
Fusion Queries over Internet Databases ?

Ramana Yerneni1, Yannis Papakonstantinou2

Serge Abiteboul3, Hector Garcia-Molina4

1 yerneni@cs.stanford.edu, Stanford University, USA
2 yannis@cs.ucsd.edu, University of California, San Diego, USA

3 serge.abiteboul@inria.fr, INRIA, France
4 hector@cs.stanford.edu, Stanford University, USA

Abstract. Fusion queries search for information integrated from dis-
tributed, autonomous sources over the Internet. We investigate tech-
niques for e�cient processing of fusion queries. First, we focus on a very
wide class of query plans that capture the spirit of many techniques
usually considered in existing systems. We show how to e�ciently �nd
good query plans within this large class. We provide additional heuristics
that, by considering plans outside our target class of plans, yield further
performance improvements.

1 Introduction

In distributed information systems on the Internet, data sources often provide
incomplete and overlapping information on a set of entities. A fusion query

searches over these entities, looking for ones that satisfy given conditions.
To illustrate, consider databases operated by the Departments of Motor Vehi-

cles (DMVs) of several states. Conceptually, each state database can be thought
of as a relation Ri with the following attributes, among others: Driver's license
number (L), Violation (V) and Date of violation (D). Figure 1 shows some sam-
ple relations for three DMVs. Now, consider a fusion query that searches for
drivers who have both a \driving under the in
uence" (dui) and a \speeding"
(sp) violation. For instance, the driver with license J55 satis�es this query be-
cause he has a dui infraction in the �rst state and a sp one in the second state.
Notice that the information for a particular driver, say J55, may be dispersed
among the sources, so the query conceptually (but not actually) \fuses" the
information for each driver as it checks the constraints.

To express our sample query in SQL, we �rst let U be the union of all the
R1, R2; ::: tables at the various DMVs, and then we write

SELECT u1:L

FROM U u1; U u2
WHERE u1:L = u2:L AND u1:V = sp AND u2:V = dui

? Research partially supported by the Wright Laboratory, Aeronautical Systems Cen-
ter, Air Force Material Command, USAF, under Grant Number F33615-93-1-1339.
This research was done when Papakonstantinou and Abiteboul were at Stanford.

R1 L V D R2 L V D R3 L V D

J55 dui 1993 T21 dui 1996 T21 sp 1993
T21 sp 1994 J55 sp 1996 S07 sp 1996
T80 dui 1993 T11 sp 1993 S07 sp 1993

Fig. 1. DMV Example.

This is the type of query we focus on in this paper.
We believe that such fusion queries are important now, and will become even

more important in the future as integration systems cope with more and more
information that has not been nicely structured and partitioned in advance. In
a traditional distributed database environment, for instance, an administrator
could determine in advance that all violations for licenses issued in a given state
go to a particular database. This makes fusion query processing much simpler
because we only have to perform the query locally at each database and union
the results. However, in a world where sites and databases are autonomous, as in
the Internet context, it is very di�cult to agree on and enforce global partitions.
For example, the California DMV may want to keep a record of all violations
that occurred in its state regardless of the license's origin. At the same time, the
California DMV may not have complete records for California drivers because
the other DMVs may not notify the California DMV of infractions occurring in
their states involving California drivers.

Fusion queries over Internet databases introduce tough performance chal-
lenges. Traditional query optimizers do not consider fusion queries in any spe-
cial way. They treat them simply as queries involving join operations and union
views. In addition, many optimizers rely on good fragmentation of data and
assume that the number of sources is small. As we have argued earlier, such as-
sumptions are not valid in the Internet context and this often leads conventional
techniques to produce poor plans for fusion queries over Internet databases.

Our goal in this paper is to understand how fusion queries can be processed
e�ciently in the context of Internet databases. To gain this knowledge, we pro-
ceed in four steps:

1. To make our task more manageable, we only consider fusion queries that
retrieve the merge attribute (e.g., driver's license) of the matching entities.
If additional information on the matching entities (e.g., driver's address)
is needed, a \second phase" query would be issued. The assumption elimi-
nates some performance factors (e.g., when should additional attributes be
fetched), but still lets us study the basic types of fusion query plans.
Furthermore, the \two-phase" approach is sometimes used in practice so it is
interesting in its own right. For instance, in a bibliographic search scenario,
one �rst identi�es the documents that satisfy the criteria, and then fetches
the documents, usually a few at a time. The main reason why searches are
split this way is that the full records of the matching entities may be very

large and are often stored on separate systems altogether. Even when this is
not the case, this two-phase processing may reduce cost because we do not
pay the price of fetching full records until we know which ones are needed.

