
The TSIMMIS Approach to Mediation: Data Models

and Languages1

Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajaraman,
Yehoshua Sagiv,2 Je�rey Ullman, Vasilis Vassalos, Jennifer Widom

Stanford University, Stanford CA 94305 USA

ABSTRACT

TSIMMIS | The Stanford-IBM Manager of Multiple Information Sources | is a
system for integrating information. It o�ers a data model and a common query
language that are designed to support the combining of information from many
di�erent sources. It also o�ers tools for generating automatically the components
that are needed to build systems for integrating information. In this paper we shall
discuss the principal architectural features and their rationale.

1. Introduction

In this �rst section we introduce the core concept of mediators, which the Tsimmis system
implements. Section 2 discusses the components of Tsimmis, and Section 3 discusses
the OEM data model used by Tsimmis. Section 4 introduces the mediator-speci�cation
language MSL, while in Section 5 we learn how it is used to generate mediators and other
components automatically. Finally, in Section 6 we consider another language, LOREL,
based on the OEM data model. It is the Tsimmis end-user's query language as well as the
query language in the related LORE (Lightweight Object REpository) DBMS.

1.1. The Mediator Concept

The mediator architecture (Wiederhold [1992]) is one of several that have been proposed
to deal with the problem of integration of heterogeneous information. Even as simple a
concept as the employees of a single corporation may be represented in di�erent ways by
many di�erent information sources. These sources are \heterogeneous" on many levels.

� Some may be relational, others not. Some may not be databases at all, but �le
systems, the Web, or legacy systems.

� The types of data may vary; a salary could be stored as an integer or a character
string.

� The underlying units may vary; salaries could be stored on a per-hour or per-month
basis, for example.

1 Work supported by USAF contract F33615{93{1{1339, NSF grant IRI{92{23405, and BSF grant
92{00360.

2 Permanent address: Dept. of CS, Hebrew Univ., Jerusalem.

1

� The underlying concepts may di�er in subtle ways. A payroll database may not
regard a retiree as an \employee," while the bene�ts department does. Conversely,
the payroll department may include consultants in the concept \employee" while the
bene�ts department does not.

� The information may not conform to a rigid schema in advance. Examples of \semi-
structured" information include that found in SGML documents, repositories like
ACeDB (Thierry-Mieg and Durbin [1992]) used in the Human Genome Project, and
Lotus NOTES.

One way to integrate di�erent information sources that deal with the same real-world
entities is to create a mediator, which is a facility capable of answering queries about these
entities. The mediator uses the raw sources (suitably interfaced by a wrapper), and/or
other mediators to answer the queries, as suggested in Fig. 1.

Mediator

Mediator

Wrapper Wrapper

Source Source

Query

Fig. 1. A network of mediators and information sources.

1.2. Mediator Requirements

Our goal is to make it easy to build mediator networks as suggested by Fig. 1. We see
several requirements of a mediator architecture.

2

1. There must be a common data model that is more exible than the models commonly
used for database management systems. A mediator model must support:

a) A rich collection of structures, including nested structures as is found in the type
system of typical modern programming languages.

b) Graceful handling of missing information or related information of widely di�ering
structures.

c) Meta-information, that is, information about the structures themselves and about
the meanings of the terms used in the data.

2. There must be a common query language to allow

a) New mediators to join old ones for augmented functionality and

b) New sources to provide input to an existing mediator.

3. There must be tools to make the creation of new mediators and mediator systems
easier than would be the case if everything were built from scratch.

Information

source

Mediator

generator
Mediator

MSL

MSL or LOREL

generator

Wrapper

Wrapper

Fig. 2. The components of TSIMMIS.

2. The TSIMMIS Mediation System

The principal components of TSIMMIS are suggested in Fig. 2. We use:

3

� A \lightweight" object model called OEM (Object-Exchange Model) serves to convey
information among components. It is \lightweight" because it does not require strong
typing of its objects and is exible in other ways that address desideratum (1) above.
We shall say more about OEM in Section 3.

� Mediators are speci�ed with a logic-based object-oriented language called Mediator
Speci�cation Language (MSL) that can be seen as a view de�nition language that is
targeted to the OEM data model and the functionality needed for integrating hetero-
geneous sources.

