
Capability Based Mediation in TSIMMIS

Chen Li, Ramana Yerneni, Vasilis Vassalos

Hector Garcia-Molina,Yannis Papakonstantinou, Je�rey Ullman

Department of Computer Science

Stanford University

Stanford, CA 94305, USA

fchenli, yerneni, vassalos, hector, yannis, ullmang@cs.stanford.edu

1 Introduction

The TSIMMIS system [5] integrates data from multiple heterogeneous sources and provides users

with seamless integrated views of the data. It translates a user query on the integrated views into

a set of source queries and post-processing steps to compute the answer to the user query from the

results of the source queries. TSIMMIS uses a mediator architecture [9] to accomplish this (see

Figure 1).

User

Source 1 Source 2 Source N

Mediator

Figure 1: The TSIMMIS System

We illustrate the query processing of TSIMMIS with the following example. Suppose we have

1

two sources s1 and s2 that supply information about conference papers. Let source s1 have the title,

author and abstract of the papers and let source s2 have conference and title information. The

system provides the integrated view paper, which combines the information from the two sources

to provide title, author, abstract and conference information for each paper. Suppose the user

wants to know the titles and abstracts of all the papers written by \John Smith" in \SIGMOD97".

The mediator may process this user query by sending a source query to s1 to get the titles and

abstracts of papers written by \John Smith", and sending a query to s1 to get the titles of all

papers in \SIGMOD97". The mediator may then join the results of these two source queries to

�nd the answer to the user query.

Traditional mediators focus their attention on the contents of the sources and their relationship

to the integrated views provided to the users. They do not keep track of the capabilities of sources

to answer queries. This may lead them to generate plans involving source queries that cannot be

answered by the sources. In the above example, the mediator answers the user query by sending a

source query to s1 to get the titles and abstracts of all papers written by \John Smith". Suppose

s1 can only return the information about papers, given their titles. Then the source query sent by

the mediator to s1 will fail. Consequently, the mediator will be unable to answer the user query.

In order to solve this problem, mediators should incorporate information about the capabilities

of sources in the process of their plan generation. In the above example, the mediator should notice

the limited query capabilities of s1 and �nd a feasible plan that respects these limitations. In

particular, it should �nd the feasible plan that �rst sends a source query to s2 to �nd all the titles

of papers in \SIGMOD97". For each of these titles, the plan is to send a separate source query to

s1 to verify that the author is \John Smith" and get the abstract.

In TSIMMIS, we describe source capabilities using query templates (see Section 2.3) as discussed

in [4] and [2]. Other systems like Information Manifold ([3], [6]) have used source capability

descriptions based on binding patterns adorning the views exported by sources. For example, in

2

the case of s1's capability limitation described above, the adornment is bff specifying that queries

on s1's view can only be answered if the title attribute is bound (the author and abstract attributes

can be either bound or free). We note here that our source description language is strictly more

powerful than the one used by Information Manifold. Moreover, TSIMMIS explores the space of

feasible plans to �nd an e�cient plan while Information Manifold aims to generate only one feasible

plan for the user query.

In this paper, we show how the TSIMMIS mediator takes into account the capabilities of the

sources to generate feasible query plans for user queries. Section 2 explains how the mediator pro-

cesses user queries in general, and also discusses the way in which source capabilities are described

in TSIMMIS. Section 3 describes the details of the capability based plan generation process. The

demo content is indicated in Section 4.

2 TSIMMIS Mediator and Source Capabilities

In this section, we describe how the TSIMMIS mediator processes user queries. In particular, we

show how the mediator translates the user queries into a set of relevant source queries in Sections

2.1 and 2.2. We also explain in Section 2.3 how the source capabilities can be described by using

query templates.

2.1 Query Translation

The mediator encodes the relationship between the user views and the source views with a set of

view de�nitions. Speci�cally, it uses the Mediator Speci�cation Language (MSL) [5] to de�ne user

views. The view de�nitions in MSL are similar to Datalog rules [8]. For example, the user view

paper is de�ned as follows:

3

<paper f<title T> <author A> <abstract B> <conference C>g> :-

<entry f<title T> <author A> <abstract B>g>@s1 AND <entry f<title T> <conference C>g>@s2

The above rule states that paper is essentially a join of the views exported by s1 and s2, with

title being the join attribute.