2. To understand the types of fusion query plans, we �rst narrow down the
space of plans to those we call simple plans (Section 2). Simple plans are
coordinated by a central site we call the mediator. The mediator can ask one
or more data sources to evaluate a condition, obtaining a set of values for the
merge attributes. The mediator can also perform one or more semijoins by
sending a set of merge attribute values to a source and receiving that subset
whose elements match a condition at the source.5 Finally, the mediator can
combine the sets of merge attribute values it obtains, via union or intersection
operations. For our sample query, one simple plan, call it P1, could be as
follows: First, the mediator asks each source to give it all L values for drivers
with V = dui (see Figure 1). Then the mediator unions all these sets of
values, and sends the entire set to all sources, asking each to select the ones
that have V = sp. The union of those answer sets would be the �nal answer.
The class of simple plans includes all the strategies that most real world op-
timizers would currently develop for a fusion query, plus many other natural
plans. Thus, even though we have narrowed down our search, we expect to
still �nd some excellent plans in this space, at least as good as those found
by current optimizers.

3. The class of simple plans is still too large to be searched in a brute force way
for an optimal plan. Fortunately, using theorems we prove in [24], we can
constrain our search to a much smaller class of plans, those we call semijoin-

adaptive. Intuitively, these are simple plans that work on the conditions
of the query in some order, one condition at a time. (Plan P1 above is
also semijoin-adaptive, since it �rst considers one condition fully, and then
moves on to the second one.) It turns out that semijoin-adaptive plans are
very good under a general cost model that we use here. In particular, if there
are only two query conditions, or if there are more conditions but they are
independent, then the best semijoin-adaptive plan is also the best simple
plan. In this case the optimizer can perform a signi�cantly smaller search
over the space of semijoin-adaptive plans, and still �nd the best simple plan.
Even if the conditions of the query are not independent, the best semijoin-
adaptive plan provides an excellent heuristic. Indeed, when dealing with
autonomous sources over the Internet, we often have no information about
the dependence of conditions, so using the best semijoin-adaptive plan is as
good a guess as we can make. Section 3 presents an e�cient optimization
algorithm to �nd the best semijoin-adaptive plan for a given fusion query.

4. Once we �nd the best semijoin-adaptive plan, we consider some variations of
this plan that make it non-simple but that may improve performance further.
In other words, as a \postoptimization" step, we consider a class of plans
that is larger than simple plans, but we only perform a local optimization

5 Note that if the source does not directly support semijoins, the mediator can emulate
them; see Section 2.3.

in the neighborhood of our best semijoin-adaptive plan. For example, one
of the variations we consider is having the mediator use set di�erence. To
illustrate, consider our sample plan P1. We leave the �rst part unchanged,
obtaining the set X1 = fJ55; T80; T21g of all L values that have V = dui.
Now, instead of sending X1 to all sources for a semijoin, we only send it to
the �rst source. The �rst source (R1) returns the subset of X1 with V = sp,
i.e., Y1 = fT21g. Now the mediator knows that T21 is de�nitely an answer
to the query, so when it goes to the other sources, it does not have to send
the full X1 set; instead it sends X1 � Y1, reducing the amount of data that
must be sent to the source. Postoptimization techniques like this one are
discussed in Section 4.

2 Framework

In this section, we provide the framework for fusion query processing. First, we
de�ne the operations and data exported by sources. Second, we formally de�ne
fusion queries. Then we describe the class of simple plans, and our cost model.
Finally, we identify some important subsets of simple plans.

2.1 The Sources

In our framework, each source has a wrapper [19] that exports a relation6. All
the source relations have the same attributes, which include the merge attribute
M . Attribute M identi�es the real-world entity that the tuple refers to. Inter-
nally, each source can use a di�erent model, but the wrapper maps it to the
common view we are using. Note that we use a relational framework here only
for simplicity. The algorithms we propose in this paper can be extended in a
straightforward way to other data models. Incidentally, our interest in the fu-
sion problem emerged from the TSIMMIS project which uses a semistructured
object model [18].

Wrappers support the following two types of operations:

{ Selection queries denoted as X := sq(ci; Rj). This operation retrieves the
set of items that satisfy ci in source relation Rj (we use the term item to
refer to a merge attribute value).

{ Semijoin queries denoted as X := sjq(ci; Rj; Y). This operation computes
the subset of Y items that satisfy ci in Rj.

2.2 Fusion Queries

We use U to refer to the union of all the source relations Rj. The general form
of fusion queries is:

6 The wrapper can export other relations of course; here we focus on the one involved
in the fusion query of interest.

SELECT u1:M

FROM U u1; : : : ; U um
WHERE u1:M = : : : = um:M AND c1 AND : : : AND cm

where each condition ci; i = 1; : : : ;m involves only one ui variable and U at-
tributes, and is supported by the wrappers.

