Z — leland,
X// — X, Y// — Y]
(M4) [P — P, X — X", Y — Y]

Set Mappings The rewriting query may have to
apply a “subobject membership” condition on a value
variable.  To handle this case, our mappings are
extended to map a variable to a set pattern.

Example 3.2 Consider the query (Q5) and the view
(V1). Tt is clear that Z' must bind to set values
that contain a <Z last stanford> subobject. The
algorithm captures this intuition by developing the
mapping (M5) from the body of (V1) to the body
of (Q5). Notice that Z' is mapped to {<Z last
stanford>}>.

(Q5) <£(P) stanford yes> :-
<P p {<X Y {<Z last stanford>}>}>@db

(M5) [P? — P, X2 — X, Y’ — Y,
Z’ +— {<Z last stanford>} ]

(Q6) <£(P) stanford yes> :-
<g(P) p {<pp(P,Y) pr Y>
<h(X) v {<Z last stanford>}>}>@V;

(Q6) is the candidate query created from the head of
(Q5) and the result of applying (M5) to the head of
(V1). O

"The general equivalence testing algorithm is actually more
intricate, because of the existence of object ids. For a full
description of the equivalence testing algorithm for TSL see
Section 4.



Mappings are necessary but not sufficient for the
existence of a rewriting query as the following example
illustrates. That is why a containment test is needed,
as in Step 2B of the algorithm.

Example 3.3 Consider query (Q7) and view (V1).

(Q7) <£(P) stanford yes> :-
<P p {<X name {<Z last stanford>}>}>@db

Intuitively, there is no rewriting query for (Q7)
because the view “loses” the correspondence between
labels and values. Hence, if the database contains
a name attribute and a value v containing the <last
stanford> subobject it is impossible for the rewriting
query to discover whether there is a name object with
value v or name and v appear in different objects of
the database. Notice that despite the non-existence of
a rewriting query there is the mapping (M6). Based
on this mapping the algorithm derives the candidate
rewriting query (Q8). However, the composition of the
candidate rewriting query with the view results in the
query (Q9) which is not equivalent to the original query
(Q7). Notice that name is the label of the object X" while
<last stanford> is a subobject of another object X”.

(M6) [P — P, X — X, Y — name,
Z' +— {<Z last stanford>} ]

(QB) <£(P) stanford yes> :-
<g(P) p {<pp(P,Y) pr name>

<h(X) v {<Z last stanford>}>}>@V;

(Q9) <£(P) stanford yes> :-
<P p {<X’' name Z’>}>@db AND
<P p {<X” Y” {<Z last stanford>}>}>@db

O

As mentioned earlier, a formal treatment of mappings
can be found in [31]. The following subsection extends
the chase for set variables, which, as will see, is
necessary to deal with the key dependency on object id.
Subsection 3.3 discusses how the algorithm can exploit
structural constraints, such as DTDs, that are known
about source data. Subsection 3.4 presents a general
algorithm for query rewriting.

3.2 Extending the chase for set variables
Object identity introduces a functional dependency in
OEM (key dependency from the object id to the label
and value). Moreover, structural constraints introduce
functional dependencies, as we will see in the next
subsection. The rewriting algorithm uses the chase
technique [36] to deal with these dependencies. The
technique has to be extended for the case of variables
that can bind to sets. In what follows, we motivate
the need for and present our extension to the chase,

presented for the case of key dependencies on object
id. The extension applies in general to any functional
dependency with value variables in the right hand side.

Example 3.4 Consider queries (Q10) and (Q11).

(Q10) <£(P) stan_student {<X Y Z>}> :-
<P p {<U university stanford>}>@db
AND <P p {<X Y Z>}>@db

(Q11) <£(P) stan_student V> :-
<P p {<U university stanford>}>@db
AND <P p V>@db

(Q11) is equivalent to (Q10), since V is a set variable.
However, our algorithm, as described so far, will
erroneously not discover a rewriting query because there
is no mapping from the condition of (Q10) to the second
condition of (Q11). Using the key dependency on object
id, we can infer that V is a set variable and transform
(Q11) to (Q10). Notice how the “set” variable is
transformed into a set pattern. O

Recall that TSL queries are not allowed to contain cyclic
object patterns. This is necessary for the described
simple extension to the chase to terminate.