� Wrappers (also called translators) are speci�ed with the Wrapper Speci�cation Lan-
guage (WSL) that is an extension to MSL to allow for the description of source contents
and querying capabilities. Wrappers allow user queries to be converted into source-
speci�c queries. We do not assume sources are databases, and it is an important goal
of the project to cope with radically di�erent information formats in a uniform way.

� A common query language links components. We are using MSL as both the query
language and the speci�cation language for mediators and as the query language for
wrappers. The query language LOREL (\Lightweight Object REpository Language"),
an extension of OQL (Cattell et al. [1994]) targeted to semistructured data, is ori-
ented toward end-user queries and is also the query language of the LORE lightweight
database system used for storing OEM objects locally. We discuss MSL in Section 4
and LOREL in Section 6.

� Wrapper- and mediator-generators. We are developing methodologies for generating
classes of wrappers and mediators automatically from simple descriptions of their func-
tions. We discuss mediators, wrappers and their automatic generation in Section 5.

For a general discussion of TSIMMIS, including components such as constraint manage-
ment and user interfaces not described here, see Chawathe et al. [1994].

3. The Object-Exchange Model

The Object-Exchange Model (OEM) is described in Papakonstantinou, Garcia, andWidom
[1995]. Data represented in OEM is self-describing, in the sense that it can be parsed
without reference to an external schema. This capability simpli�es the interfaces among
TSIMMIS components. A second feature of OEM is exibility in data organization, both in
the structures that can be described and in the tolerance of alternative forms for \similar"
objects, di�erences in terminology, and di�erences in the kinds of information obtainable
from \similar" sources.

OID: label type value

Fig. 3. An OEM object.

4

3.1. OEM Objects

It is possible to see OEM as \object-oriented," in the sense that the fundamental OEM
concept is an \object." However, the type system of OEM is quite elementary. As suggested
in Fig. 3, OEM objects have four components:

1. Object ID. It may be constructed by the mediators to be an expression describing
where the object came from. It may also be a pointer to an object in the workspace
used to answer the query. Unlike object-oriented database systems, OEM object-ID's
may be local to a query. They also need not be persistent.

2. Label tells what the object represents (roughly, its class). However, there is no
\schema." Objects with a given label are not required to have a particular set of
subobjects. Labels are expected to have human-understandable de�nitions that may
be retrieved easily by the user. Thus, labels carry all the information there is about
objects, which is why we refer to OEM as \self-describing."

3. Type of its value, either set or an atomic type like string.

4. Value, either an atomic value or a set of objects.

With these primitives, it is possible to simulate all the structures that are found
in more conventional object-oriented type systems. For example, record structures are
simulated by sets of objects, each of whose labels names a �eld of the structure. More
signi�cantly, objects are not organized into classes. A query will address all objects whose
structure matches the conditions of the query.

setbook

Ahoauthor string

title string Compilers..

library set

. . .

Fig. 4. A collection of OEM objects.

5

Example 1: Figure 4 shows a collection of OEM objects. At the top is a root object
whose label is library. Its value is a set of objects, so its type is set. Among the set of
objects that form the value of the library, we see one, labeled book. There is no reason
to suppose that all objects in the library have label book. There may be objects labeled
report, or video, for example. In the future we may �nd objects with labels of a kind we
cannot now imagine.

The book object has a value whose type is also set. However, unlike the library

object, the \set" here is used to simulate a record structure. We expect to �nd as the
value of the book object a set of subobjects with di�erent labels, each representing one of
the \�elds" of the \structure." We have shown a subobject labeled author and a subobject
labeled title, each with a string-type atomic value. Yet there could be other subobjects,
for example an object labeled postscript whose atomic value is a postscript image of the
book. There could be other author-labeled subobjects, if that was appropriate. There
is no \schema" for books, and we would expect in practice that a library composed of
information from a variety of sources would have books with many di�erent sets of \�elds"
in their structure.

3.2. OEM as a Logical Data Model

While it is natural to think of OEM as an object-oriented model, and it indeed provides
some of the advantages, such as natural representation of complex structures, found in
object-oriented models, it is also useful to see OEM as a form of �rst-order logic. In this
logic, labels are predicates, and they relate object identi�ers to other object identi�ers or
to atomic values, in the same way that the objects themselves do.

Example 2: The root library object in Example 1 may be thought of as a predicate
library(B). Its value is the set of object ID's for all the books and other objects that are
members of the value of the library object.

