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Abstract. Users today are struggling to integrate a broad range of information sources providing
di�erent levels of query capabilities. Currently, data sources with di�erent and limited capabilities
are accessed either by writing rich functional wrappers for the more primitive sources, or by dealing
with all sources at a \lowest common denominator". This paper explores a third approach, in
which a mediator ensures that sources receive queries they can handle, while still taking advantage
of all of the query power of the source. We propose an architecture that enables this, and identify
a key component of that architecture, the Capabilities-Based Rewriter (CBR). The CBR takes as
input a description of the capabilities of a data source, and a query targeted for that data source.
From these, the CBR determines component queries to be sent to the sources, commensurate with
their abilities, and computes a plan for combining their results using joins, unions, selections,
and projections. We provide a language to describe the query capability of data sources and a
plan generation algorithm. Our description language and plan generation algorithm are schema
independent and handle SPJ queries. We also extend CBR with a cost-based optimizer. The net
e�ect is that we prune without losing completeness. Finally we compare the implementation of a
CBR for the Garlic project with the algorithms proposed in this paper.

Keywords: heterogeneous sources, mediator systems, query rewriting, query containment, cost
optimization

1. Introduction

Organizations today must integrate multiple heterogeneous information sources,
many of which are not conventional SQL database management systems. Examples
of such information sources include bibliographic databases, object repositories,
chemical structure databases, WAIS servers, etc. Some of these systems provide
powerful query capabilities, while others are muchmore limited. A new challenge for
the database community is to allow users to query this data using a single powerful
query language, with location transparency, despite the diverse capabilities of the
underlying systems.
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Figure 1. (a) A typical integration architecture. (b) CBR-mediator interaction.

Figure (1.a) shows one commonly proposed integration architecture [2, 16, 4,
1]. Each data source has a wrapper, which provides a view of the data in that
source in a common data model. Each wrapper can translate queries expressed in
the common language to the language of its underlying information source. The
mediator provides an integrated view of the data exported by the wrappers. In
particular, when the mediator receives a query from a client, it determines what
data it needs from each underlying wrapper, sends the wrappers individual queries
to collect the required data, and combines the responses to produce the query result.

This scenario works well when all wrappers can support any query over their
data. However, in the types of systems we consider, this assumption is unrealistic.
It leads to extremely complex wrappers, needed to support a powerful query in-
terface against possibly quite limited data sources. For example, in many systems
the relational data model is taken as the common data model, and all wrappers
must provide a full SQL interface, even if the underlying data source is a �le sys-
tem, or a hierarchical DBMS. Alternatively, this assumption may lead to a \lowest
common denominator" approach in which only simple queries are sent to the wrap-
pers. In this case, the search capabilities of more sophisticated data sources are
not exploited, and hence the mediator is forced to do most of the work, resulting
in unnecessarily poor performance. We would like to have simple wrappers that
accurately re
ect the search capabilities of the underlying data source. To enable
this, the mediator must recognize di�erences and limitations in capabilities, and
ensure that wrappers receive only queries that they can handle.
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For Garlic [2], an integrator of heterogeneous multimedia data being developed at
IBM's Almaden Research Center, such an understanding is essential. Garlic needs
to deal e�ciently with the disparate data types and querying capabilities needed
by applications as diverse as medical, advertising, pharmaceutical research, and
computer-aided design. In our model, a wrapper is capable of handling some set
of queries, known as the supported queries for that wrapper. When the mediator
receives a query from a client, it decomposes it into a set of queries, each of which
references data at a single wrapper. We call these individual queries target queries
for the wrappers. A target query need not be a supported query; it may sometimes
be necessary to further decompose it into simpler supported Component SubQueries
(CSQs) in order to execute it. A plan combines the results of the CSQs to produce
the answer to the target query.

To obtain this functionality, we explored a Capabilities-Based Rewriter (CBR)
module (Figure 1.b) as part of the Garlic query engine (mediator). The CBR
uses a description of each wrapper's ability, expressed in a special purpose query
capabilities description language, to develop a plan for the wrapper's target query.

The mediator decomposes a user's query into target queries q for each wrapper w
without considering whether q is supported by w. It then passes q to the CBR for
\inspection." The CBR compares q against the description of the queries supported
by wrapper w, and produces a plan p for q, if either (i) q is directly supported by
w, or (ii) q is computable by the mediator through a plan that involves selection,
projection and join of CSQs that are supported by w. The mediator then combines
the individual plans p into a complete plan for the user's query.

The CBR allows a clean separation of wrapper capabilities from mediator inter-
nals. Wrappers are \thin" modules that translate queries in the common model
into source-speci�c queries.1 Hence, wrappers re
ect the actual capabilities of the
underlying data sources, while the mediator has a general mechanism for inter-
preting those capabilities and forming execution strategies for queries. This paper
focuses on the technology needed to enable the CBR approach. We �rst present
a language for describing wrappers' query capabilities. The descriptions look like
context-free grammars, modi�ed to describe queries rather than arbitrary strings.
The descriptions may be recursive, thus allowing the description of in�nitely large
supported queries. In addition, they may be schema-independent. For example, we
may describe the capabilities of a relational database wrapper without referring to
the schema of a speci�c relational database. An additional bene�t of the grammar-
like description language is that it can be appropriately augmented with actions
to translate a target query to a query of the underlying information system. This
feature has been described in [14] and we will not discuss it further in this paper.

The second contribution of this paper is an architecture for the CBR and an
algorithm to build plans for a target query using the CSQs supported by the relevant
wrapper. This problem is a generalization of the problem of determining if a query
can be answered using a set of materialized queries/views [9, 18]. However, the
CBR uses a description of potentially in�nite queries as opposed to a �nite set
of materialized views. The problem of identifying CSQs that compute the target
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query has many sources of exponentiality even for the restricted case discussed
by [9, 18]. The CBR algorithm uses optimizations and heuristics to eliminate
sources of exponentiality in many common cases.
The third contribution of this paper, which does not appear in [15], is the incorpo-

ration of cost-based optimization into the CBR. The described cost-based prunings
do not compromise the completeness of the algorithm, i.e., if there is a supported
plan the algorithm will �nd it.
Finally, we compare the algorithms of this paper with the algorithms that were

eventually implemented for the Garlic system. The implementation uses the ex-
tensible optimizer of Starburst, hence having an excellent framework for combining
capabilities-based rewriting with cost-based optimization. On the other hand, the
use of Starburst's optimizer required changes in the description language and cor-
responding changes in the algorithms.
In the next section, we present the language used to describe a wrapper's query

capabilities. In Section 3 we describe the basic architecture of the CBR, identify-
ing three modules: Component SubQuery Discovery, Plan Construction, and Plan
Re�nement. These components are detailed in Sections 4, 5 and 6, respectively.
Section 7 discusses the combination of CBR with cost-based optimization. Section 8
compares the proposed CBR algorithms against the CBR implementation of Garlic.
Section 9 summarizes the run-time performance of the CBR. Section 10 discusses
related work. Finally, Section 11 concludes with some directions for future work in
this area.

2. The Relational Query Description Language(RQDL)

RQDL is the language we use to describe a wrapper's supported queries. We discuss
only Select-Project-Join queries in this paper. In section 2.1 we introduce the
basic language features , followed in sections 2.2 and 2.3 by the extensions needed
to describe in�nite query sets and to support schema-independent descriptions.
Section 2.4 introduces a normal form for queries and descriptors that increases
the precision of the language. The complete language speci�cation appears in
Appendix A.1.
The description language focuses on conjunctive queries. We have found that it

is powerful enough to express the abilities of many wrappers and sources, such as
lookup catalogs and object databases. Indeed, it is more expressive than context-
free grammars.2

2.1. Language Basics

An RQDL speci�cation contains a set of query templates, each of which is essentially
a parameterized query. Where an actual query might have a constant, the query
template has a constant placeholder, allowing it to represent many queries of the
same form. In addition, we allow the values assumed by the constant placeholders
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to be restricted by speci�er-provided metapredicates. A query is described by a
template (loosely speaking) if (1) each predicate in the query matches one predicate
in the template, and vice versa, and (2) any metapredicates on the placeholders of
the template evaluate to true for the matching constants in the query. The order
of the predicates in query and template need not be the same, and di�erent variable
names are of course possible.

For example, consider a \lookup" facility that provides information { such as
name, department, o�ce address, and so on { about the employees of a company.
The \lookup" facility can either retrieve all employees, or retrieve employees whose
last name has a speci�c pre�x, or retrieve employees whose last name and �rst
name have speci�c pre�xes.3 We integrate \lookup" into our heterogeneous system
by creating a wrapper, called lookup, that exports a predicate emp(First-Name,

Last-Name, Department, Office, Manager). ( The Manager �eld may be 'Y'

or 'N'.) The wrapper also exports a predicate prefix(Full, Prefix) that is suc-
cessful when its second argument is a pre�x of its �rst argument. This second
argument must be a string, consisting of letters only. We may write the following
Datalog query to retrieve emp tuples for persons whose �rst name starts with 'Rak'

and whose last name starts with 'Aggr':

(Q1) answer(FN,LN,D,O,M) :- emp(FN,LN,D,O,M),

prefix(FN,'Rak'), prefix(LN,'Aggr')

In this paper we use Datalog [23] as our query language because it is well-suited
to handling SPJ queries and facilitates the discussion of our algorithms.4 We use
the following Datalog terms in this paper: Distinguished variables are the variables
that appear in the target query head. A join variable is any variable that appears
twice or more in the target query tail. In the query (Q1) the distinguished variables
are FN, LN, D, O and M and the join variables are FN and LN.

Description (D2) is an RQDL speci�cation of lookup's query capabilities. The
identi�ers starting with $ ($FP and $LP) are constant placeholders. isalpha() is
a metapredicate that returns true if its argument is a string that contains letters
only. Metapredicates start with an underscore and a lowercase letter. Intuitively,
template (QT2.3) describes query (Q1) because the predicates of the query match
those of the template (despite di�erences in order and in variable names), and the
metapredicates evaluate to true when $FP is mapped to 'Rak' and $LP to 'Aggr'.

(D2) answer(F,L,D,O,M) :- (QT2.1)
emp(F,L,D,O,M)

answer(F,L,D,O,M) :- (QT2.2)
emp(F,L,D,O,M),

prefix(L, $LP), isalpha($LP)

answer(F,L,D,O,M) :- (QT2.3)
emp(F,L,D,O,M),

prefix(L, $LP), prefix(F,$FP),

isalpha($LP), isalpha($FP)
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In general, a template describes any query that can be produced by the following
steps:

1. Map each placeholder to a constant, e.g., map $LP to 'Aggr'.

2. Map each template variable to a query variable, e.g., map F to FN.

3. Evaluate the metapredicates and discard any template that contains at least
one metapredicate that evaluates to false.