Suppose the user wants to �nd the title and abstract of each paper written by \John Smith"

in \SIGMOD97". The user formulates the following query, based on the user view paper:

<ans f<title T> <abstract B>g> :-

<paper f<title T> <author ``John Smith''> <abstract B>

<conference ``SIGMOD97''>g>

When the user query arrives at the mediator, the mediator uses the view de�nitions to translate

the query on the user views into a set of queries on the source views. This process of view expansion

yields a logical query plan for the user query. The following is the logical plan for the example user

query:

<answer f<title T> <abstract B>g> :- <entry f<title T> <author ``John Smith''> <abstract

B>g>@s1

AND <entry f<title T> <conference ``SIGMOD97''>g>@s2

The logical query plan is a set of MSL rules, each specifying how a set of answers to the user

query is computed from a set of source queries. Sometimes we refer to the source queries speci�ed

on the right hand sides of the logical query plan rules as conditions. In the logical plan above,

4

there is only one rule with two conditions (there will be multiple rules in the logical plan only if

there are multiple rules for the user view paper). The rule states that answers to the user query

can be computed by sending two source queries. The �rst one, to s1 gets the title and abstract of

each entry (for a paper) corresponding to \John Smith", while the second one, to s2, gets the title

of each paper in conference \SIGMOD97". From the results of the two source queries, the bindings

for variables T and B are obtained to construct the answers to the user query.

2.2 Physical Plans

The logical query plans in TSIMMIS do not specify the order in which the conditions are processed

(i.e., source queries sent to the sources). This is done in the physical plans generated in the

subsequent stages of the TSIMMIS mediator.

Three possible physical plans for the logical plan of the example user query are:

� P1: Send query \< entry f< title T >< author \John Smith" >< abstract B >g >" to s1;

send query \< entry f< title T >< conference \SIGMOD97">g >" to s2; join the results

of these source queries on the title attribute.

� P2: Send query \< entry f< title T >< author \John Smith" >< abstract B >g >" to s1;

for each returned title, send parameterized query \< entry f< title T >< conference \SIGMOD97"g>"

to s2 with T bound.

� P3: Send query \< entry f< title T >< conference \SIGMOD97" >g >" to s2; for each

returned title, send parameterized query \< entry f< title T >< author \John Smith" ><

abstract B >g >" to s1 with T bound.

5

2.3 Source Capabilities Description: Templates

In order to describe the capabilities of sources, the TSIMMIS system uses templates to represent sets

of queries that can be processed by each source [2]. Suppose s1 and s2 have the following templates:

s1: X :- X:<entry f<title $T> <author A> <abstract B>g>

s2: X :- X:<entry f<title T> <conference $C>g>

s2: X :- X:<entry f<title $T> <conference C>g>

The �rst template says that source s1 can return all the information it has about each paper

given the title. The second template says that s2 can return all the information it has about each

paper given the conference. The third template says that s2 can also return all the information a

paper given its title. Assume that these are the only templates for s1 and s2. That is, s1 and s2

cannot answer any other kinds of queries.

Given these capabilities, P1 (Section 2.2) is not feasible since s1 cannot answer the query

\< entry f< title T >< author \John Smith" >< abstract B >g >". This is because the

title value is not speci�ed. P2 is also infeasible for the same reason. Only P3 is feasible as the

mediator �rst gets the title of each paper in \SIGMOD97" from s2 and uses this title value to get

the corresponding abstract information from s1 and check that the author is indeed \John Smith".

Notice that the queries to s1 are now feasible because they specify the title values.

In the next section, we will show how the plan generation process in TSIMMIS takes into

account the source capabilities in producing feasible query plans.

6

3 Capability Based Plan Generation

Consider the logical query plan and the source templates of Section 2. The task at hand is to

generate an e�cient feasible physical plan for the logical plan with respect to the source capabilities.

Logical plans in the TSIMMIS mediator indicate the pieces of information that are needed

to be obtained from the data sources in order to compute the answers to the user queries. For

example, the logical plan of Section 2.1 says that information about title and abstract of papers

written by \John Smith" should be obtained from source s1 while information about the title

of papers in \SIGMOD97" should be obtained from source s2. However, it does not indicate

whether or not merely sending the two source queries listed in the logical plan will be acceptable

to the sources. In other words, from the logical plan, we do not know if \< entry f< title T ><

author \John Smith" >< abstract B >g >" can be answered by s1 and if \< entry f< title T ><

conference \SIGMOD97">g" can be answered by s2.

From the templates describing the capabilities of sources s1 and s2, we know that the �rst

condition of the logical plan cannot be processed by directly sending the source query to s1. There

are, however, other ways of evaluating this condition. For instance, if we can bind the variable T ,

then the source query can be sent to s1. This leads to the following way to evaluate the logical

plan: send the second source query to s2; for each value of T returned by the query to s2, send the

�rst source query with T bound by this value to source s1; use the T and the B values computed

from the source queries to construct answers to the user query based on the head of the logical

plan rule.

3.1 Plan Generator Module

The above discussion illustrates the main ideas of the capability based plan generation processor.

Figure 2 shows the Plan Generator module of the TSIMMIS mediator. This module takes the

7

logical query plan and the capability description of the sources and computes an e�cient feasible

physical plan for the user query. It accomplishes this in three stages, as described below.