Chase extension for dependency on object id
Let 01, 02 be object patterns of a query g with the
same term in the object id field.

e If 01 and oo have L1,V and Lo, V5 in their label
and value field respectively, then we replace all
occurrences of Lo, Vo in g with L1, Vi respectively.

e If 0 has object patterns {o;, ..., 0;} in its value field
and os has Va, then replace all occurrences of V5 in ¢
with {<X Y Z >}, where X,Y, Z are variables not
appearing in q.

o If 0, has {0;,...,0;} in its value field and o has
{¢k,.-.,cm}, replace the value fields of both o and
09 with {0;,...,05,Cp, ..., Cm}.

e If one of 01,05 have a constant in one of the fields,
and the other has a variable, replace all occurrences
of that variable in ¢ with the constant.

e If both 0; and 05 have constants in one of the fields,
then, if the constants are different, halt with an
error (this query cannot be chased to an equivalent
query satisfying the object id key dependency). If
the constants are the same, do nothing for this field.

e If 05 is identical to o7, drop o2 from gq.

In order to “chase” functional dependencies that do
not involve value variables, we can use the “regular”
chase rule.



3.3 Using structural constraints

Semistructured data are often accompanied by con-
straints that partially define the structure of objects.
Such structural constraints can be expressed as a DTD,
a DataGuide [16] or an XML-Data “schema”. For in-
stance, we could know that the data in source db in the
previous examples conform to the following DTD:3

<!ELEMENT p (name, phone, addressx*)>

<VELEMENT name (last, first, middle?, alias?)>

<VELEMENT alias (last, first)>
<!ELEMENT address CDATA>
<!ELEMENT phone CDATA>
<!ELEMENT last CDATA>
<!ELEMENT first CDATA>
<!ELEMENT middle CDATA>

This DTD describes in a flexible way the structure of
the source data. For example, it specifies that objects
labeled p (as in person) have exactly one subobject each
with labels name and phone, and zero or more address
subobjects. Tt also specifies that subobjects phone and
address are atomic. Given such a DTD, we can infer
information in the form of dependencies between labels
or object ids, that will allow the rewriting algorithm
to discover rewritings in cases where it would have
otherwise failed.

Example 3.5 Given the above DTD, we can infer
automatically that in db the only subobject of a p object
with a last subobject is a name object. Therefore Y
of (Q9) (in Example 3.3) has to be name. Morcover,
there exists a “labeled” functional dependency from
object id P with label p to object id X with label name,
since according to the DTD a p object has exactly one
name subobject. This implies that X” has to be X’ (by
application of the chase rule). Therefore (Q9) can be
rewritten as

(Q12) <£(P) stanford yes> :-
<P p {<X’ name Z'>}>@db AND
<P p {<X’ name {<Z last stanford>}>}>@db

Finally, we chase the dependency on P using the chase
extension described previously to derive (Q13). It
should be obvious that (Q13) is equivalent to (Q7), and
therefore a valid rewriting query.

13) <£(P) stanford yes> :-
Q v
<P p {<X’ name {<Z last stanford>
<A B C>}>}>@db

O

8Since OEM does not support order, we ignore the order in
the DTD description as well.

As illustrated in the previous example, we identify two
cases where information can easily be inferred from a
structural description, such as a DTD, or an XML-Data
“schema”:

label inference Given a “path expression” of labels
a.?.c, if the structural constraint specifies that the
only subobject of an a object with a ¢ subobject is
a b subobject, we can infer that 7 = b.

functional dependency If the structural constraint
specifies that objects labeled a have only one
subobject labeled b, we can infer that given a pattern

(Xaa{(Y20V)})

the functional dependency X, — Y3 holds.

The rewriting algorithm takes advantage of this
information by performing label inference and the chase
on the query, the views and the candidate queries, again
as illustrated in Example 3.5. It is straightforward
to show that applying label inference and the chase
always terminates in time polynomial to the length of
the queries and the constraints description. Moreover,
it is easy to show that label inference and the chase do
not affect the soundness of the rewriting algorithm.

In the presence of structural constraints, there is
clearly more opportunity for query simplification and
query rewriting. This is the subject of future work.

3.4 Rewriting Algorithm

We now give the algorithm for the general case of the
query rewriting problem. In what follows, the bodies
of the query @ and the views in V are converted into
normal form and label inference and the chase are
applied before we apply the algorithm.

Input: A TSL query @ with k single path conditions
in the body and a set of TSL views V = {V3,...,V,,}.