4. Permute the template's subgoals.

2.2. Descriptions of Large and In�nite Sets of Supported Queries

RQDL can describe arbitrarily large sets of templates (and hence queries) when
extended with nonterminals as in context-free grammars. Nonterminals are repre-
sented by identi�ers that start with an underscore ( ) and a capital letter. They
have zero or more parameters and they are associated with nonterminal templates.
A query template t containing nonterminals describes a query q if there is an ex-
pansion of t that describes q. An expansion of t is obtained by replacing each
nonterminal N of t with one of the nonterminal templates that de�ne N until there
is no nonterminal in t.
For example, assume that lookup allows us to pose one or more substring condi-

tions on one or more �elds of emp. For example, we may pose query (Q3), which
retrieves the data for employees whose o�ce contains the strings 'alma' and 'B'.

(Q3) answer(F,L,D,O,M) :- emp(F,L,D,O,M),

substring(O,'alma'), substring(O,'B')

(D4) uses the nonterminal Cond to describe the supported queries. In this de-
scription the query template (QT4.1) is supported by nonterminal templates such
as (NT4.1).

(D4)answer(F,L,D,O,M) :- (QT4.1)
emp(F,L,D,O,M), Cond(F,L,D,O,M)

Cond(F,L,D,O,M) : (NT4.1)
substring(F, $FS), Cond(F,L,D,O,M)

Cond(F,L,D,O,M) : (NT4.2)
substring(L, $LS), Cond(F,L,D,O,M)

Cond(F,L,D,O,M) : (NT4.3)
substring(D, $DS), Cond(F,L,D,O,M)

Cond(F,L,D,O,M) : (NT4.4)
substring(O,$OS), Cond(F,L,D,O,M)

Cond(F,L,D,O,M) : (NT4.5)
substring(M, $MS), Cond(F,L,D,O,M)

Cond(F,L,D,O,M) : (NT4.6)

To see that description (D4) describes query (Q3), we expand Cond(F,L,D,O,M)

in (QT4.1) with the nonterminal template (NT4.4) and then again expand Cond
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with the same template. The Cond subgoal in the resulting expansion is expanded
by the empty template (NT4.6) to obtain expansion (E5).

(E5) answer(F,L,D,O,M) :- emp(F,L,D,O,M),

substring(O,$OS), substring(O,$OS1)

Before a template is used for expansion, all of its variables are renamed to be
unique. Hence, the second occurrence of placeholder $OS of template (NT4.4) is
renamed to $OS1 in (E5). (E5) describes query (Q3), i.e., the placeholders and
variables of (E5) can be mapped to the constants and variables of (Q3).

2.3. Schema Independent Descriptions of Supported Queries

Description (D4) assumes that the wrapper exports a �xed schema. However, the
query capabilities of many sources (and thus wrappers) are independent of the
schemas of the data that reside in them. For example, a relational database allows
SPJ queries on all of its relations. To support schema independent descriptions
RQDL allows the use of placeholders in place of the relation name. Furthermore, to
allow tables of arbitrary arity and column names, RQDL provides special variables
called vector variables, or simply vectors, that match lists of variables that appear
in a query. We represent vectors in our examples by identi�ers starting with an
underscore ( ). In addition, we provide two built-in metapredicates to relate vectors
and attributes: subset and in. subset( R, A) succeeds if each variable in the
list that matches R appears in the list that matches A. in($Position, X, A)
succeeds if A matches a variable list, and there is a query variable that matches X
and appears at the position number that matches $Position. (For readability we
will use italics for vectors and bold for metapredicates).
For example, consider a wrapper called file-wrap that accesses tables resid-

ing in plain UNIX �les. It may output any subset of any table's �elds and may
impose one or more substring conditions on any �eld. Such a wrapper may be eas-
ily implemented using the UNIX utility AWK. (D6) uses vectors and the built-in
metapredicates to describe the queries supported by file-wrap.

(D6) (QT6.1) answer( R) :- $Table( A),
Cond( A), subset( R, A)

(NT6.1) Cond( A) : in($Position,X, A),
substring(X,$S), Cond( A)

(NT6.2) Cond( A) :

In general, to decide whether a query is described by a template containing vectors
we must expand the nonterminals, map the variables, placeholders, and vectors, and
�nally, evaluate any metapredicates. To illustrate this, we show how to verify that
query (Q7) is described by (D6).

(Q7) answer(L,D) :- emp(F,L,D,O,M),

substring(O,'alma'), substring(O,'B')
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First, we expand (QT6.1) by replacing the nonterminal Cond with (NT6.1) twice,
and then with (NT6.2), thus obtaining expansion (E8).

(E8) answer( R) :- $Table( A),
in($Position,X, A),substring(X,$S),
in($Position1,X1, A),substring(X1,$S1),
subset( R, A)

Expansion (E8) describes query (Q7) because there is a mapping of variables, vec-
tors, and placeholders of (E8) that makes the metapredicates succeed and makes
every predicate of the expansion identical to a predicate of the query. Namely,
vector A is mapped to [F,L,D,O,M], vector R to [L,D], placeholders $Position
and $Position1 to 4, $S to 'alma', $S1 to 'B', and the variables X and X1 to O. We
must be careful with vector mappings; if the vector V that maps to [X1; : : : ; Xn]
appears in a metapredicate, we replace V with [X1; : : : ; Xn]. However, if the vector
V appears in a predicate as p( V ) the mapping results in p(X1; : : : ; Xn). Finally,
the metapredicate in(4, O, [F,L,D,O,M]) succeeds because O is the fourth vari-
able of the list, and subset([L,D], [F,L,D,O,M]) succeeds because [L,D] is a
\subset" of [F,L,D,O,M].
Vectors are useful even when the schema is known as the speci�cation may oth-

erwise be repetitious, as in description (D4). In our running example, even though
we know the attributes of emp, we save e�ort by not having to explicitly mention
all of the column names to say that a substring condition can be placed on any
column.

2.4. Query and Description Normal Form

If we allow templates' variables and vectors to map to arbitrary lists of constants
and variables, descriptions may appear to support queries that the underlying wrap-
per does not support. This is because using the same variable name in di�erent
places in the query or description can cause an implicit join or selection that does
not explicitly appear in the description. For example, consider query (Q9), which
retrieves employees where the manager �eld is 'Y' and the �rst and last names are
equal, as denoted by the double appearance of FL in emp.

(Q9) answer(FL,D) :- emp(FL,FL,D,O,'Y')

(D6) should not describe query (Q9). Nevertheless, we can construct expansion
(E10), which erroneously matches query (Q9) if we map A to [FL,FL,D,O,'Y']

and R to [FL,D]:

(E10) answer( R):-$Table( A), subset( R, A)

This section introduces a query and description normal form that avoids inadver-
tently describing joins and selections that were not intended. In the normal form
both queries and descriptions have only explicit equalities. A query is normalized



9

by replacing every constant c with a unique variable V and then by introducing the
subgoal V = c. Furthermore, for every join variable V that appears n > 1 times in
the query we replace its instances with the unique variables V1; : : : ; Vn and intro-
duce the subgoals Vi = Vj ; i = 1; : : : ; n; j = 1 : : : ; i� 1. We replace any appearance
of V in the head with V1. For example, query (Q11) is the normal form of (Q9).

(Q11) answer(FL1,D) :- employee(FL1,FL2,D,O,M),

FL1=FL2, M='Y'

Description (D6) does not describe (Q11) because (D6) does not support the
equality conditions that appear in (Q11). Description (D12) supports equality con-
ditions on any column and equalities between any two columns: (NT12.2) describes
equalities with constants and (NT12.3) describes equalities between the columns of
our table.

(D12) answer( R) :- (QT12.1)
$Table( A), Cond( A), subset( R, A)
Cond( A) : (NT12.1)
in($Position,X, A), substring(X, $S),

Cond( A)
Cond( A) : (NT12.2)
in($Position1,X, A), X=$C, Cond( A)

Cond( A) : (NT12.3)
in($Pos1,X, A), in($Pos2,Y, A),
X=Y, Cond( A)
Cond( A) : (NT12.4)

For presentation purposes we use the more compact unnormalized form of queries
and descriptions when there is no danger of introducing inadvertent selections and
joins. However, the algorithms rely on the normal form.

3. The Capabilities-Based Rewriter

The Capabilities-Based Rewriter (CBR) determines whether a target query q is
directly supported by the appropriate wrapper, i.e., whether it matches the de-
scription d of the wrapper's capabilities. If not, the CBR determines whether q can
be computed by combining a set of supported queries (using selections, projections
and joins). In this case, the CBR will produce a set of plans for evaluating the query.
The CBR consists of three modules, which are invoked serially (see Figure 2):

� Component SubQuery (CSQ) Discovery: �nds supported queries that
involve one or more subgoals of q. The CSQs that are returned contain the
largest possible number of selections and joins, and do no projection. All other
CSQs are pruned. This prevents an exponential explosion in the number of
CSQs.
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Figure 2. The CBR's components

� Plan Construction: produces one or more plans that compute q by combining
the CSQs exported by CSQ Discovery. The plan construction algorithm is based
on query subsumption and has been tuned to perform e�ciently in the cases
typically arising in capabilities-based rewriting.

� Plan Re�nement: re�nes the plans constructed by the previous phase by
pushing as many projections as possible to the wrapper.

Example 0: Consider query (Q13), which retrieves the names of all managers that
manage departments that have employees with o�ces in the 'B' wing, and the
employees' o�ce numbers. This query is not directly supported by the wrapper
described in (D12).

(Q13) answer(F0,L0,O1):-emp(F0,L0,D,O0,'Y'),
emp(F1,L1,D,O1,M1), substring(O1,'B')

The CSQ detection module identi�es and outputs the following CSQs:

(Q14) answer14(F0,L0,D,O0) :-

emp(F0,L0,D,O0,'Y')

(Q15) answer15(F1,L1,D,O1,M1) :-

emp(F1,L1,D,O1,M1), substring(O1, 'B')

Note, the CSQ discovery module does not output the 24 CSQs that have the tail
of (Q14) but export a di�erent subset of the variables F0, L0, D, and O0 (likewise
for (Q15). The CSQs that export fewer variables are pruned.
The plan construction module detects that a join on D of answer14 and answer15

produces the required answer of (Q13). Consequently, it derives the plan (P16).

(P16) answer(F0,L0,O1) :-

answer14(F0,L0,D,O0),

answer15(F1,L1,D,O1,M1)
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Finally, the plan re�nement module detects that variables O0, F1, L1, and M1

in answer14 and answer15 are unnecessary. Consequently, it generates the more
e�cient plan (P19).

(Q17) answer17(F0,L0,D) :-

emp(F0,L0,D,O0,'Y')

(Q18) answer18(D,O1) :-

emp(F1,L1,D,O1,M1), substring(O1, 'B')

(P19) answer(F0,L0,O1) :-

answer17(F0,L0,D), answer18(D,O1)

The CBR's goal is to produce all algebraically optimal plans for evaluating the
query. An algebraically optimal plan is one in which any selection, projection or
join that can be done in the wrapper is done there, and in which there are no
unnecessary queries. More formally:

De�nition. Algebraically Optimal Plan P A plan P is algebraically optimal if
there is no other plan P 0 such that for every CSQ s of P there is a corresponding
CSQ s0 of P 0 such that the set of subgoals of s0 is a superset of the set of subgoals
of s (i.e., s0 has more selections and joins than s) and the set of exported variables
of s is a superset of the set of exported variables of s0 (i.e., s0 has more projections
than s.)

