
A Framework for Navigation-Driven Lazy Mediators

Bertram Lud�ascher Yannis Papakonstantinou Pavel Velikhov

ludaesch@sdsc.edu fyannis,pvelikhog@cs.ucsd.edu

Abstract

We propose a framework for navigation-driven evalua-
tion of virtual mediated views. The approach is based
on lazy mediators that translate incoming client naviga-
tions on a virtual XML view (or the result of an XML
query) into navigations on wrapped sources or lower
level mediators. Such a demand-driven approach is in-
evitable in order to handle up-to-date mediated views of
huge Web sources or large query results, which are com-
monplace when querying the Web. The proposed MIX
mediator provides to the client an abstraction of the
DOM API, the de facto API to XML documents, hence
hiding the non-materialization of the view or the query.
We also describe the inherent navigational complexity of
queries and view de�nitions wrt. navigations. Next, we
discuss the query/navigation processing aspects of the
MIX mediator. The mediator translates a view into an
algebraic plan. Then each operator of the algebraic plan
acts as a navigation-driven lazy mediator. This allows
to characterize the complexity of plans and to compare
their navigational complexity.

1 Introduction and Overview

Mediated views integrate information from heteroge-
neous sources. There are two main paradigms for evalu-
ating queries against integrated views: In the eager (or
warehousing) approach, data is collected and integrated
prior to the execution of user queries against the mate-
rialized views. However, when the user is interested in
the most recent data available and/or huge (or poten-
tially in�nite) views, then a lazy (or demand-driven) ap-
proach has to be employed. Most notably such require-
ments are encountered when considering integration of
Web sources. For example, consider a mediator which
integrates data on books available from amazon.com and
barnesandnoble.com. Clearly, a warehousing approach
based on all available books is not viable. In the lazy
approach, however, the user query against the mediated
view will be decomposed at the mediator and corre-
sponding subqueries will be sent to the sources at query
evaluation time.

de�nition q1
XMAS view

BBQ User Interface XML Application

client navigations

partial results partial results

source navigationssource navigations

Wrapper
RDB-XML

Wrapper
HTML-XML

RDB OODB

XMAS view
de�nition q2

user navigations

partial results partial results

virtual XML view

Web sites

(DOM-VXD)

OODB-XML
Wrapper

Lazy Mediator mq1 Lazy Mediator mq2

Figure 1: DOM-VXD mediation architecture

In the MIX1 system we take the lazy mediator ap-
proach to its full potential using the architecture of Fig-
ure 1. The common model for data exchange is XML
[XML98b]. Mediator views are expressed in XMAS2, a
declarative XML query language, which is very similar
to XML-QL [XML98a] and YAT [CDSS98]. Neverthe-
less most of the concepts and results presented next are
orthogonal to the details of the semistructured model
and the query language.

An application, such as the B lended Browsing and
Querying (BBQ) interface [BGL+99], may directly ac-
cess the view or issue a query against the view and con-
sequently access the query result. In the balance of the
paper we assume that the application directly accesses
the view. The case of issuing a query against the view
is handled by replacing the view with the composition
of the query and the view.

The application accesses the view using a subset of
navigation commands of the DOM3 API. However, the
lazy mediator MIXm does not materialize the view
document in advance. Instead, view materialization
is driven by the application's navigation. The media-

1Mediation of Information using XML [MIX99].
2XML Matching And Structuring Language [LPVV99].
3Document Object M odel [DOM98].

1

tor translates the application requested navigations into
corresponding navigation commands against lower level
lazy mediators or sources. Data returned by navigating
the sources is then processed in the mediator. Finally,
the requested pieces of the virtual view are sent back to
the user.

Note that it is transparent to the application that the
view document it accesses is a virtual one. We call this
framework DOM-VXD (DOM for Virtual XML Docu-
ments). In this paper we outline the implementation of
DOM-VXD at mediators. Due to space limitations we
do not discuss the important issues involved in imple-
menting DOM-VXD wrappers.