2.3 Simple Plans

Under simple plans, mediators can issue selection and semijoin queries to the
wrappers, and can themselves perform operations of the form X := Y op Z,
where Y and Z are sets of items, and op is either a union ([) or an intersection
(\). Notice that, in general, mediators perform other operations like joins. How-
ever, for fusion queries, union and intersection operations su�ce. Figures 2(a),
2(b) and 2(c), later on in this section, give examples of simple plans for a fusion
query with 3 conditions and 2 sources.

Simple plans are quite general and can represent many ways to e�ciently
process fusion queries. They allow the description of any plan obtained by stan-
dard algebraic optimization techniques such as pushing selection and projection
operations to the sources. They also allow query rewriting using the distribu-
tivity of join and union, the commutativity and associativity of join and union,
along with many techniques to reorder joins to e�ciently process m-way joins,
and the use of semijoin operations for e�cient processing of joins in distributed
environments. These are strategies that most optimizers typically use. Thus, if
we are able to �nd the best simple plan, we believe we will have a plan that
cannot be beaten by existing real-world optimizers.

Simple plans can be employed in many contexts with a wide range of source
capabilities. All that is required is that the sources support selection and semijoin
queries. Some sources may not be able to support semijoin queries. In this case,
the mediator can emulate a semijoin query as a set of selection queries. The
cost of the emulated operation may be higher than if the source supported the
semijoin operation, and this will be taken into account in our cost model. If source
Rj does not support sjq(ci; Rj; Y), the mediator can process this semijoin query
by sending the source a set of individual selection queries, one for each value in
Y . In order for this to work, the source should at least be able to handle selection
conditions of the form ci AND M = m, where m is a \passed binding" (from Y). If
the source is incapable of supporting even such queries, we can assign an in�nite
cost to the semijoin query, indicating that it is an unsupported query and hence
should not be used in any query plan.

2.4 Cost Model

In our domain of interest, the Internet databases, the most time consuming
task is sending queries to the sources and receiving answers from them. Thus,
we adopt a model that emphasizes these costs and neglects the cost of local
processing at the mediator. In particular,

{ Each sq(ci; Rj) and each sjq(ci; Rj; X) operation has a non-negative cost.
{ If X, Y and Z are sets of items with X = Y [Z, the cost of sjq(ci; Rj; X) is
at most as much as the sum of the costs of sjq(ci; Rj; Y) and sjq(ci; Rj; Z)
for any ci and Rj. In other words, there is no bene�t in splitting a semijoin
set X into semijoin sets Y and Z.

{ The cost of local mediator operations, [and \, is negligible.
{ The cost of a query plan is the sum of the costs of the constituent sq(ci; Rj)
and sjq(ci; Rj; X) operations. Thus, our focus is on total work involved in
query execution, not on response time.

We do not make any assumptions as to how the costs of source queries are
computed; they could take into account the cost of communicating with sources,
and the cost of actually processing the queries at the sources. The costs can vary
depending on the contents of Rj and X, and the selectivity of ci.

We believe that our cost model is quite general. Many distributed database
optimizers use cost models that are compatible with our cost model. In fact, our
cost model allows for cost estimation that can deal with heterogeneous source
characteristics while many other cost models do not.

2.5 Important Classes of Simple Plans

To conclude this section, we de�ne some important classes of simple plans.

1) X11 := sq(c1;R1)
2) X12 := sq(c1;R2)
3) X1 := X11 [X12

4) X21 := sq(c2;R1)
5) X22 := sq(c2;R2)
6) X2 := X21 [X22

7) X2 := X2 \X1

8) X31 := sq(c3;R1)
9) X32 := sq(c3;R2)
10) X3 := X31 [X32

11) X3 := X3 \X2

(a) A �lter plan

1) X11 := sq(c1;R1)
2) X12 := sq(c1;R2)
3) X1 := X11 [X12

4) X21 := sjq(c2;R1;X1)
5) X22 := sjq(c2;R2;X1)
6) X2 := X21 [X22

7) X31 := sq(c3;R1)
8) X32 := sq(c3;R2)
9) X3 := X31 [X32

10) X3 := X2 \X3

(b) A semijoin plan

1) X11 := sq(c1;R1)
2) X12 := sq(c1;R2)
3) X1 := X11 [X12

4) X21 := sjq(c2;R1;X1)
5) X22 := sq(c2;R2)
6) X2 := X21 [X22

7) X2 := X2 \X1

8) X31 := sq(c3;R1)
9) X32 := sq(c3;R2)
10) X3 := X31 [X32

11) X3 := X2 \X3

(c) A semijoin-adaptive plan

Fig. 2. Three simple plans

1. Filter plans: Filter plans are simple plans that use only selection queries
and local operations at the mediator. Many traditional distributed query
optimizers do not use semijoin operations. Such optimizers generate �lter
plans for fusion queries.
Figure 2(a) shows an example �lter plan for a fusion query with conditions
c1; c2, and c3 and sources R1 and R2. In this plan, the mediator pushes

each condition to each source (six selection queries), and computes the �nal
answer from the corresponding item sets.