In the next three sections we describe each of the modules of the CBR in turn.

4. CSQ Discovery

The CSQ discovery module takes as input a target query and a description. It
operates as a rule production system where the templates of the description are the
production rules and the subgoals of the target query are the base facts. The CSQ
discovery module uses bottom-up evaluation because it is guaranteed to terminate
even for recursive descriptions [24]. However, bottom-up derivation often derives
unnecessary facts, unlike top-down. We use a variant of magic sets rewriting [24]
to \focus" the bottom-up derivation. To further reduce the set of derived CSQs we
develop two CSQ pruning techniques as described in Sections 4.2 and 4.3. Reducing
the number of derived CSQs makes the CSQ discovery more e�cient and also
reduces the size of the input to the plan construction module.
The query templates derive answer facts that correspond to CSQs. In particular,

a derived answer fact is the head of a produced CSQ whereas the underlying base
facts, i.e., the facts that were used for deriving answer, are the subgoals of the
CSQ. Nonterminal templates derive intermediate facts that may be used by other
query or nonterminal templates. We keep track of the sets of facts underlying
derived facts for pruning CSQs. The following example illustrates the bottom-up
derivation of CSQs and the gains that we realize from the use of the magic-sets
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rewriting. The next subsection discusses issues pertaining to the derivation of facts
containing vectors.

Example 1: Consider query (Q3) and description (D4) from page 6. The subgoals
emp(F,L,D,O,M), substring(O, 'alma'), and substring(O,'B') are treated by
the CSQ discovery module as base facts. To distinguish the variables in target query
subgoals from the templates' variables we \freeze" the variables, e.g. F,L,D,O, into
similarly named constants, e.g. f,l,d,o. Actual constants like 'B' are in single
quotes.

In the �rst round of derivations template (NT4.6) derives fact Cond(F,L,D,O,M)

without using any base fact (since the template has an empty body). Hence, the set
of facts underlying the derived fact is empty. Variables are allowed in derived facts
for nonterminals. The semantics is that the derived fact holds for any assignment
of frozen constants to variables of the derived fact.

In the second round many templates can �re. For example, (NT4.4) derives
the fact Cond(F,L,D,o,M) using Cond(F,L,D,O,M) and substring(o,'alma'),
or using Cond(F,L,D,o,M) and substring(o,'B'). Thus, we generate two facts
that, though identical, they have di�erent underlying sets and hence we must retain
both since they may generate di�erent CSQs. In the second round we may also
�re (NT4.6) again and produce Cond(F,L,D,O,M) but we do not retain it since its
set of underlying facts is equal to the version of Cond(F,L,D,O,M) that we have
already produced.

Eventually, we generate answer(f,l,d,o,m) with set of underlying facts
femp(f,l,d,o,m), substring(o, 'alma'), substring(o,'B')g. Hence we out-
put the CSQ (Q3), which, incidentally, is the target query.

The above process can produce an exponential number of facts. For example, we
could have proved Cond(o,L,D,O,M), Cond(F,o,D,O,M), Cond(o,o,D,O,M), and
so on. In general, assuming that emp has n columns and we apply m substrings on
it we may derive nm facts. Magic-sets can remove this source of exponentiality by
\focusing" the nonterminals. Applying magic-sets rewriting and the simpli�cations
described in Chapter 13.4 of [24] we obtain the following equivalent description.
We show only the rewriting of templates (NT4.4) and (NT4.6). The others are
rewritten similarly.

(D20) answer(F,L,D,O,M) :- (QT20.1)
emp(F,L,D,O,M), Cond(F,L,D,O,M)

Cond(F,L,D,Office,M) : (NT20.4)
mg Cond(F,L,D,Office,M),

substring(Office, $OS),

Cond(F,L,D,Office,M)

Cond(F,L,D,O,M) : (NT20.6)
mg Cond(F,L,D,O,M)

mg Cond(F,L,D,O,M) : (MS20.1)
emp(F,L,D,O,M)
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Now, only Cond(f,l,d,o,m) facts (with di�erent underlying sets) are produced.
Note, the magic-sets rewritten program uses the available information in a way
similar to a top-down strategy and thus derives only relevant facts.

4.1. Derivations Involving Vectors

When the head of a nonterminal template contains a vector variable it may be
possible that a derivation using this nonterminal may not be able either to bind
the vector to a speci�c list of frozen variables or to allow the variable as is in the
derived fact. The CSQ discovery module can not handle this situation. For most
descriptions, magic-sets rewriting solves the problem. We demonstrate how and we
formally de�ne the set of non-problematic descriptions.
For example, let us �re template (NT6.1) of (D6) on the base facts produced by

query (Q3). Assume also that (NT6.2) already derived Cond( A). Then we derive
that Cond( A) holds, with set of underlying facts fsubstring(o, 'alma')g, pro-
vided that the constraint \ A contains o" holds. The constraint should follow the
fact until A binds to some list of frozen variables. We avoid the mess of constraints
using the following magic-sets rewriting of (D6).

(D21) answer( R) :- (QT21.1)
$Table( A), Cond( A),
subset( R, A)

Cond( A) : (NT21.1)
mg Cond( A), in($Position,X, A),
substring(X,$S), Cond( A)
Cond( A) : mg Cond( A) (NT21.2)
mg Cond( A) : $Table( A) (MS21.1)

When rules (NT21.1) and (NT21.2) �re the �rst subgoal instantiates variable
A to [f,l,d,o,m] and they derive only Cond([f,l,d,o,m]). Thus, magic-sets
caused A to be bound to the only vector of interest, namely [f,l,d,o,m]. Note a
program that derives facts with unbound vectors may not be problematic because
no metapredicate may use the unbound vector variable. However we take a con-
servative approach and consider only those programs that produce facts with only
bound vector variables. Magic-sets rewriting does not always ensure that derived
facts have bound vectors. In the rest of this section we describe su�cient condi-
tions for guaranteeing the derivation of facts with bound vectors only. First we
provide a condition (Theorem 1) that guarantees that a program (that may be the
result of magic rewriting) does not derive facts with unbound vectors. Then we
describe a class of programs that after being magic rewritten satisfy the condition
of Theorem 1.

Theorem 1 A program will always produce facts with bound vector variables if in
all rules \ H( V ) : � tail" tail has a non-metapredicate subgoal that refers to
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V , or in general V can be assigned a binding if all non-metapredicate subgoals in
tail are bound.

Intuitively, after we magic-rewrite a program it will keep deriving facts with
unbound vectors only if a nonterminal of the initial program derives uninstantianted
vectors and in the rules that is used it does not share variables with predicates
or nonterminals s that bind their arguments (otherwise, the magic predicate will
force the the rules that produce uninstantianted vectors to focus on bindings of
s.) For example, description (D6) does not derive uninstantianted vectors because
the nonterminal Cond, that may derive uninstantianted variables, shares variables
with $Table( A).
Nevertheless magic sets rewriting does not ensure that derived facts have bound

vectors. Below we provide a formal criterion for deciding whether after we magic
rewrite a program its bottom-up evaluation will derive facts that have bound vectors
only. We believe that all reasonable descriptions satisfy the described criterion.
First we state a few de�nitions needed for the formalization of our criterion.

De�nition. Target predicate A predicate that appears in some subgoal of the
target query.

De�nition. Target subgoal A subgoal that uses a target predicate.

Target subgoals always instantiate their arguments using frozen constants. The
following de�nitions capture how arguments of subgoal s are instantiated by other
subgoals thereby allowing magic-sets to restrict the �ring of rules de�ning s.

De�nition. Grounded Subgoal in a Rule R A target subgoal is grounded. A
nonterminal subgoal is grounded as de�ned by De�nition 4.1. A metapredicate
subgoal s is grounded if s can be evaluated using the bindings of those arguments
that appear in grounded subgoals of R.

De�nition. Grounded Rule A rule is grounded if every vector variable in the rule
appears in some grounded subgoal. The rule is said to depend on the predicates of
the grounded subgoals.

De�nition. Grounded nonterminal A nonterminal N is grounded if each rule
de�ning N is grounded. For its grounding, N depends on a nonterminal M if
some rule de�ning N depends on M.

Grounded rules derive instantiated facts and only instantiated facts are derived
for grounded nonterminals. We consider only those descriptions where all nonter-
minals are grounded. For such descriptions magic-sets rewriting always produces
production rules that can be evaluated bottom-up without deriving facts with vec-
tor variables.

Theorem 2 If each nonterminal in a description D is grounded then a bottom-up
evaluation of magic-sets rewritten D produces no fact that has vector variables.

Descriptions that satisfy the above condition are considered valid.
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Theorem 3 Nonterminals of a valid program can be completely ordered such that
nonterminal N in position i depends for its groundings only on nonterminal in
positions 1 : : : i� 1.

The following algorithm derives CSQs given a target query and description. Notice
that the following algorithmuses the Algorithm 2 of Figure 3, which may be skipped
in a �rst reading. Understanding fully Algorithm 2 requires reading �rst the passing
bindings join techniques discussed in Section 5.

Algorithm 1
Input: Target query Q and Description D
Output: A set of CSQs si; i = 1; : : : ; n
Method:

Check if the description D is valid
Reorder each template R in D such that

All predicate subgoals occur in the front of the rule
A nonterminal N appears after M if N depends on M for grounding.
Metapredicates appear at the end of the rule

Rewrite D using Magic-sets
Evaluate bottom-up the rewritten description D as per Algorithm 2 of Figure 3

4.2. Retaining Only \Representative" CSQs

A large number of unneeded CSQs are generated by templates that use vectors
and the subset metapredicate. For example, template (QT12.1) describes for a
particular A all CSQs that have in their head any subset of variables in A. It is
not necessary to generate all possible CSQs. Instead, for all CSQs that are derived
from the same expansion e, of some template t, where e has the form

answer( V ) :- hpredicate and metapredicate listi, subset( V , W)

and V does not appear in the hpredicate and metapredicate listi we generate only
the representative CSQ that is derived by mapping V to the same variable list as
W .5 All represented CSQs, i.e., CSQs that are derived from e by mapping V to
a proper subset of W are not generated. For example, the representative CSQ
(Q15) and the represented CSQ (Q18) both are derived from the expansion (E22)
of template (QT12.1).

(E22) answer( R) :- $Table( A),
in($Position,X, A), substring(X,'B'),

subset( R, A)

The CSQ discovery module generates only (Q15) and not (Q18) because (Q15) has
fewer attributes than (Q18) and is derived by by mapping the vector R to the
same vector with A, i.e., to [F1,L1,D,O1,M1]. Representative CSQs often retain
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unneeded attributes and consequently Representative plans, i.e., plans containing
representative CSQs, retrieve unneeded attributes. The unneeded attributes are
projected out by the plan re�nement module.