Output: A set of rewriting queries.

Step 1A: Find the mappings 6;; from the body of
each V; € V to the body of Q) using a mapping
discovery algorithm [31].

Step 1B: Construct candidate rewriting queries @’

e head(Q') is head(Q)

e body(Q') is any conjunction of I conditions,

1 <1 <k, where each condition is either a view
“instantiation” 0;;(head(V;)) or a condition of Q.
If the resulting query is unsafe, then continue with
next candidate.

Step 1C: Perform label inference and chase @’.

Step 2: Test whether each constructed Q' is correct.
e Construct the composition Q' (Vi,...,V,) of @’
with Vi,..., V4. See [31] for the details of the



composition algorithm.
e Perform label inference and chase @' (V, ..., V,).
o IfQ'(Vi,...,V,) is equivalent to @
(see Section 4) then include @' in the output;
else continue with the next candidate.

Notice that the above algorithm constructs and tests
all candidate queries (in Step 1B). The efficiency of the
algorithm can be substantially improved with the use
of simple heuristics. A particularly effective heuristic is
the following:

e keep track of which conditions of the query body
each instantiated view 6; (head(V;)) maps into.
These are the conditions that are “covered” by

0, (head(V;)).

e only construct candidate queries @’ such that the
views and conditions in the body of @’ “cover” all
the conditions in the body of Q).

A variation of the above heuristic is implemented in
the capability-based rewriting module of the TSIMMIS
system [25].

The next subsection describes the equivalence test for
TSL queries, which is an essential part of Step 2 of the
above algorithm.

4 Equivalence of TSL queries

Two queries @1, Q2 are equivalent if and only if for all
OEM databases D, their results @Q1(D) and Q2(D) are
equivalent. In this section, we will develop a compile-
time test of equivalence of TSL queries, based on an
extension of containment mappings [7]. We assume that
the chase has already been applied to the queries.

The problem of TSL equivalence is complicated
because of the restructuring capabilities of TSL: query
heads construct arbitrary answer graphs and different
rules can contribute different parts of the same answer
graph. Hence we need to make sure that all the
components of the result graph are the same. The
required decomposition is in the same spirit as normal
form decomposition for query bodies (see Section 2),
but it has to go one step further by decomposing a TSL
query into finer-grain rules. In [31] we show that normal
form decomposition does not allow us to determine
equivalence of TSL queries.

We decompose a TSL query into graph component
queries that correspond to the components of the result
graph: edges, nodes and root, i.e., top-level objects.”
Every TSL rule @ is decomposed into three types of
finer grain rules:

9Recall that OEM graphs are rooted.

e one top rule corresponding to the top level condition
of the head of @ (this query corresponds to the root
of the OEM graph constructed by the head of Q)

e as many member rules as there are object-subobject
relationships in the head of @ (these queries corre-
spond to the edges of the OEM graph constructed
by the head of @, and specify their start and end
objects) and

e one object type rules as object conditions in the
query head of @ (corresponding to the objects of
the OEM graph constructed by the head of @ and
describing their labels and values).

The decomposition is illustrated by the following ex-
ample. The reduced rules are essentially TSL: set val-
ues are allowed in the object “predicates”. Note that
member and top “predicates” depart from TSL syntax
to emphasize the connection to Datalog [28].

Example 4.1 Consider the following query:

(Q14) <1(X) 1 {<£(Y) m {<n(Z) n V>}>}> :-
<X a{<¥b{<Zcwvpp

Its decomposition in graph component queries is as
follows:

top(1(X)) :- <X a {<Y b {KZ ¢ V>}>}>
member (L(X),£(Y)) :- <X a {<Y b {<Z c V>}>}>
member (£ (Y),n(Z)) :- <X a {<Y b {<Z c V>}>}>
LX) 1 {}> :- <X a {<Y b {<Z c V>}>}>
<E(Y) m {}> :- <X a {K<Y b {<KZ c V>}>}>
<n(Z) n V> :- <X a {KY b {<Z c V>}>}>

O

The condition for equivalence of the resulting graph
component queries is easily derived:

Theorem 4.2 Two sets S; = {P1,...,P,} and Sy =
{T1,..., T} of graph component queries are equivalent
if and only if for each P; there exists a mapping to it
from some Tj and for each T; there exists a mapping to
it from some P;.