2. Semijoin plans: These are simple plans that employ semijoin queries in a
restricted fashion. A particular semijoin plan is determined �rst by an or-
dering, say, c1; :::; cm of the query conditions. The set X1 of items satisfying
c1 at some source is �rst retrieved by issuing selection queries, one for each
of the n sources. Next, the second condition can be evaluated either in a
similar fashion or by semijoin queries using X1 as the semijoin set. In either
case, the plan computes X2, the set of items that satisfy c1 at one source
and c2 at another (possibly the same) source. The process continues in a
similar fashion for the rest of the conditions. In general, for a given ordering
of the conditions, a particular semijoin plan is speci�ed by deciding for each
condition ci (i in [2::m]), whether to evaluate ci by selection queries or by
semijoin queries using as semijoin set the set of items satisfying c1^ :::^ci�1.

Figure 2(b) illustrates a semijoin plan for the same fusion query used in
Figure 2(a). The second condition is evaluated by semijoin queries, and the
others by selection queries. Observe that the �rst condition in a semijoin
plan is always evaluated by selection queries.

Semijoin plans can be more e�cient than �lter plans. For instance, in Fig-
ure 2(b), the source with R1 only returns a fraction of the items satisfying
c2, while the equivalent �lter plan would have fetched all items in R1 satisfy-
ing c2. However, we can make semijoin plans even more e�ective by allowing
them more
exibility. In particular, notice that for a given condition, semijoin
plans either send selection queries to all sources or they send semijoin queries
to all sources. This may be ine�cient in an environment where the sources
have widely di�erent characteristics. For example, if the second source does
not directly support semijoins (i.e., semijoins have to be emulated in an ex-
pensive manner) it may not be bene�cial to process c2 at the second source
by a semijoin query. The class of plans described next has the ability to
adapt to the characteristics of the sources.

3. Semijoin-adaptive plans: Like semijoin plans, these plans process one con-
dition at a time, in some order c1; :::; cm. However, for each condition in
[2::m] and each source, the plan can choose independently between a selec-
tion query or a semijoin query. Figure 2(c) illustrates a semijoin-adaptive
plan for the same sample query of the previous �gures. As we can see, the
plan processes c2 at R1 by issuing a semijoin query, and at R2 by a selection
query. Thus, the plan can use the best strategy at each source.

3 Finding Optimal Simple Plans

In this section we present three optimization algorithms | FILTER, SJ, and
SJA | that compute the best �lter, semijoin, and semijoin-adaptive plans re-
spectively. These algorithms are very e�cient, as they run in time linear in the
number of sources participating in the fusion query.

INPUT: Conditions c1; : : : ; cm
Sources R1; : : : ;Rn

Cost functions sq cost and sjq cost

OUTPUT: An optimal semijoin plan
METHOD:

Optimal Plan Cost 1

for every ordering [co1 ; : : : ; com] of the conditions loop A

Plan [X11 := sq(co1 ;R1); : : : ;X1n := sq(co1 ;Rn);X1 := [j=1;:::;nX1j]
Plan Cost

P
j=1;:::;n

sq cost(co1 ;Rj)

for i = 2; : : : ; m loop B

selection queries cost
P

j=1;::: ;n
sq cost(coi ;Rj)

semijoin queries cost
P

j=1;::: ;n
sjq cost(coi ;Rj;Xi�1)

if selection queries cost < semijoin queries cost

append toPlan the sequence of operations
[Xi1 := sq(coi ;R1); : : : ;Xin := sq(coi ;Rn)]

append toPlan the operation Xi := Xi�1 \ ([j=1;:::;nXij)
Plan Cost Plan Cost + selection queries cost

else

append to Plan the sequence of operations
[Xi1 := sjq(coi ;R1;Xi�1); : : : ;Xin := sjq(coi ;Rn;Xi�1)]

append to Plan the operation Xi := [j=1;:::;nXij

Plan Cost Plan Cost + semijoin queries cost

if Plan Cost < Optimal Plan Cost

Optimal Plan Plan

Optimal Plan Cost Plan Cost

Fig. 3. The SJ algorithm

We use cost functions sq cost(ci; Rj) and sjq cost(ci; Rj; X) to estimate the
costs of the selection query sq(ci; Rj) and the semijoin query sjq(ci; Rj; X) re-
spectively. In analyzing the complexity of the various algorithms presented in this
section, we assume that sq cost and sjq cost take constant time per invocation.
These functions can use whatever information is available at query optimization
time, in order to estimate the costs. Techniques like those discussed in [5, 15, 25]
can be employed in gathering the relevant statistical information that the cost
functions need.