Theorem 4 Retaining only representative CSQs does not lose any plan, i.e., if
there is an algebraically optimal plan ps that involves a represented query s then ps
will be discovered by the CBR.
Proof:The proof is based on the fact that for every plan ps there is a corresponding
representative plan pr derived by replacing all CSQs of ps with their representatives.
For simplicity, let us assume that ps involves only one represented CSQ (that is the
CSQ s.) If r is the CSQ that represents s then the plan construction module will
output a plan pr, identical to ps modulo that it uses r instead of s. The plan
re�nement module potentially removes some subgoals from the set of consumed
subgoals of r. The remaining set of consumed subgoals is either identical to the
consumed set of s or it is smaller. If it is identical, then by replacing the necessary
variables of r with the necessary variables of the set we get the query with the
smaller head that consumes the same set with s. Given that s is algebraically
optimal, s is the query we found by reforming r. If the reduced set of consumed
subgoals of r is smaller than the set of subgoals consumed by s, then r will have
fewer exported variables than s and hence s is not algebraically optimal (it has
same body with r but more variables.)

Evaluation: Retaining only a representative CSQ of head arity a eliminates 2a�1
represented CSQs thus eliminating an exponential factor from the execution time
and from the size of the output of the CSQ discovery module. Still, one might ask
why the CSQ discovery phase does not remove the variables that can be projected
out. The reason is that the \projection" step is better done after plans are formed
because at that time information is available about the other CSQs in the plan and
the way they interact (see Section 6). Thus, though postponing projection pushes
part of the complexity to a later stage, it eliminates some complexity altogether.
The eliminated complexity corresponds to those represented CSQs that in the end
do not participate in any plan because they retain too few variables.

4.3. Pruning Non-Maximal CSQs

Further e�ciency can be gained by eliminating any CSQ Q that has fewer subgoals
than some other CSQ Q0 because Q checks fewer conditions than Q0. A CSQ is
maximal if there is no CSQ with more subgoals and the same set of exported vari-
ables, modulo variable renaming. We formalize maximality in terms of subsumption
[24]:

De�nition. Maximal CSQs A CSQ sm is a maximal CSQ if there is no other CSQ
s that is subsumed by sm.

Evaluation: In general, the CSQ discovery module generates only maximal CSQs
and prunes all others. This pruning technique is particularly e�ective when the
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Algorithm 2
Input: A set of production rules of description D.

Set of frozen facts F corresponding to the target query Q.
Output: All facts derivable from applying D to F
Method:

Initialize to fg the set (A) of frozen constants
available in answer derived facts.

Initialize to fg the set (NA) of frozen constants newly
available in answer derived facts.

Repeat until no new facts are derived
For each rule r in the description

Apply rule r to base facts as per Algorithm 3 of Figure 4
% Eliminate facts that use bindings not yet available

Eliminate facts s where Bs has a frozen constant x where x 62 A
% Eliminate facts that do not use at least one new binding

Eliminate facts s where Bs has frozen constant x where x 2 NA
% Update the sets of available and newly available frozen constants

Add the set of frozen constants in the heads of
the new derived facts to (NA)

Remove from (NA) those frozen constants also present in (A)
Add (NA) to (A)

Figure 3. Bottom-Up Evaluation of a Description

CSQs contain a large number of conditions. For example, assume that g conditions
are applied to the variables of a predicate. Consequently, there are 2g � 1 CSQs
where each one of them contains a di�erent proper subset of the conditions. By
keeping \maximal CSQs only" we eliminate an exponential factor of 2g from the
output size of the CSQ discovery module.

Theorem 5 Pruning non-maximal CSQs does not lose any algebraically optimal
plan.

Proof:For every plan ps involving a non-maximalCSQ s there is also a plan pm that
involves the corresponding maximal CSQ sm such that pm pushes more selections
and/or joins to the wrapper than ps, since sm by de�nition involves more selections
and/or joins than s.
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Algorithm 3
Input: Production rule R

A set of frozen base facts
A set of derived facts s associated with annotations:

Cs, the set of frozen facts of the initial
database that have been used for deriving s

Bs, the set of variables needed by the subgoals
that correspond to the facts of Cs

Output: Derived facts + annotations obtained by �ring R
using frozen and derived base facts.

Method:
% Each alternate uni�cation may yield many facts.
Unify each subgoal in the body of R with a base fact deriving fact n
For each equal subgoals s

if s equates a frozen variable x to itself then s can be ignored
if s equates two di�erent frozen variables
then the whole uni�cation fails

if s equates a frozen constant c and a place holder
then add c to annotation Bn

For each subset subgoal s = subset(Sub,Super)
if Sub and Super are di�erent vector variables,
then uni�cation fails

if Sub and Super are instantiated vectors
and Sub is not a subset of Super then fail.

if only Super is instantiated then equate Sub to the same vector.
In all other cases uni�cation fails

For each in subgoal s = in(Pos,Ele,Vector)
if Pos,Ele,Vector or Ele,Vector are instantiated
evaluate subgoal to true/false

if Pos,Vector are instantiated
then assign Ele the appropriate value

if Vector is instantiated
then assign Pos, Ele all possible values

In all other cases uni�cation fails
For each non-meta subgoal s

Add Cs to Cn; Add Bs to Bn

% Eliminate non-maximal facts
If derived fact n has smaller annotation Cn, larger Bn,

and same set of exported variables with some existing fact n0

then do not add n to set of derived facts.

Figure 4. Algorithm for the Evaluation of a Single Rule
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5. Plan Construction

In this section we present the plan construction module (see Figure 2.) In order
to generate a (representative) plan we have to select a subset S of the CSQs that
provides all the information needed by the target query, i.e., (i) the CSQs in S check
all the subgoals of the target query, (ii) the results in S can be joined correctly, and
(iii) each CSQ in S receives the constants necessary for its evaluation. Section 5.1
addresses (i) with the notion of \subgoal consumption." Section 5.2 checks (ii), i.e.,
checks join variables. Section 5.3 checks (iii) by ensuring bindings are available.
Finally, Section 5.4 summarizes the conditions required for constructing a plan and
provides an e�cient plan construction algorithm.

5.1. Set of Consumed Subgoals

We associate with each CSQ a set of consumed subgoals that describes the CSQs
contribution to a plan. Loosely speaking, a component query consumes a subgoal
if it extracts all the required information from that subgoal. A CSQ does not
necessarily consume all its subgoals. For example, consider a CSQ se that semijoins
the emp relation with the dept relation to output each emp tuple that is in some
department in relation dept. Even though this CSQ has a subgoal that refers to the
dept relation it may not always consume the dept subgoal. In particular, consider
a target query Q that requires the names of all employees and the location of their
departments. CSQ se does not output the location attribute of table dept and
thus does not consume the dept subgoal with respect to query Q. We formalize
the above intuition by the following de�nition:

De�nition. Set of Consumed Subgoals for a CSQ A set Ss of subgoals of a CSQ
s constitutes a set of consumed subgoals of s if and only if

1. s exports every distinguished variable of the target query that appears in Ss,
and

2. s exports every join variable that appears in Ss and also appears in a subgoal
of the target query that is not in Ss.

Theorem 6 Each CSQ s has a unique maximal set Cs of consumed subgoals that
is a superset of every other set of consumed subgoals.
Proof: s has at least one set of consumed subgoals (trivially, the empty set is a
set of consumed subgoals.) and hence it has at least one maximal set of consumed
subgoals. Let us assume that there are two maximal sets C1s and C2s . Then, their
union is also a consumed set since it satis�es both conditions of de�nition 5.1.
Hence, C1s and C2s can not simultaneously be maximal consumed sets.

Intuitively the maximal set describes the \largest" contribution that a CSQ may
have in a plan. The following algorithm states how to compute the set of maximal
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consumed subgoals of a CSQ. We annotate every CSQ s with its set of maximal
consumed subgoals, Cs.

Algorithm 4
Input: CSQ s and target query Q
Output: CSQ s with computed annotation Cs
Method:

Insert in Cs all subgoals of s
Remove from Cs subgoals that have a
distinguished attribute of Q not exported by s
Repeat until size of Cs is unchanged

Remove from Cs subgoals that:
Join on variable V with subgoal g
of Q where g is not in Cs, and
Join variable V is not exported by s

Discard CSQ s if Cs is empty.

This algorithm is polynomial in the number of the subgoals and variables of the
CSQ. Also, the algorithm discards all CSQs that are not relevant to the target
query:

De�nition. Relevant CSQ A CSQ s is called relevant if Cs is non-empty.

Intuitively, irrelevant CSQs are pruned out because in most cases they do not
contribute to a plan, since they do not consume any subgoal. Note, we decide
the relevance of a CSQ \locally," i.e., without considering other CSQs that it
may have to join with. By pruning non-relevant CSQs we can build an e�cient
plan construction algorithm that in most cases (Section 5.2) produces each plan in
time polynomial in the number of CSQs produced by the CSQ discovery module.
However, there are scenarios where the relevance criteria may erroneously prune
out a CSQ that could be part of a plan. The following example provides such a
scenario.

Example 2: Consider a variation of the wrapper file-wrap (D6) where the sup-
ported queries that accept substring conditions may output only the �rst and
last name, e.g., (Q24 ). There is also a supported query { (Q25) { that returns
the whole emp table. The target query (Q23), that requests the full information of
employees in the \database" department can be answered by the plan (P26).

(Q23) answer(F,L,D,O,M) :- emp(F,L,D,O,M), substring(O,'database')

(Q24) answer24(F,L) :- emp(F,L,D,O,M), substring(O,'database ')

(Q25) answer25(F,L,D,O,M) :- emp(F,L,D,O,M)

(P26) answer (F,L,D,O,M) :- answer24(F,L), answer25(F,L,D,O,M)

CBR will not �nd the plan (P26) because the CSQ (Q25) does not consume any sub-
goal because it does not export the distinguished variables D, O, and M. Intuitively,
(Q25) does not contribute subgoals but it contributes variables.



21

We may avoid the loss of such plans by not pruning irrelevant CSQs and thus
sacri�cing the polynomiality of the plan construction algorithm. In this paper we
will not consider this option.

5.2. Join Variables Condition

It is not always the case that if the union of consumed subgoals of some CSQs is
equal to the set of the target query's subgoals then the CSQs together form a plan.
In particular, it is possible that the join of the CSQs may not constitute a plan. For
example, consider an online employee database that can be queries for the names of
all employees in a given division. The database can also be queried for the names of
all employees in a given location. Further, the name of an employee is not uniquely
determined by their location and division. The employee database cannot be used
to �nd employees in a given division and in a given location by joining the results
of two queries - one on division and the other on location. To see this, consider
a query that looks for employees in \CS" in \New York". Joining the results of
two independent queries on division and location will incorrectly return as answer
a person named \John Smith" if there is a \John Smith" in \CS" in \San Jose"
and a di�erent \John Smith" in \Electrical" in \New York".
Intuitively, the problem arises because the two independent queries do not export

the information necessary to correctly join their results. We can avoid this problem
by checking that CSQs are combined only if they export the join variables necessary
for their correct combination. The theorem of Section 5.4 formally describes the
conditions on join variables that guarantee the correct combination of CSQs.