Sequencer Optimizer Physical

Plan

Logical

Plan

Matcher

Source Description

Figure 2: The Plan Generator Module

3.2 Matcher

The �rst step in the plan generation process is to �nd all the options for processing each of the

source queries speci�ed in the logical plan. Some of these options have requirements indicating the

list of variables that need to be bound. To illustrate, consider the logical plan of Section 2.1. Let

the two source queries of the logical plan be denoted C1 and C2. There is one option for processing

C1, with the requirement that variable T be bound. There are two options for processing C2. The

�rst is to send it to s2 as is and the second is to send it to s2 by binding T . Denoting the three

source templates of Section 2.3 as T11; T21 and T22, the following table describes the result of the

Matcher:

Condition Processed Template Binding Requirement

C1 T11 T

C2 T21 None

C2 T22 T

8

The Matcher table has a row for each option of processing a condition of the logical plan. For

instance, the �rst row in the above table indicates that C1 is matched with T11 with the requirement

that the variable T be bound. That is, C1 can be sent to source s1 if T is bound in C1. The second

row of the Matcher table indicates that C2 can be sent to source s2 as is because it is matched with

the template T21 at s2 without any binding requirements. Finally, another way of processing C2 at

s2 is to bind T .

3.3 Sequencer

The second step in the plan generation process is to piece together the information about the

sets of options for the various source queries of the logical plan in order to construct feasible

plans. Here, what matters is not just the speci�c options chosen for each condition but also the

sequence of processing these conditions. For instance, in our example logical plan, there is only one

combination of options for the two conditions of the logical plan. Having identi�ed this combination,

the mediator also needs to �gure out that the proper sequence of processing is the second condition

followed by the �rst. The other sequence, the �rst condition followed by the second, does not lead

to a feasible plan.

The Sequencer uses the table output by the Matcher to �nd the set of sequences of condi-

tions that constitute feasible plans. Each of these sequences has the property that the binding

requirements of a condition in the sequence are satis�ed by the results of the source queries of the

conditions that appear earlier in the sequence. For instance, using the Matcher table described

above, the Sequencer �nds that the only feasible sequence is < C2; C1 >, with source query of C1

being parameterized (variables bound) from the result of the source query of C2. The other se-

quence, < C1; C2 > is obviously not feasible because C1's binding requirements cannot be satis�ed

in this sequence.

9

3.4 Optimizer

Having found the feasible sequences of conditions, the third step of the plan generation process is

to optimize over the set of corresponding feasible plans and choose the most e�cient among these.

The Optimizer uses standard optimization techniques to pick the best feasible plan and translates

it into a physical plan. In our example case, there is only one feasible sequence of conditions (i.e.,

the set output by the Sequencer is a singleton) and this leads to the physical plan P3 of Section

2.2.

4 Implementation and Demo

We have implemented capability based plan generation in the TSIMMIS mediator as described

above. In the demo, we show how TSIMMIS constructs and executes feasible plans for user queries

in the presence of a variety of source capabilities.

We employ three sources in the demo:

� Inspec: a university owned legacy system that contains bibliographic information;

� A web source providing information on bibliographic entries;

� A collection of UNIX �les containing bibliographic information which is accessible through

Perl scripts.

These sources are integrated into the TSIMMIS system by using wrappers [2] to provide uniform

interfaces to them.

We use a web based graphical query interface called MOBIE [1] in our demo to allow users

access to the TSIMMIS system. We encode the capabilities of the sources by specifying sets of

templates, one for each source. We demonstrate the ability of the TSIMMIS mediator to generate

plans for user queries by taking into consideration these templates. We will also show how changes

10

to the templates a�ect the feasible plans generated by the TSIMMIS mediator, by altering the

templates online and rerunning the same set of queries.

References

[1] J. Hammer et al. Information Translation, Mediation, and Mosaic-based Browsing in the

TSIMMIS System. In Proc. ACM SIGMOD Conference, 1995.

[2] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig and V. Vassalos. Template-

Based Wrappers in the TSIMMIS System. In Proc. ACM SIGMOD Conference, 1996.

[3] A. Levy, A. Rajaraman and J. Ordille. Querying Heterogeneous Information Sources Using

Source Descriptions. In Proc. VLDB Conference, 1996.

[4] Y. Papakonstantinou, A. Gupta, and L. Haas. Capabilities-based Query Rewriting in Mediator

Systems. In Proc. PDIS Conference, 1996.

[5] Y. Papakonstantinou, H. Garcia-Molina, J. Ullman. Medmaker: A Mediation System Based

on Declarative Speci�cations. In International Conference on Data Engineering, 1996.

[6] A. Rajaraman, Y. Sagiv and J. Ullman. Answering Queries Using Templates with Binding

Patterns. In Proc. ACM PODS Conference, 1995.

[7] J. Ullman. Information Integration Using Logical Views. In Proc. ICDT Conference, 1997.

[8] J. Ullman. Principles of Database and Knowledge-Base Systems. Vol. I: Classical Database

Systems. Computer Science Press, New York, NY, 1988.

[9] G. Wiederhold. Mediators in the Architecture of Future Information Systems. In IEEE Com-

puter, 25:38-49, 1992.

11