The FILTER algorithm: For a fusion query with m conditions and n sources,
the most e�cient �lter plan is one that issues the mn source queries, pushing
each condition to each source, and combining the results of these source queries
to compute the answer to the fusion query. FILTER directly outputs such a plan
without searching the plan space. Its running time is proportional to the size of
the �lter plan, which in turn is O(mn), where m is the number of conditions
and n is the number of sources.

INPUT: Conditions c1; : : : ; cm
Sources R1; : : : ;Rn

Cost functions sq cost and sjq cost

OUTPUT: The optimal semijoin-adaptive plan
METHOD:

Optimal Plan Cost 1

for every ordering [co1 ; : : : ; com] of the conditions loop A

Plan [X11 := sq(co1 ;R1); : : : ;X1n := sq(co1 ;Rn);X1 := [j=1;:::;nX1j]
Plan Cost

P
j=1;:::;n

sq cost(co1 ;Rj)

for i = 2; : : : ;m loop B

for j = 1; : : : ; n source loop

if sq cost(coi ;Rj) < sjq cost(coi ;Rj;Xi�1)
append to Plan the operation Xij := sq(coi ;Rj)
Plan Cost Plan Cost + sq cost(coi ;Rj)

else

append to Plan the operation Xij := sjq(coi ;Rj; Xi�1)
Plan Cost Plan Cost + sjq cost(coi ;Rj; Xi�1)

append to Plan the operation Xi := Xi�1 \ ([j=1;:::;nXij)
if Plan Cost < Optimal Plan Cost

Optimal Plan Plan

Optimal Plan Cost Plan Cost

Fig. 4. The SJA algorithm

The SJ algorithm: SJ (see Figure 3) generates all possible m! orderings of the
conditions (see loop A). For each one of them, it generates the best Plan with
respect to this ordering, estimates its cost, and eventually selects as Optimal

Plan the one with the least cost among all orderings.
The best Plan with respect to a speci�c ordering [co1 ; : : : ; com] starts with a

sequence of operations that evaluate co1 using selection queries. Then SJ goes
over each one of the m� 1 conditions coi , i = 2; : : : ;m (see loop B) and decides
whether coi is evaluated by semijoin or selection queries. In particular, SJ sums
up and compares the cost of the n selection queries against the cost of the n

semijoin queries. The Plan and its cost are appropriately updated in each round.
The complexity of SJ is O((m!)mn) because loop A iterates m! times, loop B

iterates m� 1 times, and the operations inside loop B are of complexity O(n).

The SJA algorithm: SJA (see Figure 4) di�ers from the SJ algorithm in that it
makes a separate decision between selection and semijoin query for each condi-
tion at each source. In particular, SJA includes the \source loop" of Figure 4
where, for a given condition coi , it decides, for each source Rj, whether the
processing of coi at Rj will be done with a semijoin query or a selection query.

It is easy to see that SJA's complexity is also O((m!)mn) since the source
loop iterates n times and the operations inside it cost O(1). The complexity of

SJA is similar to that of SJ, despite the fact that the space of semijoin-adaptive
plans is much larger than the space of semijoin plans (there are O((m!)2m�2)
semijoin plans assuming we do not consider semijoin plans that are equivalent
with respect to our cost model, and there are O((m!)2n(m�2)) semijoin-adaptive
plans). Moreover, the optimal semijoin-adaptive plan is always at least as good
as, and often much better than, the optimal semijoin plan, as shown in [24]. So,
SJA is preferable to SJ.

The fact that the algorithms presented in this section run in time linear in
the number of sources is very important when we deal with a large number of
sources as is the case with integrating Internet sources.

The running times of SJ and SJA are exponential in the number of conditions.
In most realistic scenarios, this is acceptable since the number of conditions
(unlike the number of sources) is usually small. If the number of conditions
is large, one may employ the e�cient greedy versions of SJ and SJA that we
present in [24]. Those algorithms run in O(mn) time and still �nd optimal plans
under many realistic cost models. However, they may end up with suboptimal,
although still very good, plans under the general cost model that we consider
here.

4 Postoptimization

In this section, we consider postoptimization techniques that can improve the
plans generated by the SJA algorithm. First, we describe two such techniques.
Then, we brie
y discuss how we e�ciently incorporated these techniques in an
algorithm named SJA+. In [24], we describe a set of other postoptimization
techniques that can further enhance the performance.

Loading entire sources. Instead of sending a set of queries to a source, the me-
diator may consider issuing a single query to load the entire source contents and
using this result to evaluate all the queries of that source. This can be advan-
tageous in fusion queries involving extremely small source databases or large
number of conditions.