5.3. Passing Required Bindings via Nested Loops Joins

The CBR's plans may emulate joins that could not be pushed to the wrapper, with
nested loops joins where one CSQ passes join variable bindings to the other. For
example, we may compute (Q13) by the following steps: �rst we execute (Q27);
then we collect the department names (i.e., the D bindings) and for each binding
d of D, we replace the $D in (Q28) with d and send the instantianted query to the
wrapper. We use the notation /$D in the nested loops plan (P29) to denote that
(Q28) receives values for the $D placeholder from D bindings of the other CSQs {
(Q27) in this example.

(Q27) answer27(F0,L0,D,O0):-emp(F0,L0,D,O0,'Y')
(Q28) answer28(F1,L1,O1,M1):-emp(F1,L1,$D,O1,M1)
(P29) answer(F0,L0,O1):-answer27(F0,L0,D,O0),answer28(F1,L1,O1,M1)/$D

The introduction of nested loops and binding passing poses the following require-
ments on the CSQ discovery:

� CSQ discovery: A subgoal of a CSQ s may contain placeholders /$hvari, such
as $D, in place of corresponding join variables (D in our example.) Whenever this
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is the case, we introduce the structure /$hvari next to the answers that appears
in the plan. All the variables of s that appear in such a structure are included
in the set Bs, called the set of bindings needed by s. For example, B28 = fDg
and B27 = fg. CSQ discovery previously did not use bindings information while
deriving facts. Thus, the algorithm derives useless CSQs that need bindings not
exported by any other CSQ.

The optimized derivation process uses two sets of attributes and proceeds it-
eratively. Each iteration derives only those facts that use bindings provided
by existing facts. In addition, a fact is derived if it uses at least one binding
that was made available only in the very last iteration. Thus, the �rst iteration
derives facts that need no bindings, that is, for which Bs is empty. The next
iteration derives facts that use at least one binding provided by facts derived in
iteration one. Thus, the second iteration does not derive any subgoal derived
in the �rst iteration, and so on. The complete algorithm of Figure 3 formalizes
this intuition.

The bindings needed by each CSQ of a plan impose order constraints on the
plan. For example, the existence of D in B28 requires that a CSQ that exports D is
executed before (Q28). It is the responsibility of the plan construction module to
ensure that the produced plans satisfy the order constraints.
Evaluation The pruning of CSQs with inappropriate bindings prunes an expo-
nential number of CSQs in the following common scenario: Assume we can put an
equality condition on any variable of a subgoal p. Consider a CSQ s that contains p
and assume that n variables of p appear in subgoals of the target query that are not
contained in s. Then we have to generate all 2n versions of s that describe di�erent
binding patterns. Assuming that no CSQ may provide any of the n variables it is
only one (out the 2n) CSQs useful.

5.4. A Plan Construction Algorithm

In this section we summarize the conditions that are su�cient for construction of
a plan. Then, we present an e�cient algorithm that �nds plans that satisfy the
theorem's conditions. Finally, we evaluate the algorithm's performance.

Theorem 7 Given CSQs si; i = 1; : : : ; n with corresponding heads
answeri(V

i
1 ; : : : ; V

i
vi
), sets of maximal consumed subgoals Ci and sets of needed bind-

ings Bi, the plan

answer(V1; : : : ; Vm): �answer1(V 1
1 ; : : : ; V

1
v1
); : : : ; answern(V n

1 ; : : : ; V
n
vn
)

is correct if

� consumed sets condition: The union of maximal consumed sets [i=1;:::;nCi
is equal to the target query's subgoal set.
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� join variables condition: If the set of maximal consumed subgoals of CSQ si
has a join variable V then every CSQ sj that contains V in its set of maximal
consumed subgoals Cj exports V .

� bindings passing condition: If V 2 Bi then there must be a CSQ sj ; j < i
that exports V .

Proof: We will show that the plan computes the same result with the target query
when they are evaluated over the same database.
Let us �rst consider plans that do not contain nested loops joins. We will show

the equivalence of the plan and the target query by showing that there is a mapping
from the plan to the target query and vice versa. Note, we consider queries and
descriptions in normal form. Let us assume that the target query has the form

answer(H1; : : : ;Hh) : �g1(V
1
1 ; : : : ; V

1
v1
); : : : ; gm(V

m
1 ; : : : ; Vm

vm
) (1)

every variable of the head appears in the tail. The plan has the form

answer(H1; : : : ;Hh) : �answer1(A
1
1; : : : ; A

1
a1
); : : : ; answerl(A

n
1 ; : : : ; A

n
an
) (2)

where every variable of the head appears in the tail. The ith CSQ has the form

answeri(A
i
1; : : : ; A

i
ai
) : �

g�(i;1)(V
�(i;1)
1 ; : : : ; V

�(i;1)
v�(i;1)); : : : ; g�(i;mi)(V

�(i;mi)
mi ; : : : ; V

�(i;mi)
v�(i;mi)

)
(3)

where the function � maps subgoals of the CSQs to subgoals of the original target
query 1.
Using 3 we can rewrite 2 as follows:

answer(H1; : : : ;Hn) : �

g�(1;1)(X
�(1;1)
1 ; : : : ; X

�(1;1)
v�(1;1)); : : : ; g�(1;m1)(X

�(1;m1)
m1 ; : : : ; X

�(1;m1)
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);
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v�(n;1)); : : : ; g�(n;mn)(X

�(n;mn)
mn ; : : : ; X

�(n;mn)
v�(n;mn))

(4)

where the variables that appear in the tail are identical to the ones that appear
in the original CSQ if they appear in the CSQ's head. Otherwise, we rename
the original variables of the CSQ so that they are not identical to the variables
introduced by any other CSQ. Formally,

X
�(i;j)
k

= f
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�(i;j)
k ; if V

�(i;j)
k 2 fAi

1; : : : ; A
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(5)

If V
�(i;j)
k is identical to V

�(i;j0)
k0 then N

�(i;j)
k is identical to N

�(i;j0)
k0 .

Now we will show that there is a mapping from the target query 1 to the plan 4

and vice versa. We map the plan 4 to the query 1 by mapping the variables X�(i;j)
k

that are equivalent to some N
�(i;j)
k to V

�(i;j)
k . The heads are identical so we do not

have to do anything to establish a mapping.
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Then, we map the query 1 to the plan 4. Essentially, we map the subgoals of the
target query that correspond to the consumed set of a CSQ to the subgoals of the
CSQ. It is not obvious that this can happen because the sets of consumed subgoals
of the CSQs share variables.
First we map the subgoals of the target query that correspond to C1 to the the

tail of the �rst CSQ, then we map the subgoals of the target query that correspond
to C2�C1 to to subgoals of the second CSQ and so on. Let us assume, without loss
of the generality, that Ci � Ci�1 � : : :� C1 consists of

gj(V
j
1 ; : : : ; V

j
vj
); j = 1; : : : ; ci

For every gj(V
j
1 ; : : : ; V

j
vj
) there is a j0 such that �(i; j0) = j (because of the con-

sumed sets condition). We map gj(V
j
1 ; : : : ; V

j
vj
) to gj(X

j
1 ; : : : ; X

j
vj
). The mapping

is possible because:

� if V j
k has appeared either in the target query head or in Ci0 where i0 < i then

because of the de�nition of set of consumed subgoals and because of the join
variables condition it is guaranteed that V j

k appears in the head of CSQ i,

i.e., V j

k 2 fAi
1; : : : ; A

i
ai
g, and it also appears in the head of CSQ i0, i.e., V j

k 2

fAi0

1 ; : : : ; A
i0

ai0
g. Hence, Xj

k is identical to V j

k and V j

k has been earlier mapped
to itself.

� otherwise, we map V j
k to Xj

k.

Plans involving nested loops can (conceptually) be reduced to corresponding plans
with local joins by moving the variables of the sets B in the head of the CSQ if
they do not appear already in the head. Then the equivalence of the plan and
the target query is obvious, provided that we can execute the plan. The bindings
passing condition guarantees that we can execute the plan.

The plan construction algorithm of Figure 5 is based on Theorem 7. The algo-
rithm takes as input a set of CSQs derived by the CSQ discovery process described
later, and the target query Q. At each step the algorithm selects a CSQ s that
consumes at least one subgoal that has not been consumed by any CSQ s0 consid-
ered so far and for which all variables of Bs have been exported by at least one s0.
Assuming that the algorithm is given m CSQs (by the CSQ discovery module) it
can construct a set that satis�es the consumed sets and the bindings passing con-
ditions in time polynomial in m. Nevertheless, if the join variables condition does
not hold the algorithm takes time exponential in m because we may have to create
exponentially many sets until we �nd one that satis�es the join variables condition.
However, the join variables condition evaluates to true for most wrappers we �nd
in practice (see following discussion) and thus we usually construct a plan in time
polynomial in m.
For every plan p there may be plans p0 that are identical to p modulo a permu-

tation of the CSQs of p. In the worst case there are np! permutations, where np is
the number of CSQs in p. Since it is useless to generate permutations of the same
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Algorithm 5
Input: A set of CSQs fs1; : : : ; smg

A target query Q
Output: A set of plans that satisfy Theorem 7

and no two plans contain exactly the same CSQs

Method: Invoke procedure sort(fs1; : : : ; smg, L0) % sort input in L0 using
b
�

Invoke procedure plan(L0,fg)

Procedure plan(L;P )
% P is list of CSQs that form part of a plan

% L is a sorted list of CSQs that are considered for generating P
% sub(P ) refers to the union of the consumed sets

Ci of the CSQs si of the set P
If sub(P ) is equal to the set of subgoals of the target query Q
output plan \hQ head i :- hs1 head i : : : hsn headi"

where P = [s1; : : : ; sn]
Else
Scan L from the start to the end until we �nd a CSQ s such that

% s consumes at least one more subgoal
Cs has at least one subgoal not in sub(P )

% Bindings needed by s are available
All variables V of Bs are either exported by at least one CSQ in P

or there is a predicate equal(V;W)

and W is exported by at least one CSQ in P
If no s is found return % no plan can be derived
Else

% De�ne for s JV(s) the set of join variables
%corresponding to joins not pushed down

For each variable V of each consumed subgoal of s
If equal(V;W) occurs in Q and W is in a subgoal not consumed by s
Add V to JV(s)

% check join variables condition of Theorem 7
For each variable V in JV(s) such that equal(V,W) occurs in Q

Ensure W is exported by each CSQ in P
that has a consumed subgoal using W .