The proof of Theorem 4.2 is a generalization of the
containment theorem for unions of relational conjunc-
tive queries with object ids [33, 18]. Moreover, the fol-
lowing theorem holds:

Theorem 4.3 (TSL query equivalence) Two TSL
queries are equivalent if and only if their decompositions
into graph component queries are equivalent.

From the above, it is straightforward to derive a simple
equivalence test for TSL queries.



5 Completeness and Complexity

The soundness of the algorithm described in Section 3.4
is established by its second step, that checks the correct-
ness of the rewriting. We will now prove the complete-
ness of the algorithm, i.e., we will show that it always
finds a rewriting query if one exists. For this proof,
we assume that there are no structural constraints, and
therefore no functional dependencies except the key de-
pendencies on object id. In the presence of arbitrary
functional dependencies, such as the ones that can be
inferred from structural constraints, it is easy to show
that our rewriting algorithm is not complete (see [10]
for a simple counterexample for the case of relational
query rewriting).

To prove the completeness of the algorithm, we first
observe that if there is no mapping from a view body
to the query body, then the view is not “relevant” to
the query.

Lemma 5.1 Let @ and V' be TSL queries. There is a
rewriting query @’ of @ using view V only if there is a
mapping from the body of V' to the body of Q.
Moreover, we can bound both the number of condi-
tions and the variables appearing in the rewriting.

Lemma 5.2 Let @ be a TSL query and V be a set of
TSL views. If there exists a rewriting of @ using V, then
there exists such a rewriting consisting of at most k view
heads, where k is the number of single path conditions
in the body of the query.t®

Lemma 5.3 If there exists a rewriting of query @ using
the set of views V, then there exists a rewriting of @
using V that doesn’t use variables that don’t exist in Q).

The above lemmata demonstrate that the theory of
relational query rewriting, presented in [20], can be
generalized for TSL. Notice that Lemmata 5.2 and 5.3
hold in the presence of the key dependencies on object
id. Intuitively, our algorithm is complete because no
additional functional dependencies can be inferred from
the object-id key dependencies. By using disjoint sets
of object id and other variables, a condition such as
<X Y {<Y Z w>}>, which implies the extra functional
dependency from X to Z and W, is disallowed.

The following lemma justifies why completeness is
not compromised by only constructing rewriting queries
@’ that have a head identical to the head of the
query (). Notice, this is an issue that is particular to
semistructured and nested models while it is trivial in
the relational model (Q’ must have a head identical, up
to variable renaming, to the head of Q).

10Notice that, since view heads do not have to be single path,
the number of single paths in the rewriting can be greater than

k.

Lemma 5.4 If there exists a valid rewriting query
Q" such that head(Q") is not the same as head(Q),
then there exists a valid rewriting query @’ such that
head(Q') = head(Q).

To see that Lemma 5.4 holds, notice that if there exists
such a query @Q”, then we can always apply our rewriting
algorithm to it, to derive a query @’ equivalent to Q"
(and therefore to @) whose head is identical to the head

of Q.

Theorem 5.5 The rewriting algorithm of subsection 3.4
is sound and complete.

Proof:  (Sketch) The algorithm is obviously sound,
because its last step is a correctness test. It is
complete because of the above lemmata, because the
query composition algorithm is correct [28], and finally
because the rewriting algorithm exhaustively searches
the space of rewritings defined by the above lemmata.
O

5.1 Complexity of TSL rewriting

The algorithm described in Section 3.4 takes exponen-
tial time. First, Step I can generate an exponential in
the size of the view bodies number of mappings. Then
Step 2 can generate an exponential number of candi-
date rewritings. Finally, it is proven in [31] that the
construction of Q'(V,...,V,) using a query composi-
tion algorithm takes exponential time.

6 Related work

TSL is derived from the Mediator Specification Lan-
guage (MSL) [29]. MSL is a more general language
that allows arbitrary restructurings of source data. Be-
cause of its additional restructuring power, MSL (as
well as StruQL, which has the same restructuring ca-
pabilities) is not closed under query composition. This
significantly reduces the applicability of the rewriting
algorithm.

The problem of query rewriting for conjunctive
relational views is discussed, among others, in [20, 10]
and for recursive queries (but not recursive views) in
[9]. The problem of query equivalence for relational
languages with object ids has been studied in [18].
Our notion of query equivalence corresponds, in the
terminology of [18], to exposed equivalence.