To illustrate, consider the two queries on R3 in P1 (Steps 3 and 7 in Fig-
ure 5(a)). Let the cost of loading the entire contents of R3 be lower than the
cost of issuing the two queries on R3. Plan P2a in Figure 5(b) is the result of
postoptimizing P1 by loading R3 and replacing the two queries of P1 on R3 by
local computation at the mediator. Note that lq(Rj) is a new operation type
used to represent the loading of the entire relation Rj. Also, we use sq(ci; Y) to
stand for the local application of the condition ci on a set Y of items7.

Using the di�erence operation. A signi�cant portion of the cost of semijoin queries
to sources is for the transmission of the semijoin sets of items. One way to reduce
the size of the semijoin sets is to use the set di�erence operation in the local

7 Strictly speaking, Y is not a set of items because it may also include values for
non-merge attributes on which the condition has to be applied.

1) X11 := sq(c1;R1)
2) X12 := sq(c1;R2)
3) X13 := sq(c1;R3)
4) X1 := X11 [X12 [X13

5) X21 := sq(c2;R1)
6) X22 := sjq(c2;R2;X1)
7) X23 := sq(c2;R3)
8) X2 := X21 [X22 [X23

9) X2 := X2 \X1

(a) phase 1: P1

1) X11 := sq(c1;R1)
2) X12 := sq(c1;R2)
3) Y := lq(R3)
4) X13 := sq(c1; Y)
5) X1 := X11 [X12 [X13

6) X21 := sq(c2;R1)
7) X22 := sjq(c2;R2;X1)
8) X23 := sq(c2; Y)
9) X2 := X21 [X22 [X23

10) X2 := X2 \X1

(b) loading sources: P2a

1) X11 := sq(c1;R1)
2) X12 := sq(c1;R2)
3) X13 := sq(c1;R3)
4) X1 := X11 [X12 [X13
5) X21 := sq(c2;R1)
6) Z1 := X1 �X21

7) X22 := sjq(c2;R2; Z1)
8) X23 := sq(c2;R3)
9) X2 := X21 [X22 [X23

10) X2 := X2 \X1

(c) using di�erence: P2b

1) X11 := sq(c1;R1)
2) X12 := sq(c1;R2)
3) Y := lq(R3)
4) X13 := sq(c1; Y)
5) X1 := X11 [X12 [X13

6) X21 := sq(c2;R1)
7) Z1 := X1 �X21

8) X22 := sjq(c2;R2; Z1)
9) X23 := sq(c2; Y)
10) X2 := X21 [X22 [X23

11) X2 := X2 \X1

(d) SJA+ choice: P2

Fig. 5. Postoptimization

computations at the mediator. This is particularly important if some sources do
not support semijoins directly and the semijoin operation has to be emulated.

In Section 1, we gave a simple example of postoptimization using the dif-
ference operator. Here we give a second example, now couched in our notation.
Consider again plan P1 of Figure 5(a). In Step 6, P1 issues a semijoin query.
At the end of Step 4, X1 contains all the items that satisfy c1. In Step 5, X21

collects all the items of relation R1 that satisfy condition c2. From X1 and X21,
we can �nd the set of items that have already satis�ed c1 and c2. These items
need not be sent to R2 in Step 6, to ascertain the satisfaction of condition c2.
Thus, there is no need to send the entire set X1 as the semijoin input in Step 6.
Instead, we can just send X1 �X21. Figure 5(c) shows the resulting plan.

4.1 SJA+

The SJA+ algorithm incorporates the above two postoptimization techniques as
follows. First, it mimics SJA to obtain the best semijoin-adaptive plan for the
given query. Then, it uses the di�erence operation to prune the semijoin sets,

in all the semijoin queries as described above. Finally, it considers the option of
loading entire source contents to further improve the plan. Figure 5(d) shows a
plan that may be obtained by SJA+, assuming that the plan of Figure 5(a) is
obtained by SJA for the same fusion query.

The time complexity of SJA+ is O((m!)mn+mn). The (m!)mn term is the
cost of SJA. The second term mn is for postoptimization, computed as follows.
The postoptimization phase in SJA+ considers the semijoin queries of (m � 1)
conditions to be improved upon, by using the di�erence operation. For each set of
semijoin queries corresponding to a condition, SJA+ spends O(n) time reducing
the semijoin sets and modifying the semijoin queries appropriately. Thus, the
postoptimization using the di�erence operation takes O(mn) time. Then, for
each of the n sources, SJA+ takes O(m) time to decide on replacing all its
queries by an lq operation and local computation at the mediator. The actual
modi�cation of the plan also takes O(m) per source, because SJA+ will replace
m steps by 1 +m steps (the �rst to load the entire source and the rest for local
computation). Thus, the total postoptimization cost is O(mn). Note that SJA+
has the same order of complexity as SJA. In particular, the postoptimization
phase of SJA+ is very e�cient.