In Section 2, we introduce navigation-driven lazy me-
diators and a new notion of navigational complexity for
describing the complexity of views in terms of naviga-
tions. In Section 3, we present the operators of the
XMAS algebra and show how they can be realized as
navigation-driven lazy mediators. In Section 4, conclu-
sions and some future directions are given.

2 Navigations

A lazy mediator mq for a view de�nition q operates as
follows: The client navigates into the virtual view ex-
ported by mq by issuing DOM navigation commands on
the view document exported by the mediator. For each
command ci that the mediator receives (Figure 2), a
minimal source navigation is sent to each source. Note
that navigations sent to the sources depend on the client
navigation, the view de�nition, and the state of the lazy
mediator. The results of the source navigations are then
used by the mediator to generate the result for the client
and to update the mediator's state.

XML sourcekXML source1

materialized XML

View q

� � �

answer tree

virtual XML
answer tree

source navigation

partial XML source1 partial XML sourcek

source navigation

source results

� � �

c1; :::; cn; :::

client navigation

r1; :::; rn; :::

results

Lazy Mediator
mq

Figure 2: Navigational interface of a lazy mediator

Data and Access Model. We model XML docu-
ments as labeled ordered trees over a suitable under-

lying domain D.4 In the sequel, we will refer to la-
beled ordered trees simply as trees. The set T of all
such trees comprises all atomic values d and constructs
d[t1; : : : ; tn], where d 2 D is a label (or element type in
XML parlance), ti 2 T, and [t1; : : : ; tn] is an ordered list
of trees (subelements).
XML documents (both source and answer docu-

ments) are accessible through navigation commands.
We present a navigational interface that is an abstrac-
tion of the DOM API for XML, and employs pointers
(references) to keep track of the explored part of the
document being navigated.

� d (down): d(p) = p0 if p0 is the �rst child of p; if p
is a leaf then d(p) = ? (null).

� r (right): r(p) = p0 if p0 is the right sibling of p; if
there is no right sibling r(p) = ?.

� f (fetch): f(p) = l if l is the label of p.

Apart from this minimal set of navigation commands,
which is su�cient to explore a virtual document com-
pletely, further navigation commands can be provided.
For example, we may include in NC a command for
selecting certain siblings:

� select (��): ��(p) = p0 if p0 is the �rst sibling to
the right whose label satis�es �; if there is no such
sibling ��(p) = ?.

By adding more powerful navigation commands like ��,
the navigational complexity of queries can be improved
(see below).
Note also that it will often be impossible or too expen-

sive to navigate a source using the �ne granularity of the
DOM commands. The MIX system resolves this prob-
lem by allowing wrappers, the pieces of software that are
between sources and mediators, to navigate the source
in the granularity that makes most sense for the speci�c
source (as well as for the intermediate network). Then
a bu�er incorporated in the wrapper resolves the dis-
crepancy between the source's granularity of navigation
and the DOM. Due to lack of space, we omit a detailed
discussion of this wrapping and bu�ering scheme.

De�nition 1 (Navigation) Let p0 be the root for
some document t 2 T. A navigation into t is a sequence

c = c1(p0); c2(p1); : : : ; cn(pn�1)

where each ci 2 NC and each pi�1 is the result of a
previous command cj(pj�1) for some j � i�1.
The result (or explored part) c(t) of applying the nav-

igation c to t is the unique subtree comprising only

4
D includes all \string-like" data, i.e., element/attribute

names, attribute values, and character content.

2

those node-ids and labels of t which have been accessed
through c. Depending on the context, c(t) may also
denote the �nal point reached in the sequence, i.e.,
cn(pn�1).
Instead of c = c1(p0); c2(p1); : : : ; cn(pn�1) where pi =

ci(pi�1), we may write c = c1; : : : ; cn. 2

Navigational Complexity. When a lazy mediator
receives a user navigation command it translates it into
the smallest source navigation command sequence that
is su�cient for returning a result to the user. The
\browsability" of a mediator view depends on how small
these source navigation sequences are. We split views
into three categories as illustrated by the following ex-
ample.