Similarly, corresponding to the label book will be a predicate book(B;X) whose value
is a set of pairs (b; x). Here, b is the object ID of a book object, and x is the object ID
of an object in the set that is the value of the object with ID b. For instance, if b1 is the
object ID of the book object shown in Fig. 4, and a1 and t1 are the object ID's of the
author and title subobjects shown in that �gure, then book(b1; a1) and book(b1; t1) are
true. Put another way, (b1; a1) and (b1; t1) are members of the relation that is the value
of predicate book.

We might also expect from Fig. 4 that there is a predicate title(T; S) whose value is a
set of pairs (t; s). Here, T is the object ID of an object with label title, and s is a string,
the title that appears as the value of the object t. However, it is important to remember
that OEM does not enforce a schema. Thus, it is permissible if the title predicate also
contains pairs (t; s) corresponding to title objects t whose value is a set. In that case, s
would not be a string but an object ID for one of the objects that is a member of the set
that is the value of object t.

4. The Mediator Speci�cation Language (MSL)

Our mediator-generator MedMaker provides a high level language, MSL, that allows the

6

declarative speci�cation of mediators. MSL is an object-oriented, logical query language
targeted to the OEM data model. It contains features that facilitate the integration of
heterogeneous systems. MSL borrows many concepts from logic-oriented languages such
as datalog (Ullman [1988], Ullman [1989]), HiLog (Chen, Kifer and Warren [1993]) and F-
Logic (Kifer and Lausen [1989]). However, a number of problems are avoided by using sets
in a restricted way (variables may explicitly refer only to existing sets of objects). Indeed,
in the absence of negative clauses, MSL can be viewed simply as a variant of datalog. The
contribution is that unstructured as well as structured data can be queried, unlike datalog
or OQL (Cattell et al., 1994).

A query consists of rules. Each rule consists of a head followed by a :- and a body.
The head describes objects made available by the mediator, whereas the body describes
conditions that must be satis�ed by the source objects. In general, the heads and bodies
are based on patterns of the form <object-id label value>. We may omit the object-id �eld
when it is irrelevant. If it is missing from a body pattern it means that we do not care
about the object-id appearing at the source. If it is missing from a head pattern it means
that we have to invent an arbitrary, yet unique, object-id for the \generated" object.

A complete speci�cation of MSL, including formal syntax and semantics is found in
Papakonstantinou, Garcia-Molina and Ullman [1995]. Here, we shall give only an example
that suggests the avor of the language. It is based on the object structure suggested by
Fig. 4.

Example 3: \Find the books of which Aho is an author."

<booktitle X> :-

<library { <book {<title X> <author "Aho">}> }>@s1

Intuitively, in MSL triangular brackets associate labels with their values, while curly brack-
ets group members of a set; this set would be the value of some object whose type is \set."

This query applies to a root object labeled library, which we suppose is available
at a source called s1, which could be either a wrapper or another mediator. The object
pattern (or patterns) that appear in the body of the query are matched against the object
structure of the source s1 by looking for paths in the object structure that agree with
the nested structure of the query. For example, in Fig. 4 there is one path that has the
sequence of labels library, book, author, although in practice there would be many. The
variable X binds to the value of the title subobjects of book objects that have an author

subobject with value `Aho'. The query head indicates that every value that X binds is
included in the result as value of an object labeled booktitle. Technically, these objects
become subobjects of an object with label answer that is produced by the query.

The rule in Example 3 is really a query. However, the same rule above could specify
a trivial mediator: one that exports book titles of books by Aho that are found at source
s1. We will further discuss mediator speci�cation in Section 5.

5. Wrappers, Mediators, and Their Generators

A central goal of TSIMMIS is to make it easy to produce mediated systems. One support
for this goal is the common data model and language, which are designed to make it easy

7

to integrate information from related but not-quite-the-same information sources. Another
support is tools for generating wrapper and mediator components automatically.

5.1. Wrappers

Wrappers provide access to heterogeneous information sources by converting application
queries into source speci�c queries or commands. We do not assume that information
sources have SQL or similar capability. Sources may be text �les, data organized into
tables, spreadsheet �les, or most any other format. A source may also be a query or com-
mand system, such as a bibliographic search system. Wrappers accept queries expressed
in MSL. However, wrappers di�er not only in the set of labels that they can deal with, but
also in the set of supported queries involving those labels.