For each CSQ p 2 P
For each variable V in JV(p)

such that equal(V,W) occurs in Q and W appears in s
Ensure W is exported by s

Invoke plan(L0,P 0),
where L0 is the su�x of L that follows s and P 0 = concatenate(P; [s])

Invoke plan(L0,P ) % �nd all plans that do not have s

Figure 5. The Plan Construction Algorithm
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plan, The algorithm creates a total order � of the input CSQs and generates plans
by considering CSQ s1 before CSQ s2 only if s1 � s2, i.e., the CSQs are considered
in order by �. Note, a query s2 must always be considered after a query s1 if s1

provides bindings for s2. Hence, � must respect the partial order
�

b where s1
�

b s2
if s1 provides bindings to s2.

The plan construction algorithm �rst sorts the input CSQs in a total order that

respects the PO
b
�. Then it proceeds by picking CSQs and testing the conditions

of Theorem 7 until it consumes all subgoals of the target query. The algorithm
capitalizes on the assumption that in most practical cases every CSQ consumes at
least one subgoal and the join variables condition holds. In this case, one plan is
developed in time polynomial in the number of input CSQs. The following lemma
describes an important case where the join variables condition always holds.

Lemma 1 The join variables condition holds for any set of CSQs such that

1. no two CSQs of the set have intersecting sets of maximal consumed subgoals, or

2. if two CSQs contain the subgoal g(V1; : : : ; Vm) in their sets of maximal consumed
subgoals then they both export variables V1; : : : ; Vm.

Condition (1) of Lemma 1 holds for typical wrappers of bibliographic information
systems and lookup services (wrappers that have the structure of (D12)), relational
databases and object oriented databases { wrapped in a relational model. In such
systems it is typical that if two CSQs have common subgoals then they can be
combined to form a single CSQ. Thus, we end up with a set of maximal CSQs that
have non-intersecting consumed sets. Condition (2) further relaxes the condition
(1). Condition (2) holds for all wrappers that can export all variables that appear
in a CSQ. The two conditions of Lemma 1 cover essentially any wrapper of practical
importance.

6. Plan Re�nement

The plan re�nement module �lters and re�nes constructed plans in two ways. First,
it eliminates plans that are not algebraically optimal. The fact that CSQs of the
representative plans have the maximum number of selections and joins and that
plan re�nement pushes the maximumnumber of projections down is not enough to
guarantee that the plans produced are algebraically optimal. For example, assume
that CSQs s1 and s2 are interchangeable in all plans, and the set of subgoals
of s1 is a superset of the set of subgoals of s2 and s1 exports a subset of the
variables exported by s2. The plans in which s2 participates are algebraically
worse than the corresponding plans with s1. Nevertheless, they are produced by
the plan construction module because s1 and s2 may both be maximal, and do not
represent each other because they are produced by di�erent template expansions.
Plan re�nement must therefore eliminate plans that include s2.
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Algorithm 6
Input: Plan P involving representative CSQ s.
Output: One ormore plans with s replaced by a CSQ

with fewer distinguished attributes
Method:

% Prune the set of maximal consumed subgoals of s
For each subset M of the set of maximal consumed subgoals of s

Replace annotation Cs by M
% Check that the resulting plan is legal
% sub(P ) refers to the union of the maximal consumed sets of plan P
If sub(P ) contains all subgoals of Q then proceed else discard M
% consumes all subgoals
Compute set of necessary variables V of s as per De�nition 6.
If V is not a subset of the set of variables exported by s
discard M

Else replace the set of exported variables of s by V
to construct a new plan P 0

% Check if P 0 is an algebraically optimal plan and discard plans
% that are algebraically worse than P 0

for every discovered plan P 00

if P 0 is algebraically worse (see De�nition ) than P 00

discard P 0 and exit loop
else if P 00 is algebraically worse than P 0

discard P 00

Figure 6. The Plan Re�nement Algorithm

Plan re�nement must also project out unnecessary variables from representative
CSQs. Intuitively, the necessary variables of a representative CSQ are those vari-
ables that allow the consumed set of the CSQ to \interface" with the consumed
sets of other CSQs in the plan. We formalize this notion and its signi�cance by
the following de�nition (note, the de�nition is not restricted to maximal consumed
sets):

De�nition. Necessary Variables of a Set of Consumed Subgoals: A variable V
is a necessary variable of the consumed subgoals set Ss of some CSQ s if, by not
exporting V , Ss is no longer a consumed set.

The set of necessary variables is easily computed: Given a set of consumed subgoals
S, a variable V of S is a necessary variable if it is a distinguished variable, or if it
is a join variable that appears in at least one subgoal that is not in S.
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The complete plan re�nement algorithm appears in Figure 6. Its main complica-
tion is due to the fact that unnecessary variables cannot always be projected out
when the maximal consumed sets of the CSQs intersect. For example, consider a
wrapper that exports predicates emp and substring. Every supported query has
exactly one emp subgoal, at most one substring subgoal, and may export any
subset of the emp variables. The target query (Q30) can be computed by plan
(P33).

(Q30) answer(F,L):-emp(F,L,D,O,M),substring(D,'data'),substring(O,'B')
(Q31) answer31(F,L,D,O,M) :- emp(F,L,D,O,M), substring(D,'data')

(Q32) answer32(F,L,D,O,M) :- emp(F,L,D,O,M), substring(O,'B')

(P33) answer(F,L) :- answer31(F,L,D,O,M), answer32(F,L,D,O,M)

Having both queries export all the variables is useless. An obvious optimization is
to replace (Q32) with (Q34), which exports only the distinguished variables F and
L and the join variable D.

(Q34) answer34(F,L,D) :- emp(F,L,D,O,M), substring(O,'B')

Indeed, variables F, L and D are the only necessary variables of the maximal con-
sumed subgoals set femp(F,L,D,O,M), substring(O,'B')g.
However, reducing the exported variables of each representative query to the

necessary variables of its maximal consumed set may result in an incorrect plan.
For example, replacing CSQ (Q31) with CSQ (Q35) we construct the erroneous
plan (P36). (P36) violates the join variables condition.

(Q35) answer35(F,L,O) :- emp(F,L,D,O,M), substring(D,'data')

(P36) answer(F,L) :- answer34(F,L,D), answer35(F,L,O)

The problem arises because the maximal consumed sets of (Q31) and (Q32) in-
tersect. It can be solved as follows: Since CSQ (Q34) consumes the subgoals
emp(F,L,D,O,M) and substring(O,'B') we can modify the exported variables of
the representative CSQ (Q31) so that it consumes only the subgoal
substring(D,'data'). Thus, we can replace the representative CSQ (Q31) with
the CSQ (Q37) that exports only the necessary variables of the set fsubstring(D,'data')g,
i.e., D. Consequently, we can construct the plan (P38).

(Q37) answer37(D) :- emp(F,L,D,O,M), substring(D,'data')

(P38) answer(F,L) :- answer34(F,L,D), answer37(D)

Symmetrically, we may assume that (Q31) consumes emp(F,L,D,O,M) and
substring(D,'data') in which case (Q32) consumes only substring(O, 'B')

and hence we can produce the plan (P40).

(Q39) answer39(O) :- emp(F,L,D,O,M), substring(O,'B')

(P40) answer(F,L) :- answer35(F,L,O), answer39(O)
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Intuitively, the plans (P38) and (P40) correspond to two di�erent partitions of the
target query's subgoals among the sets of consumed subgoals the two representa-
tive CSQs. In general, given a representative plan, we may produce all plans that
implement projections by partitioning the target query subgoals among the repre-
sentative CSQs. Thus, subgoals that are in the consumed sets of more than one
representative query are \assigned" to only one representative query. Then, we cal-
culate the necessary variables for the \reduced" consumed sets of the representative
queries.
For ease of explanation we describe an algorithm (see Figure 6) to add projections

to a plan with one representative CSQ. The algorithm works also for plans with
multiple representative CSQs.
Evaluation The Plan Re�nement Algorithm is exponential in the size of Cs.
However, it can be optimized by observing the following: If some subgoal in the
maximal consumed set of s is not in the maximal consumed set of any other CSQ in
plan P , then this subgoal necessarily has to be present in all non-discarded subsets
M . Thus, options are generated only by subgoals consumed by multiple CSQs.
Thus, the algorithm becomes exponential in the size of the largest intersection of
the consumed sets of the representative CSQs.

7. CombiningCost-Based Optimizationwith Capabilities-BasedRewrit-
ing

The previous sections described a capabilities-based rewriter that produces all al-
gebraically optimal plans. Then, a cost-based optimizer estimates the cost of each
algebraically optimal plan and selects the absolutely optimal one. However, separat-
ing cost optimization and capabilities-based rewriting may result in a huge number
(exponential in the number of query subgoals and join variables) of algebraically
optimal plans. For su�ciently large queries it may be prohibitively expensive to
generate and evaluate all algebraically optimal plans. In this section we solve this
problem by incorporating cost optimization and pruning into the plan construction
phase. The solution follows the same techniques with the well-known System R op-
timizer [20] and - in accordance with System R - does not compromise in practice
the completeness of the optimization (i.e., the optimal plan is discovered) but the
running time may still be exponential.
The intuition behind pruning is that we do not want to keep track of all possible

(sub)plans to execute and join a subset S of subgoals. We may select the most
e�cient subplan and use it whenever we want to join a CSQ s0 with the CSQs that
compute S. We �rst provide an example that illustrates the performance problem
arising when the CBR and the optimizer operate separately. Then we describe
the enhanced CBR algorithm (which includes cost optimization) and we revisit the
example.

Example 3: Consider the following target query

(Q41) answer(X, Y, Z, W) :- p(X, Y), q(Y, Z), r(Z, W)
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(Q42) answer42(X; Y) : �p(X; Y)
(Q43) answer43(X) : �p(X; $Y)
(Q44) answer44(Y) : �p($X; Y)
(Q45) answer45() : �p($X; $Y)
(Q46) answer46(Y; Z) : �q(Y; Z)
(Q47) answer47(Y) : �q(Y; $Z)
(Q48) answer48(Z) : �q($Y; Z)
(Q49) answer49() : �q($Y; $Z)
(Q50) answer50(Z; W) : �r(Z; W)
(Q51) answer51(Z) : �r(Z; $W)
(Q52) answer52(W) : �r($Z; W)
(Q53) answer53() : �r($Z; $W)

Figure 7. CSQs for query (Q41)

(Q54) answer(X; Y; Z; W) : �answer42(X; Y); answer46(Y; Z); answer50(Z; W)
(Q55) answer(X; Y; Z; W) : �answer42(X; Y); answer46(Y; Z); answer52(W)=$Z
(Q56) answer(X; Y; Z; W) : �answer42(X; Y); answer48(Z)=$Y; answer50(Z; W)
(Q57) answer(X; Y; Z; W) : �answer42(X; Y); answer48(Z)=$Y; answer50(W)=$Z

Figure 8. Plans corresponding to the order p, q, r

Assume that the source can answer any query that refers to only one relation and
has zero or more equality conditions on the relation attributes. Figure 7 lists the
CSQs that will be derived from the plan construction phase. The plan construction
algorithm of Figure 5 derives 24 algebraically optimal plans. In particular, for every
permutation of p, q, and r there are four possible plans because there are two CSQs
that can consume the second subgoal and two CSQs that can consume the third
subgoal. Figure 8 lists the plans corresponding to the order p, q, r.