Example 1 Consider a view qconc which computes the
concatenation of elements of two sources by making the
root elements of the sources siblings of a new root ele-
ment of the answer, or by \decapitating" the root nodes
and concatenating all �rst-level children. It is easy to
see that in both cases, the optimal source navigations
for this query just mirror the given client navigations.
Eventually qconc is bounded by a linear function. Hence
the mediator can provide a very strong guarantee re-
garding the time it takes to respond to a navigation
command on such a view. We will call this class of
views bounded browsable.
Conversely, consider a view q� which picks all �rst-

level subelements of a source, which satisfy some prop-
erty �. Assume the client asks for the label of the �rst
child in the virtual view. This is accomplished by the
navigation c = d; f . However, the length of the corre-
sponding source navigation s = d; f; r; f; r; ::: depends
on the source data, i.e., when we �nd the �rst child
which satis�es �. We will call such a view unbounded
browsable in order to indicate the good news and the
bad news: It may be possible to process the user re-
quest by retrieving just a (small) part of the source but,
at the same time, the mediator cannot provide a strong
guarantee on the processing time.
Finally, consider a view that orders the selected el-

ements according to some arithmetic attribute such as
age. Navigating such a view is very ine�cient because
the mediator cannot respond to the user until it has seen
the complete list of age elements. We will call such a
view unbrowsable. 2

First we classify the complexity of client navigations
on views. Let q be a view and c a sequence of client
navigations.

Unbrowsable: A navigation sequence c on a view q is
called unbrowsable, if in order to compute the result
of c on q(t), the computation requires access to at

least one list of t in its entirety, independent of the
input t.

Browsable: Conversely, a sequence c on q is called
browsable, if the result of c on q(t) can be computed
without accessing any list of t in its entirety.

Bounded Browsable: Finally, a sequence c on q is
called bounded browsable, if it is browsable and
there is a function f such that the length m of the
required source navigation is � f(n), where n is the
length of c = c1; : : : ; cn.

Based on this, a query q is called unbrowsable, if there
is a c such that c on q is unbrowsable. A query q is
(bounded) browsable, if for all c, c on q is (bounded)
browsable.
Note that the degree boundedness depends on the

given set of navigation commands. For example, if NC
includes the sibling selection ��, the last query turns
from unbrowsable into browsable, since one source com-
mand is su�cient to retrieve the �rst child satisfying �.

3 Query Evaluation

We employ the XMAS algebra described below in order
to formulate, optimize, and evaluate XMAS query plans.
Figure 3 shows a simple XMAS view which retrieves all
homes having a school within the same zip code region.5

CONSTRUCT <ans> $H f$Hg </ans>

WHERE <homes>

$H: <home>

$Z1: <zip> $V1 </>

</home>

</homes> IN "http://...homesSrc.xml"

AND <schools>

$S: <school>

$Z2: <zip> $V2 </>

</school>

</schools> IN "http://...schoolsSrc.xml"

AND $V1=$V2 .

Figure 3: XMAS query q

Query processing involves the following steps:

Preprocessing: At compile-time, a XMAS view q is
�rst translated into an equivalent algebra expres-
sion Eq that constitutes the initial view plan. Note
that in practice the interaction of the client with
the mediator may start by issuing a query q0 on q.

5The collection label f$Hg de�nes that each binding of $H cre-
ates one subelement of the ans element [BGL+99]. XMAS in-
cludes many other features, for example, vertical and horizontal
path expressions [LPVV99].

3

�$3

crElans;$2!$3

gByfg;$H!$2

�$H

1$V 1=$V 2

getN$5!$V 1 getN$5!$V 2

getC$Z1!$5 getC$Z2!$5

�$4=zip �$4=zip

getN$Z1!$4 getN$Z2!$4

getC$H!$Z1 getC$S!$Z2

�$2=home �$2=school

getN$H!$2 getN$S!$2

getC$0!$H getC$0!$S

homesSrc schoolsSrc

Figure 4: Plan (algebra expression) Eq

In this case the preprocessing phase will compose
the query and the view and generate the initial plan
of q0 � q.

Query Rewriting: Next, during the rewriting phase,
the initial plan is rewritten into a plan E0q which is
optimized wrt. navigational complexity.