Unlike relational databases, where all SQL queries over the database schema can be
answered, most information sources can answer a limited set of queries. For example, a
bibliographic search system may \understand" concepts like author, title, and publication
date. The system may respond to queries asking for the titles written by a certain author,
or the publication dates of those books, yet be unable or unwilling to respond to a query
asking for all titles published in 1989, for example.

Thus, a Tsimmis wrapper takes a query and decides �rst of all whether or not its
underlying source can answer the query, i.e., whether the query is directly supported. If so,
it turns the query into something that the underlying source can respond to. The wrapper
then converts the answer into the appropriate OEM objects and returns this result. If
the query is not directly supported, then the wrapper determines whether the query can
be answered by applying local �ltering (eg. selection) to a directly supported query. The
wrapper then again converts the answer received from the source into the appropriate
OEM object, applies the �lter, and returns this result.

5.2. Wrapper Generation

We have built a template-based tool for generating wrappers (Vassalos [1996]). This
wrapper-generator takes a set of templates of the form:

MSL template
// action //

It also takes user-written functions that are needed to connect the wrapper to the source
and execute queries on that source.

Example 4: Suppose we wish to build a wrapper for a source that is a bibliographic
search system (such as Folio at Stanford). We might de�ne rules such as:

<books X> :-

<library { X:<book {<title X> <author $AU>}> }>@s1

// sprintf(lookup-query, "find author %s", $AU) //

The generated wrapper examines a query and compares it to this and other patterns
that are given in the wrapper speci�cation �le. If the query matches the pattern, with
some string in place of the parameter $AU, then the associated action would be executed,
with that string in place of the parameter. Thus, the query

8

<books B> :-

<library { B:<book {<title X> <author "Aho">}> }>@s1

would generate a \native" query to the source asking for books authored by Aho. That
is, the C function sprintf in the action above has the e�ect of assigning to the variable
lookup-query the string "find author Aho". This string is then passed to the source.

We are currently exploring the use of WSL, a Wrapper Speci�cation Language (Vas-
salos, [1996]), that is an extension of MSL with the functionality needed for source de-
scriptions.

The architecture of a wrapper implementation toolkit for generating wrappers is de-
scribed in Papakonstantinou, Gupta, Garcia, and Ullman [1995].

5.3. Extending Wrapper Rules

Since the query language is logic-based, there is the opportunity to answer certain queries
that match no pattern. A query can be deduced to be logically equivalent to a query
pattern with a rule or to the combination of several queries whose patterns appear in
rules. As a simple example of what the system is capable of handling, if a query pattern
has a where-condition that is the AND of two subconditions, then a query with the order
of those subconditions reversed can also be answered. This process of enhancing the
capability of a wrapper or mediator by logical deduction from its speci�cation we have
called query normalization.

Rajaraman, Sagiv, and Ullman [1995] examines the problem of deducing when a given
query is equivalent to a sequence of queries that match the patterns of rules. An example
will suggest what can be achieved in general.

Example 5: Suppose the information source is a genealogy in some form, and the only
two query patterns it can answer are:

1. Given any individual C, �nd C's parents.

2. Find all the individuals who have parents speci�ed by the information source.

There are several reasons why the source might be limited in this way. For example, it
could be a relational database with a child-parent relation and an index only on the child
component.

However, given these two query patterns, we can also handle the query \Find the
grandparents of individual a" by:

i) Find the set P of parents of a, using query (1).

ii) For each individual p in set P , use query (1) to �nd the parents of p.

iii) The answer is the union of all the individuals found in step (ii).

This sequence of queries is suggested in Fig. 5.

Now, consider the query: \Find the grandchildren of individual g." We need query
(2) as well as (1).

9

a

(1) (1)

P

Fig. 5. Finding an individual's grandparents.

i) Use (2) to �nd all individuals.

ii) Use (1) to �nd the parents of the individuals found in (i).

iii) Use (1) to �nd the parents of the individuals found in (ii).

iv) Find those individuals whose grandparents are found in (iii) to be individual g.

The sequence of queries is suggested by Fig. 6. It is a very expensive strategy but is the
best that can be done given the queries that the source can answer.

g

(1) (1)(2)

Fig. 6. Finding an individual's grandchildren.