If we generalize our scenario to a \chain join" query with n predicates of the form

(Q58) answer(X0; X1 : : : ; Xn; Xn+1) : �p0(X0; X1); p1(X1; X2) : : :pn(Xn; Xn+1)

the number of CSQs is linear in n but the number of plans is exponential in n.
Indeed, even for the single permutation p0; p1; : : : ; pn there are 2n algebraically
optimal plans. The plan construction and optimization Algorithm 7 (Figure 9)
employs two techniques to reduce the complexity:
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1. For every subset S of subgoals it discovers once the optimum subplan to com-
pute the join of the subgoals of S. It will consequently use the optimum plan
whenever the CSQs corresponding to these subgoals will be joined with other
CSQs.

2. Plans that correspond to cartesian products, i.e., plans where some CSQs do
not have any common variables or do not exchange bindings with the rest of
the CSQs are not considered.

Algorithm 7 discovers optimal plans for increasingly larger subsets of subgoals.
At the end of round i it has discovered the optimal plans for consuming each set
with less than i + 1 subgoals. It may have also generated some plans that join
i + 1 or more subgoals because upon trying to consume a set of i subgoals, say,
fs1; : : : ; sig it may have to use CSQs that consume some additional subgoals such
as si+1.
The following de�nitions clarify the notion of (sub)plan and \set of subgoals

consumed by a plan".

De�nition. Plan A plan p of a target query q is a sequence hs1; : : : ; sni of CSQs
of q such that the bindings passing condition holds, i.e., if V 2 Bsi then there is a
CSQ sj ; j < i that exports V .

The \sequence" de�nition of plan indicates only (1) which CSQs will be used in
the plan and (2) what sets of bindings will be received by the CSQs that require
bindings. The latter info is implied by the order in which the CSQs appear. We are
not concerned with the join order and join policies for the joins that will be done by
the mediator. This simplifying assumption is often justi�ed from the predominance
of network and source costs.

De�nition. Consumed Set of Subgoals A plan p = hs1; : : : ; sni consumes the set
of subgoals Cp = [si=1:::nCsi , i.e. Cp is the set of subgoals consumed by the CSQs
of p.

Notice that we are not concerned with estimating the cost of our plans - though
it is an important and di�cult problem. Instead, we assume the existence of an
appropriate cost estimation function f(p).
Notation: hs1; : : : ; sni � sn+1 = hs1; : : : ; sn; sn+1i.

Example 4: Let us demonstrate Algorithm 7 in the case of the Example 4. In step
i = 1 it generates plans consisting of one CSQ (see Figure 10). By the end of step
i = 1 all plans for singular sets of subgoals have been constructed. However, if
there were CSQs consuming more than one subgoal we would also have some sets
that consume more than one subgoals.
In step i = 2 we pick the best plan for each of the three sets of size one and we

\extend" it every time with another CSQ. We use the notation hs1; : : : ; sni � s =
hs1; : : : ; sn; si to extend a plan with one more CSQ. Notice that we avoid cartesian



32

Algorithm 7
INPUT: (1) a target query q and a set S of CSQs of q

(2) a cost function f that estimates the cost of plans
OUTPUT: A plan that computes q (if there is one) and has the least cost
METHOD:
For every CSQ s where Bs is empty

insert into P the plan hsi
For i = 2; : : : ; n where n is the number of subgoals in q

For every plan p = hs1; : : : ; smi where Cp has less than i subgoals
For every CSQ s

If s consumes at least one subgoal that is not in Cp, and

for all j = 1; : : : ;m : sj
�

b s, and
s exportsat least one variable V

that is also exported by a CSQ of p, or
Bs has a variable V that is exported by a CSQ of p

Then create a plan p0 = p � s = hs1; : : : ; sm; si
If there is no plan p00 with Cp00 = Cp0

insert p0 in P
Else if there is a plan p00 with Cp00 = Cp0 and f(p0) < f(p00)
delete p00 from P
insert p0 into P

Output the unique plan p (if there is one) where Cp includes all subgoals of q

Figure 9. Plan Construction Algorithm enhanced with Cost Optimization and Pruning
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products and hence we do not have any plan for the set fp; rg. Technically, we
avoid cartesian products by requiring that the CSQ that will extend a plan shares
at least one variable with the plan or takes at least one set of bindings from the
plan. Furthermore, we do not generate plans which are mere permutations of each
other. For example, we do not extend the optimal plan for consuming q with the
CSQ (Q42). Technically, we avoid permutations by producing only sequences that

conform to the partial order
�

b (see Section 5.4).
In step i = 3 we pick the optimum plan for each of the two subsets and appropri-

ately extend it. For the sake of the example, let us assume that

hans42(X; Y); ans46(Y; Z)i

is the optimum plan for fp; qg and

hans50(Z; W); ans47(Y)=$Zi

is the optimal plan for fq; rg. The optimal plan for fp; qg can be extended in two
ways; either with ans50(Z; W) or with ans52(W)=$Z. The optimal plan for for fq; rg
can be extended with ans43(X)=$Y or with ans42(X; Y).

8. Practical Issues in the Implementationof a Capabilities-BasedRewriter

A capabilities-based rewriter has been implemented for Garlic using Starburst's
extensible optimizer [10] as implemented for DB2 [5]. The implementation has
enhanced some aspects of capabilities-based rewriting (see the list below) and has
simpli�ed algorithmswhenever the corresponding functionality loss does not impede
the inclusion of target sources. A detailed description of the implementation can
be found in [7]. In this section we summarize the most important aspects of the
implementation and we compare with the algorithms described in previous section.

� Capabilities Description Language In Garlic's implementation of the CBR
the capabilities of a wrapper are described via a description of the set of plans
that can be executed by the wrapper. At a su�cient level of abstraction the
plans are trees where the leaves are the source relations and the inner nodes
are operators, called Plan OPerators (POPs), such as selection, join, projec-
tion, and so on. The role of nonterminals is assumed by the optimizer's STARs
(STrategy Alternative Rules) which are essentially the production rules of a
grammar that generates a possibly in�nite number of plans. Describing capa-
bilities using plans { as opposed to queries { facilitated the use of the Starburst
extensible optimizer. However, the use of plans for describing capabilities forces
a wrapper writer to understand the meaning and use of plans by the optimizer,
complicating the task of writing a description. We plan to work on using a
variant of RQDL for the capabilities description.
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i = 1

fpg

hans42(X; Y)i

fqg

hans46(Y; Z)i

frg

hans50(Z; W)i

i = 2

fp; qg

hans42(X; Y)i � ans46(Y; Z) = hans42(X; Y); ans46(Y; Z)i
hans42(X; Y)i � ans48(Z)=$Y = hans42(X; Y); ans48(Z)=$Yi
hans46(Y; Z)i � ans43(X)=$Y = hans46(Y; Z); ans43(X)=$Yi

fq; rg

hans46(Y; Z)i � ans50(Z; W) = hans46(Y; Z); ans50(Z; W)i
hans46(Y; Z)i � ans52(W)=$Z = hans46(Y; Z); ans52(W)=$Zi
hans50(Z; W)i � ans47(Y)=$Z = hans50(Z; W); ans47(Y)=$Zi

i = 3

fp; q; rg

hans42(X; Y); ans46(Y; Z)i � ans50(Z; W) = hans42(X; Y); ans46(Y; Z); ans50(Z; W)i
hans42(X; Y); ans46(Y; Z)i � ans52(W)=$Z = hans42(X; Y); ans46(Y; Z); ans52(W)=$Zi

hans50(Z; W); ans47(Y)=$Zi � ans43(X)=$Y = hans50(Z; W); ans47(Y)=$Z; ans43(X)=$Yi
hans50(Z; W); ans47(Y)=$Zi � ans42(X; Y) = hans50(Z; W); ans47(Y)=$Z; ans42(X; Y)i

Figure 10. Plans constructed and evaluated for the query (Q41)
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� Mediator Capabilities DescriptionA unique feature of the implementation
is that the capabilities of the mediator are also described { as opposed to the
algorithms of the previous sections where the mediator can only do selections,
projections, and joins. Having an open set of mediator capabilities is impor-
tant for a system that targets not only conjunctive queries but also aggregates,
similarity queries on multimedia data, etc. For example, the implementation
introduced a special kind of join that implements the merging of \fuzzy" result
sets using an algorithm outlined in [3]. However, we will not further discuss the
non-SPJ abilities of the implemented version because the fundamental issues
pertaining to capabilities-based rewriting of non-SPJ queries are not yet fully
understood. For example, we do not know yet how to characterize the complete-
ness of an algorithm for rewriting aggregates or negations.6 For the comparison
between the CBR algorithms of this paper and the Garlic implementation we
assume that we deal with SPJ queries only and that the mediator capabilities
include arbitrarily complex plans consisting of selections, projections, and joins.

� Capabilities-Based Rewriter Operates with Descriptions of Multiple
Sources The target query refers to multiple sources and the description pro-
vides all the supported queries of all the sources. It is straightforward to see
that the algorithms described in the previous sections are not a�ected by this
feature modulo that the CBR has to keep track of the source that supports a
given CSQ in order to issue the right query to the right source.

� Implementation Architecture The optimizer operates in three phases. To-
gether, phase 1 and phase 2 do the work of CSQ discovery and plan construction,
looking at �rst single subgoals, and then increasingly larger subsets of subgoals,
using rules provided by both mediator and wrappers at each step. We assume
that the mediator can retrieve all the variables associated with the tables par-
ticipating in a plan supported by the wrappers; this assumption reduces plan
construction to a search for plans that use all tables appearing in the target
query and furthermore it eliminates the need for inserting projections during
plan re�nement. Finally there is a phase of (essentially minor) re�nements and
�xes. For example, the attributes are placed in the order requested by the
query.

The implementation combines capabilities-based rewriting with cost-based op-
timization in order to avoid generating all possible algebraically optimal plans
(recall, there can be an exponential number of algebraically optimal plans.)
In particular, the plan construction phase employs the dynamic programming
algorithm of Starburst's optimizer { similar to Algorithm 7 of Figure 9 { for
discovering the most e�cient supported plan while at the same time it prunes
the space of plans. A side e�ect of the cost-based optimization enhancement is
that the prunings for algebraic optimality are not that crucial anymore because
they become a special case of the cost-based prunings.
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� Join Variables Condition The implementation assumes that all variables of
the body of a query can be obtained. This assumption is most often valid; it
posed no problem to the integration of over 10 di�erent sources, including a
relational database, two Web sources, Lotus Notes databases, a chemical struc-
ture search engine, text and image content search systems. It greatly simpli�es
the implementation in two ways. The �rst one, that we have already discussed,
is that it validates the join variables condition (recall, the join variables condi-
tion requires that join variables are returned.) Second, the plan re�nement step
is integrated into plan construction because there is no need to construct plans
with too many variables as is done by the plan construction and CSQ discovery
of the previous sections.