Query Evaluation: At run-time, client navigations
into the virtual view, i.e., into the result of q are
translated into source navigations. This is accom-
plished by implementing each algebra operator op
as a lazy mediator mop. Thus, the optimized plan
E0q corresponds to a tree of lazy mediators.

The modularization of the plan provides important
bene�ts: In the overall DOM-VXD architecture (Fig-
ure 1), lazy mediators mq1 ;mq2 ; : : : can be organized
in a tree-like structure; communication between media-
tors is through the navigations. By translating eachmqi

into a plan Eqi which itself is a tree consisting of \little"
lazy mediators (one for each algebra operation), we ob-
tain a smoothly integrated, uniform evaluation scheme.
Furthermore, the mediator optimizes such plans using
a rewriting optimizer. Finally, it is easy to incorporate
additional operators (e.g., aggregates) in the view def-
inition language by incorporating additional operators
in the algebra.

3.1 The XMAS Algebra

In the XMAS query language, variables bind to atomic
values (strings fromD), or to XML elements (trees from
T). Thus, in the XMAS algebra, a binding for k vari-

ables can be represented as a tuple b = (b:1; : : : ; b:k)
where each b:i refers to a value from D or T.
In order to realize an algebra operator op as a lazy me-

diatormop, we represent its inputs (i.e., one or more lists
of variable bindings) as tree-like structures. More pre-
cisely, each input to an operator is a list of variable bind-
ings, represented by a root element r, whose children
b1; b2; : : : represent tuples. Each tuple bi = bi:1; : : : ; bi:k
encodes the i-th binding for the given k variables. Thus,
the index j identi�es the j-th column of the list of vari-
able bindings. Instead of the variable index j, we some-
times use the variable name.
Several variable bindings can refer to the same ele-

ments of the input, so the described structure contains
shared subtrees, i.e., is a labeled ordered graph (log).
Thus, when evaluating a XMAS query q using an alge-
braic plan Eq , input trees tin 2 T may become logs.
However, eventually, the intermediate logs will be ex-
panded, so the �nal answer will be a tree tout 2 T again.

Algebra Operators. Every XMAS algebra operator
speci�es a mapping from one or more input logs to an
output log, so operators can be nested and the algebra
is closed. The algebra includes lazy versions of the con-
ventional relational operators and a few operators know
from object-oriented algebras. In particular, the usual
relational operators �, �, 1, �, [, and n are appropri-
ately modi�ed to operate on logs.
The non-standard operators de�ned below operate on

a single input log only. The notation opx1;:::;xn!y indi-
cates that op is applied to input operands x1; : : : ; xn,
resulting in the output y (xj and y are variable indexes
or names). Thus, for a binding b, op uses b:x1; : : : ; b:xn
as input and b:y as output.

Operators as Queries. First, we provide an informal
description of the main operators as mappings from logs
to logs, without considering their navigational behavior.
bin and bout denote tuples (holding variable bindings)
from the input and output log, respectively.

� createElementname;ch!e (crEl) creates a new ele-
ment el for each input tuple bin with label(el) =
label(bin:name) and where the subelements of el
are the subelements of bin:ch. el is placed into
bout:e (so n, ch, and e identify the name, children
and new element column, respectively).

� getChildrene!ch (getC) extracts all children
c1; : : : ; ck of bin:e and for each ci creates an output
tuple bout where bout:ch = ci.

� getNamee!name (getN) extracts the label of bin:e
for each input tuple bin and creates an output tuple

4

bout, where bout:name is a new element whose label
equals label(bin:e).

� groupByg1;:::;gk;v!l (gBy) groups all bin:v's by the
values of the group-by elements bin:g1; : : : ; bin:gk.
The output tuple comprises the children
bin:g1; : : : ; bin:gk followed by a new element
collection, whose subelements are the bin:v's
which appear together with the corresponding
bin:g1; : : : ; bin:gk in the input.

� orderByx1;:::;xk (ordBy) orders all tuples bin accord-
ing to the occurrence of bin:x1; : : : ; bin:xk in the in-
put.

� concatenatex;y!z (concat) concatenates subele-
ments of bin:x and bin:y for each input tuple bin and
creates a new element conc in bout:z. The subele-
ments of conc are the concatenation of subelements
of bin:x and bin:y.