We note that the postoptimization phase of SJA+ uses operations that are
not allowed in simple plans as de�ned in Section 2. In this sense, SJA+ yields
plans outside the space of simple plans. One could have considered this more
general class of plans up front, and systematically searched for optimality within
that space. We decided not to follow that approach because of the very large
number of plans that must be then considered to �nd an optimal plan. For
instance, a simple direct extension to the SJA algorithm to consider the set
di�erence operations at the mediator would make its time complexity be expo-
nential in n. Given that n is usually large in the application domains of interest
to us, such algorithms are infeasible.

5 Fusion Queries in Existing Optimizers

The expansion of the Internet has led to mediator prototypes that combine
information from multiple heterogeneous sources ([1, 10, 17, 23]). Similarly, pro-
totypes for integrating databases have been developed, and recently integration
products are being released or announced ([2, 9, 13]).

We note that there is a close connection between mediator-based systems and
distributed database systems. Given this, many mediator systems have incorpo-
rated query processing and optimization techniques of distributed databases.
There has been a great deal of published work on these techniques ([4, 16, 20,
22]). However, most of this work focuses on the e�cient evaluation of Select-
Project-Join (SPJ) queries. It does not adequately address the special needs of
fusion queries.

In this section we study how existing optimizers would handle fusion queries,
and we explore opportunities for improvement based on the ideas presented in

this paper. The approaches taken by existing optimizers on fusion queries fall
into three general categories, so we divide our discussion into three subsections.

Distribution of the join over the union. The �rst category contains optimizers
that distribute the join operation in a fusion query over the underlying unions.
This leads to a plan that is a union of SPJ subqueries, where each SPJ subquery
can then be optimized using traditional methods. The plans for the constituent
SPJ subqueries may involve semijoin operations.

Generating separate subplans for each of the SPJ subqueries can lead to
ine�cient query plans due to repeated evaluation of common subexpressions.
Elimination of common subexpressions can be very cumbersome and expensive,
when semijoin operations are used in the subplans. This task takes time that is
exponential in the number of the constituent SPJ subqueries, which in turn is
exponential in the size of the fusion query.

Examples of systems in our �rst category are Information Manifold [12],
TSIMMIS [17], HERMES [23] and Infomaster [6]. Query processing in these
systems is based on resolution ([3]), which leads to the distribution of the join
over the union.

One obvious way in which systems taking this approach to fusion query
processing can incorporate techniques discussed in our paper is to implement a
module that checks if a query is a fusion query (by looking for the distinctive
pattern of fusion queries) and invokes the algorithm (of Section 3) to generate the
best semijoin-adaptive plan for the identi�ed fusion query. This leads to a very
e�cient evaluation of fusion queries without incurring an extremely cumbersome
optimization process involving common subexpression elimination.

Handling unions uniformly. The second approach to fusion query processing is
to separately process the union views, and conceptually generate \temporary"
relations. Selection conditions are applied as the temporary relations are com-
puted. Then the temporary relations are joined.

Examples of systems using this approach are DB2 [7] and Tandem's NonStop
SQL/MP [21]. These systems do not allow for the use of semijoin operations in
the query plans. Thus, the plans they consider are characterized by the class of
�lter plans discussed in Section 2. A slight variation is to combine the steps of
union view processing and the join processing. This variation allows for the use
of semijoin operations. An example system that uses this variation is Tandem's
NonStop SQL/MX [21]. With this variation, the set of query plans considered
includes the class of �lter plans and the class of semijoin plans, but not the class
of semijoin-adaptive plans. This is because the various sources of a union view
are treated homogeneously. That is, if two sources take part in a union view,
they both get the same kind of source queries. Semijoin-adaptive plans can be
obtained by allowing for heterogeneous treatment of the di�erent elements of
a union view. That is, one source in the union view may get a selection query
while another source in the same union view may get a semijoin query.

Extensible optimizers Recent extensible optimizers ([8, 11, 14]) use
exible, rule-
based approaches. The key to e�cient fusion query processing in these systems
lies in the set of rules de�ned. Rule-based optimization research has focused
on the evaluation of Select-Project-Join queries. We believe that one can write
rules, which embody our techniques, to achieve e�cient fusion query processing
in these optimizers. For example, it is easy to write rules in the Garlic system
[10] that help generate e�cient �lter plans for fusion queries. Combining these
with rules for semijoin operations, like the ones given in [10], we can generate
semijoin plans for fusion queries. We believe that an extension of these rules
(nontrivial, but perhaps not very di�cult) may yield semijoin-adaptive plans
for fusion queries. Another way to incorporate our techniques into optimizers
following the rule-based approach is to have a rule that identi�es a fusion query
and generates the best semijoin-adaptive plan for it.