9. Evaluation

The CBR algorithm employsmany techniques to eliminate sources of exponentiality
that would otherwise arise in many practical cases. The evaluation paragraphs
of many sections in this paper describe the bene�t we derive from using these
techniques. Remember that our assumption that every CSQ consumes at least one
subgoal led to a plan construction module that develops a plan in time polynomial
to the number of CSQs produced by the CSQ detection module, provided that the
join variables condition holds. This is an important result because the join variables
condition holds for most wrappers in practice, as argued in Subsection 5.4.
The CBR deals only with Select-Project-Join queries and their corresponding

descriptions. It produces algebraically optimal plans involving CSQs, i.e., plans
that push the maximum number of selections, projections and joins to the source.
However, the CBR is not complete because it misses plans that contain irrelevant
CSQs (see De�nition 5.1 and the discussion of Section 5.1.) On the other hand,
the techniques for eliminating exponentiality preserve completeness, in that we do
not miss any plan through applying one of these techniques (see justi�cations in
Sections 4.2, 4.3.)

10. Related Work

Signi�cant results have been developed for the resolution of semantic and schematic
discrepancies while integrating heterogeneous information sources. However, most
of these systems [19, 8, 1, 6] do not address the problem of di�erent and limited
query capabilities in the underlying sources because they assume that those sources
are full-
edged databases that can answer any query over their schema.7 The recent
interest in the integration of arbitrary information sources, including databases, �le
systems, the Web, and many legacy systems, invalidates the assumption that all
underlying sources can answer any query over the data they export and forces us
to resolve the mismatch between the query capabilities provided by these sources.
Only a few systems have addressed this problem.
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HERMES [19] proposes a rule language for the speci�cation of mediators in which
an explicit set of parameterized calls can be made to the sources. At run-time the
parameters are instantiated by speci�c values and the corresponding calls are made.
Thus, HERMES guarantees that all queries sent to the wrappers are supported.
Unfortunately, this solution reduces the interface between wrappers and mediators
to a very simple form (the particular parameterized calls), and does not fully utilize
the sources' query power.

DISCO [22]describes the set of supported queries using context-free grammars.
This technique reduces the e�ciency of capabilities-based rewriting because it treats
queries as "strings."

The Information Manifold [11] develops a query capabilities description that is
attached to the schema exported by the wrapper. The description states which and
how many conditions may be applied on each attribute. RQDL provides greater
expressive power by being able to express schema-independent descriptions and
descriptions such as \exactly one condition is allowed."

TSIMMIS suggests an explicit description of the wrapper's query capabilities [14],
using the context-free grammar approach of the current paper. (The description is
also used for query translation from the common query language to the language of
the underlying source.) However, TSIMMIS considers a restricted form of the prob-
lem wherein descriptions consider relations of prespeci�ed arities and the mediator
can only select or project the results of a single CSQ.

This paper enhances the query capability description language of [14] to describe
queries over arbitrary schemas, namely, relations with unspeci�ed arities and names,
as well as capabilities such as \selections on the �rst attribute of any relation."
The language also allows speci�cation of required bindings, e.g., a bibliography
database that returns \titles of books given author names." We provide algorithms
for identifying for a target query Q the algebraically optimal CSQs from the given
descriptions. Also, we provide algorithms for generating plans for Q by combining
the results of these CSQs using selections, projections, and joins.

The CBR problem is related to the problem of determining how to answer a query
using a set of materialized views [13, 9, 18, 17]. However, there are signi�cant dif-
ferences. These papers consider a speci�cation language that uses SPJ expressions
over given relations specifying a �nite number of views. They cannot express arbi-
trary relations, arbitrary arities, binding requirements (with the exception of [18]),
or in�nitely large queries/views. Also, they do not consider generating plans that
require a particular evaluation order due to binding requirements.

[9] shows that rewriting a conjunctive query is in general exponential in the total
size of the query and views. [17] shows that if the query is acyclic we can rewrite
it in time polynomial to the total size of the query and views. [9, 18] generate
necessary and su�cient conditions for when a query can be answered by the avail-
able views. By contrast, our algorithms check only su�cient conditions and might
miss a plan because of the heuristics used. Our algorithm can be viewed as a
generalization of algorithms that decide the subsumption of a datalog query by a
datalog program (i.e., the description). [12] proposed Datalog for the description
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of supported queries. It also suggested an algorithm that essentially �nds what
we call maximal CSQs. Recently [25] discussed the expressive power of Datalog
and the expressive power of an RQDL extension. The most important result was
that Datalog cannot express the capabilities of powerful sources. In particular, it is
proven that there is no Datalog program that can express the set of all conjunctive
queries over a given schema. It is also proven that RQDL can do so. Furthermore,
the extended RQDL is reduced into Datalog with functions.

11. Conclusions and Future Work

In this paper, we presented the Relational Query Description Language, RQDL,
which provides powerful features for the description of wrappers' query capabili-
ties. RQDL allows the description of in�nite sets of arbitrarily large queries over
arbitrary schemas. We also introduced the Capabilities-Based Rewriter, CBR, and
presented an algorithm that discovers plans for computing a wrapper's target query
using only queries supported by the wrapper. Despite the inherent exponentiality
of the problem, the CBR uses optimizations and heuristics to produce plans in
reasonable time in most practical situations.
We also described the enhancement of CBR with a cost-based optimizer and we

discussed practical issues in the implementation of a capabilities-based rewriting
algorithm for Garlic.
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Appendix

A.1. Syntax and Semantics of RQDL

In this section we formally present the syntax and semantics of RQDL. We focus
on normal-form RQDL. ( We may reduce non-normal form descriptions to normal
form applying the transformations described in Section 2.4.)
The syntax appears in Figure A.1. Furthermore, we restrict to descriptions where

there is a nonterminal template, with matching arity, for every nonterminal that
appears in a template. Additionally, for the implementation reasons described in
Section 4 we restrict to descriptions where all nonterminals are grounded.
The following de�nitions formally de�ne the set of queries that is described by a

description. First we de�ne the set of expansions of a query template. Then we use
the set of terminal expansions, i.e., the set of expansions that do not contain any
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(0) hdescriptioni ::= (hquery templateijhnonterminal templatei)�
(1) hquery templatei ::= answer( hpredicate argumentsi )

: � hsubgoal listi
(2) hnonterminal templatei ::= hnonterminal namei ( hargumentsi )

hsubgoal listi
(3) hsubgoal listi ::= hsubgoali (; hsubgoali)�
(4) hsubgoal listi ::= � %subgoal list may be emtpy
(5) hsubgoal i ::= hpredicatei ( hargumentsi ) %predicate
(6) hsubgoal i ::= hmetapredicate namei ( hargumentsi )
(7) hsubgoal i ::= hnonterminal namei ( hargumentsi )
(8) hargumentsi ::= hvectorijhvariablei (; hvariablei)�
(9) hpredicate namei ::= hidenti�erijhplaceholderi
(10) hmetapredicate namei ::= hidenti�eri
(11) hnonterminal namei ::= hidenti�eri

Figure A.1. Normal-form RQDL syntax

nonterminal, for de�ning the set of queries described by terminal expansions and
hence described from the description. Note, from a syntactical viewpoint expansions
are equivalent to templates.

De�nition. Set of expansions Et of query template t The set of expansions Et
contains

1. the template t

2. every expansion e derived by permuting the subgoals of an expansion g 2 Et

3. every expansion e derived by renaming the variables, vectors, and placeholders
of an expansion g 2 Et

4. every expansion e of the form

hanswer predicatei : � hN de�nition bodyi; hother subgoalsi

such that there is an expansion g 2 Et that has the form

hanswer predicatei : � N (hargumentsi); hother subgoalsi

and a nonterminal template of the form

N (hde�nition argumentsi) : hN de�nition bodyi

where



40

(A) the nonterminal template and the expansion e have no common variable,
(B) there is a collection of mappings � such that �(N (hargumentsi)) is identical

to
�(N (hde�nition argumentsi)). We call � a uni�er. De�nition A.1 formally
de�nes the application of a uni�er on an RQDL expression.

De�nition. Application of uni�er on RQDL expression Given the RQDL expres-
sion e, where e may be subgoal, subgoal list, or nonterminal template head, and
the uni�er �, �(e) is computed by the following steps

1. If � contains a mapping of the form hplaceholderi 7! hconstant i, or hvariablei1 7!
hvariablei2, or hvectori1 7! hvectori2 then replace all instances of hplaceholder i,
hvariablei1, and hvectori2 with hconstant i, hvariablei2, or hvector i2 respectively.

2. If � contains a mapping of the form hvectori 7! [hvariable listi] replace all
instances of hvector i that appear in metapredicates with [hvariable listi] and all
the other instances with hvariable listi.

De�nition. Set of terminal expansions Tt of query template t The set of terminal
expansions Tt of a template t consists of all expansions of Et that do not contain a
nonterminal.

De�nition. Set of queries described by query template t The set of queries de-
scribed by query template t consists of all queries that are obtained by applying
the following transformations to an expansion g 2 Tt

1. replace every vector with a variable list,

2. replace every placeholder with a constant,

3. remove all metapredicates that evaluate to true

If there is at least one metapredicate left then the transformed expansion is not a
query.

We do not have to include all permutations of subgoals and renamings of variables in
the above because Tt contains all expansions we can derive by subgoals permutations
and variable renaming.

Notes

1. In general, there is a one-to-one mapping and no optimization is involved in this translation.
All optimization is done at the mediator.

2. We see next that RQDL has nonterminals with parameters. The nonterminals of context-free
grammars are a special case with 0 parameters.

3. The \lookup" facility is very similar to a Stanford University facility.

4. We could have used SPJ SQL queries instead of Datalog. Then, we would use a description lan-
guage that looks like SQL and not Datalog. The same notions, i.e., placeholders, nonterminals,
and so on, hold. The CBR algorithm is also the same.
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5. In general, the hlist of predicates and metapredicates i may contain metapredicates of the
form in(hpositioni,hvariableii, V ),i = 1; : : : ;m. In this case, the template describes all
CSQs that output a subset of W and a superset of S = fhvariablei1; : : : ; hvariableimg. The
CSQ discovery module outputs, as usual, the representative CSQ and annotates it with the set
S that provides the \minimum" set of variables that represented CSQs must export. In this
paper we will not describe any further the extensions needed for the handling of this case.

6. Indeed, there is not a complete algorithm for handling arbitrary SQL queries with negation.
This is a consequence of the undecidability, in the general case, of the equivalence of two SQL
queries with negation [21].

7. The work in query decomposition in distributed databases has also assumed that all underlying
systems are relational and equally able to perform any SQL query.
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