Example 2 (XMAS to Algebra) Figure 4 shows
the equivalent initial plan Eq for the view in Figure 3.

2

Operators as Lazy Mediators. In order to imple-
ment operators as lazy mediators, we have to de�ne
their navigational input/output behavior. We model
lazy mediators as state machines whose input are client
navigations which are translated by the state machine
into outgoing source navigations. In Figures 5 and 6
we annotate transitions from state to state' with
triplets c=s=hp1; : : : ; pki, denoting the incoming client
navigation, the outgoing source navigation, and pointer
updates, respectively. The result of sending s to the
source is then returned to the client above, together
with hp1; : : : ; pki and state'. We con�ne ourselves to
the description of the lazy mediators for createElement,
getChildren, and groupBy.

root

tuple

tuple.0 tuple.1

identity

tuple.e-1 tuple.e

r=r(q)=hr(q); r(q)i

d=none=ht; d(q)i

r=r(q)=ht; r(q)i

r=r(q)=ht; qi

d=d(t)rchd=ht; d(t)rchdi

f=d(t)rnamef=ht; qi

d=d(q)=hd(q); d(q)i if d(q) 6= ?

Figure 5: Lazy mediator for createElement

� createElementname;ch!e: the state machine for this
lazy mediator is depicted in Figure 5. It maintains
a tuple ht; qi of pointers into the virtual result of
the lazy mediator (or source) below. t identi�es
the current input tuple and is used to navigate to
the name and ch elements of the input, whereas
q just mirrors the client navigations in the source.
The key transitions are outgoing from tuple.e: In
case of an incoming command f (fetch), we create
the source navigation d(t); rname ; f , i.e., we �rst
move down from the current tuple t, then move
right \name" times, and �nally fetch the label of
the reached element. The source pointers t; q are
not changed. In case of d (down), we have to up-
date the source pointer q to point to the children
list of the source using a navigation d(t); rch; d. The
result of this source navigation is returned to the
client. When entering the identity state, the op-
erator just mirrors incoming client navigations at
the source. All transitions not shown in the �gure
implicitly lead to identity. This establishes that
createElement is a bounded operator.

� getChildrene!ch (Figure 6): this operator uses
pointers hc; qi, where c keeps track of the current
child element, and q is used as in createElement.
When receiving r in state tuple, we either navi-
gate to the next child of the current input element,
or to the next tuple that contains a child. Note
that this behavior corresponds to a loop and thus
turns the getChildren into an unbounded operator.

root

tuple

tuple.0 tuple.1 tuple.e-1

identity

tuple.e

f=f(c)=hc; ci

d=d(c)=hc; d(c)i

r=none=hr(c); qi if r(c) 6= ?

d=none=hc;d(q)i

r=r(q); hc; r(q)i

d=d(q)=hd(q)rchd; d(q)i if d(q) 6= ?

otherwise, r=r(q)rm=hr(q)rmdrchd; r(q)rmi

where r(q)rmdrchd 6= ?

r=r(q)=hc; ci

Figure 6: Lazy mediator for getChildren

� groupByg1;:::;gk;v!l: In addition to the usual states,
this operator stores the current group-by list �g =
g1; : : : ; gk, a set of previously encountered group-
by lists Gprev and three pointers hp; q; si. p refer-
ences the �rst input tuple that contains the current
group-by list �g, q keeps track of the current input
tuple, and r corresponds to the current source nav-
igation.

5

The non-trivial transitions involve navigations to
the next tuple of the output and navigations into
the collection of grouped variables. The r command
at the tuple state must navigate to the next input
tuple which has a new group-by list. So the opera-
tor sends r commands to the underlying mediator
until a group-by list is found which is not in Gprev .

The second relevant transition is the navigation
into the collection of grouped elements. When the
client navigates down to the �rst grouped element
of the collection, the s pointer is set to the v-th
child of the input tuple. Successive r commands
scan the input tuples until a tuple is found whose
group-by list coincides with �g.