6 Conclusions

Fusion queries are important in environments where data is not well organized
and partitioned across autonomous, distributed sites. In this paper we have de-
veloped a formal framework for optimizing fusion queries, and we have provided
e�cient algorithms to produce good query plans over broad scenarios. We have
also described enhancements (postoptimizations) that can boost performance
signi�cantly, with relatively little additional optimization cost. As discussed in
Section 5, our results can be useful for understanding the types of plans current
optimizers generate for fusion queries, as well as for improving their performance.

In this paper, we focused on minimizing the total work in executing a query.
One could also consider minimizing the response time of a query in a parallel
execution model. This is a future direction of work we plan to undertake. An-
other important area of exploration involves moving away from the \two-phase"
approach to fusion query processing (as discussed in Section 1). Then we need to
consider query plans involving source queries that return other attributes in ad-
dition to the merge attributes and this takes us out of the space of simple plans.
The techniques we have developed here may still be quite useful in �nding very
good plans in that more general space of fusion query plans.

References

1. Y. Arens, C. Chee, C. Hsu and C. Knoblock. Retrieving and Integrating Data
from Multiple Information Sources. In Journal of Intelligent and Cooperative In-

formation Systems, Vol. 2, June 1993.
2. J. Blakeley. Data Access for the Masses through OLE DB. In Proc. ACM SIGMOD

Conf., 161{172, 1996.
3. S. Ceri, G. Gottlobb, and L. Tanca. Logic Programming and Databases, Surveys

in Computer Science. Springer-Verlag, 1990.
4. S. Ceri and G. Pelagatti. DistributedDatabases: Principles and Systems. McGraw-

Hill, 1984.

5. W. Du, R. Krishnamurthy and M. Shan. Query Optimization in Heterogeneous
DBMS. In Proc. VLDB Conference, 277-291, 1992.

6. O. Duschka and M. Genesereth. Query Planning in Infomaster. In Proc. ACM

Symposium on Applied Computing, 1997.
7. P. Gassner, G. Lohman, B. Schiefer and Y. Wang. Query Optimization in the IBM

DB2 Family. In IEEE Data Engineering Bulletin, 16:4-18, 1993.
8. G. Graefe. The Cascades Framework for Query Optimization. In Bulletin of the

Technical Committee on Data Engineering, 18:19{29, September 1995.
9. P. Gupta and E. Lin. DataJoiner: A Practical Approach to Multidatabase Access.

In Proc. PDIS Conference, 264{264, 1994.
10. L. Haas, D. Kossman, E. Wimmers, and J. Yang. Optimizing Queries across Di-

verse Data Sources. In Proc. VLDB Conference, 1997.
11. L. Haas, J. Freytag, G. Lohman, and H. Pirahesh. Extensible Query Processing in

Starburst. In Proc. ACM SIGMOD Conference, 377{388, 1989.
12. A. Levy, A. Rajaraman and J. Ordille. Query Processing in the Information Man-

ifold. In Proc. VLDB Conference, 1996.
13. W. Litwin, L. Mark and N. Roussopoulos. Interoperability of Multiple Au-

tonomous Databases. In ACM Computing Surveys, 22:267{293, 1990.
14. G. Lohman. Grammar-like Functional Rules for Representing Query Optimization

Alternatives. In Proc. ACM SIGMOD Conference, 1988.
15. H. Lu, B. Ooi and C. Goh. Multidatabase Query Optimization: Issues and Solu-

tions. In Proc. RIDE-IMS '93, 137{143, 1993.
16. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice

Hall, 1991.
17. Y. Papakonstantinou. Query Processing in Heterogeneous Information Sources.

Technical report, Stanford University Thesis, 1996.
18. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange across

Heterogeneous Information Sources. In Proc. ICDE Conference, 251{260, 1995.
19. Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A Query

Translation Scheme for the Rapid Implementation of Wrappers. In Proc. DOOD

Conference, 161{186, 1995.
20. N. Roussopoulos and H. Kang. A Pipeline N-way Join Algorithm based on the

2-way Semijoin Program. In IEEE Transactions on Knowledge and Data Engi-

neering, 3:486-495, December 1991.
21. S. Sharma and H. Zeller. Personal Communication with Sunil Sharma and Hans

Zeller, Tandem Computers Inc. June, 1997.
22. A. Silberschatz, H. Korth and S. Sudarshan. Database System Concepts. McGraw-

Hill, 1997.
23. V. Subrahmanian et al. HERMES: A Heterogeneous Reasoning and Mediator Sys-

tem. http://www.cs.umd.edu/projects/hermes/overview/paper.
24. R. Yerneni, Y. Papakonstantinou, S. Abiteboul and H. Garcia-Molina. Fu-

sion Queries over Internet Databases (Extended Version). http://www-
db.stanford.edu/pub/papers/fqo.ps

25. Q. Zhu and P. Larson. A Query Sampling Method for Estimating Local Cost
Parameters in a Multidatabase System. In Proc. ICDE, 144{153, 1994.