The TSL rewriting problem cannot be reduced to the
well-understood relational conjunctive query rewriting
problem. Given a reduction of semistructured data to
relations, such as the one presented in [28], TSL queries
and views are reduced to Datalog with function symbols
and with a limited form of recursion,'* hence making
inapplicable the conjunctive query rewriting results.

11 As described in detail in [28].



The special form of the restricted recursion in TSL
leads to decidability and complexity results which
are known not to hold for general recursive Datalog
programs [9].

There is little work on the problem of rewriting
semistructured queries using views [14, 5. In [14],
the related problem of query containment in StruQL
(a semistructured language similar to TSL and MSL)
is addressed. The paper deals with queries and views
containing “wildcards” and regular path expressions,
but it does not deal with the restructuring capabilities
of the StruQL language. Recently, [5] proposed an
elegant solution to the problem of rewriting a regular
expression in terms of other regular expressions. The
problem is closely related to the problem of rewriting
semistructured queries using views, but the solution is
applicable to a narrow class of queries and views, the
ones that consist of only one regular path expression
and return its “endpoints”.

Our work is also related to the problem of object
oriented query rewriting. Previous work on the problem
of containment and equivalence of object oriented
queries [6, 23] relies on the existence of a static class
hierarchy.  Work on the problem of containment of
queries on complex objects has been presented recently
in [24].

Finally, there has been some recent work on using
structural information about a semistructured source
(such as graph schemas [3] or DTDs) in query processing
(12, 32].

OEM variants and rewriting A popular variant
of the original OEM data model (used in this paper)
that has been proposed in the literature [26] makes
labels a property of the edges instead of the nodes
of the graph (see Figure 3). The techniques and
algorithms described in this paper apply with little
change to this version of the data model; small changes
are also necessary to the language syntax, of course.
One noteworthy difference is that the only implicit
functional dependency present in this variant of OEM
is object id to value of an object.

Isomorphism In the OEM data model every node of
the semistructured graph has an object identity — un-
like [4] and [24]. Furthermore, we require that the orig-
inal and the rewritten queries compute identical graphs
(i.e., same object ids) as opposed to graphs equivalent
under bisimulation [4] or isomorphism. Following the
isomorphism approach, two OEM databases Dy and Ds
would be equivalent if for every object x; of Dy we can
find an object x9 of Dy such that x; and x5 have the
same label, same value if atomic, or equivalent (i.e. iso-
morphic) sets of subobjects if they have set values. In
this approach, we only care for the object-subobject re-

lationships the object ids create. For example, the URL
names are not important; it is the hypertext structure
created by the links that is important.

From the point of view of the rewriting algorithm
it is not important whether the rewriting query Q'
produces results identical to the original query @ or
it produces isomorphic results. The reason is that we
conjecture that if there is no rewriting query @’ with
a result identical to @ then there is no rewriting query
Q" returning a result isomorphic to Q.

7 Conclusions and Future Work

We presented an algorithm that given a semistructured
query g expressed in conjunctive TSL and a set of
semistructured views V, finds rewriting queries, i.e.,
queries that access the views and are equivalent to q.
Our algorithm is based on appropriately generalizing
containment mappings, the chase, and composition.
The first step uses containment mappings to produce
candidate rewriting queries. The second step composes
each candidate rewriting query with the views and
checks whether the composition is equivalent to the
original query.
the one for the rewriting of conjunctive queries, there

Though the algorithm is similar to

are many challenges stemming from the semistructured
nature of the data and the queries. For example, the
composition of the rewriting query and the views is
harder (from a complexity point of view) because of
the lack of schema and of the restructuring capabilities
of TSL views. Morcover, we extend the algorithm to
use structural constraints to discover rewritings in cases
where, in the absence of constraints, there would be no
rewritings.

We currently incorporate our algorithm into the
TSIMMIS system for use as a capability based rewriter.
We will soon adapt its interfaces to the TSIMMIS sys-
tem so that it will be able to also serve as a rewriter of
queries using cached views. Furthermore, we are work-
ing on extensions to the algorithm so that it can handle
extensions to TSL, such as regular path expressions in
the query body. Notice that in the presence of regu-
lar path expressions, the opportunities (and difficulties)
presented by the existence of structural constraints such
as DTDs are more significant.

We are also currently developing rewriting algorithms
that, instead of generating equivalent rewriting queries,
will generate mazimally contained rewriting queries, in
the spirit of [10, 9].
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