4 Discussion and Conclusions

We have presented a novel mediation framework, DOM-
VXD, for evaluating queries against virtual mediated
XML views. In our approach query evaluation is lazy
and completely driven by client DOM navigations. This
is accomplished by implementing virtual views through
lazy mediators, which serve incoming client navigations
by sending corresponding navigations to the sources and
returning the processed answers.
The idea of demand-driven lazy evaluation is related

to pipelined plan execution in relational databases (see
e.g. [GMUW99]). However, in the case of (XML) trees
the client navigation may proceed at multiple incom-
plete points, while in relational databases a client navi-
gation may only proceed at the current cursor position.
Another major di�erence to the relational case is that
the presence of order may change the navigational com-
plexity and implementation of views and lazy mediators.
Further note that bounded browsable and unbrowsable
queries are somewhat similar to tuple and global predi-
cates, respectively (i.e., whose output depends solely on
a tuple, or on the whole relation).
Mediator views are de�ned in XMAS, a declarative

query language in the spirit of XML-QL [XML98a] and
translated by the system into equivalent XMAS alge-
bra expressions. The notion of navigational complexity
relates the client request with the necessary source navi-
gations and allows the classi�cation of queries according
to their degree of browsability.
A key idea for obtaining a smoothly integrated

navigation-driven architecture is to design each algebra
operator as a lazy mediator itself. In general, an evalua-
tion plan Eq consisting of nested lazy mediators can be
less e�cient wrt. navigations than the underlying view
q. For example, the direct translation of XMAS queries
into an initial plan often introduces orderBy operators
which result in unbrowsable plans.

A prototype of the MIX mediator system, employ-
ing an eager approach for evaluating XMAS algebra
expressions, has been implemented [BGL+99]. It em-
ploys a novel DTD-oriented query interface BBQ which
blends browsing and querying of XML data, similar in
spirit to Garlic's Pesto interface [CHMW96]. Cur-
rently, the MIX mediator is being extended to support
the navigation-driven DOM-VXD architecture.
An important issue for future research is the extension

of XMAS and its algebra to include nondeterminism in
the order of lists. This allows additional optimizations
whenever the order of the �nal result is irrelevant.

Acknowledgments. We thank all members of the
\MIX team" at SDSC and CSE/UCSD for many fruitful
discussions.

References

[BGL+99] C. Baru, A. Gupta, B. Lud�ascher, R. Marciano,
Y. Papakonstantinou, and P. Velikhov. XML-
Based Information Mediation with MIX. In
ACM SIGMOD, Philadelphia, 1999. (system
demonstration).

[CDSS98] S. Cluet, C. Delobel, J. Simeon, and K. Smaga.
Your Mediators Need Data Conversion! In Pro-
ceedings of the 1998 ACM SIGMOD Interna-
tional Conference on Management of Data, pp.
177{188, 1998.

[CHMW96] M. J. Carey, L. M. Haas, V. Maganty, and
J. H. Williams. PESTO: An Integrated
Query/Browser for Object Databases. In Intl.
Conference on Very Large Data Bases (VLDB),
pp. 203{214, 1996.

[DOM98] Document Object Model (DOM) Level 1 Spec-
i�cation. W3C recommendation, www.w3.org/
TR/REC-DOM-Level-1/, 1998.

[GMUW99] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database System Implementation. 1999. to ap-
pear.

[LPVV99] B. Lud�ascher, Y. Papakonstantinou, P. Ve-
likhov, and V. Vianu. View De�nition and DTD
Inference for XML. In Post-ICDT Workshop
on Query Processing for Semistructured Data
and Non-Standard Data Formats, Jerusalem,
1999. www-rodin.inria.fr/external/ssd99/

workshop.html.

[MIX99] Mediation of Information using XML (MIX).
www.npaci.edu/DICE/MIX/ and www.db.ucsd.

edu/Projects/MIX/, 1999.

[XML98a] XML-QL: A Query Language for XML. W3C
note, www.w3.org/TR/NOTE-xml-ql, 1998.

[XML98b] Extensible Markup Language (XML) 1.0. W3C
recommendation, www.w3.org/TR/REC-xml,
1998.

6