5.4. Mediator Generation

Mediators are used for the integration of multiple heterogeneous information sources.
Given a set of sources with wrappers that export OEM objects, we would like to build
mediators to integrate and re�ne the information. In particular, we restrict our atten-
tion to mediators that provide integrated OEM \views" of the underlying information.
At run time, when the mediator receives a request for information, MedMaker's Mediator
Speci�cation Interpreter (MSI) collects and integrates the necessary information from the
sources, according to the speci�cation. These sources can be either the wrapper of a raw
information source or another mediator. The process is analogous to expanding a query
against a conventional relational database view.

10

To describe a mediator in MSL, one gives logical rules that de�ne the OEM objects
that the mediator makes available in a \view." Queries to the mediator refer to objects
in this view. The bodies of the rules describe the object or objects at the source(s) that
must exist for the de�ned object to appear in the mediator's view, and the conditions these
objects must satisfy.

Our approach to mediator generation is very much like the use of MSL to de�ne
wrappers that we illustrated in Section 5.2. The principal di�erence is that since the
sources for the mediator already \speak" OEM, there is no need for specialized actions to
describe what must be done at the wrapper's source.

Example 6: We consider two sources that contain information about the sta� of a Com-
puter Science department. The �rst source is a relational database containing two tables
with schemas

employee(name, title, reports to)

student(name, year)

A wrapper, named cs, exports this information as a set of OEM objects.
A second source is a university \whois" facility that contains information about em-

ployees and students. This source contains (among other things) information about one's
dept and relation to the university (student, employee, etc.). A wrapper whois provides
access to this source.

Let us now consider a mediator, called med, that has access to wrappers cs and whois

and exports a set of \cs person" objects. Our goal in this example is that each \cs person"
object represents a person appearing in both sources. The subobjects of each \cs person"
object should represent combined information about this person. For example, since an
object with information about John Doe is exported from both cs and whois, med combines
this information and exports a \fused" object. The MSL speci�cation of the med mediator
is as follows:

Rules

<cs person { <name N> <rel R> }> :-

<person { <fullname N> <dept 'CS'> <relation R> }>@whois

AND <R { <name N> }>@cs

Intuitively, we may think of the process of \creating" the virtual objects of the media-
tor as pattern matching. First, we match the patterns that appear in the body against the
object structure of cs and whois, trying to bind the variables (represented by identi�ers
starting with a capital letter, such as N, R, etc.) to object components of cs and whois.
Then we use the bindings to \construct" the objects speci�ed in the head of the rule. The
only di�erence with using MSL as a query language is that the objects speci�ed by the
query rule head are materialized at the client. MSL o�ers two important capabilities:

� First, the language allows recursive de�nition of view objects. The following example
suggests why that capability might be important.

Example 7: Suppose we have a source that is the arcs of a graph, and we wish to query
about paths in that graph. We can de�ne a mediator that supports a view that is the set of
path objects justi�ed by the graph. We could then ask the mediator a nonrecursive MSL

11

query about whether there is a path from node a to node b. The mediator would issue
to the source as many queries as necessary to answer the query. Note that this approach
allows the problem of computing transitive closures e�ciently to be solved once, when the
mediator is generated, rather than each time a query is asked.

� Second, the language allows the assignment of semantic object ids to objects as they
are \imported" into the mediator. These semantic ids can then be used to specify
how various objects are combined or merged into objects \exported" by the mediator.
Object-id based set formation replaces the need for explicit grouping operators. MSL
allows object ID's to be computed as logical terms, by a particular use of Skolem
functions as F-logic (Kifer and Lausen [1989]). The following example illustrates how
this capability might be used to advantage.

Example 8: One use of this capability is to give objects a description of how they were
derived from sources. Another important use of this feature is in describing views in which
source objects are grouped into sets. For example, suppose we have a source of \enrollment"
objects, that is, student-course pairs. We could create a view with objects labeled course

and with a value equal to the set of students enrolled in that course. The rules describing
this view might de�ne for each course c an \object identi�er" course(c). Then, for each
student-course pair (s; c) in the enrollment source, we would create a view-object with
label student and value equal to s. We then require, as part of the MSL speci�cation of
the mediator, that in the view exported by the mediator this student object is a member
of the set that is the value of the course object with ID course(c).

6. The LOREL Query Language

LOREL (Lightweight Object REpository Language) is an OQL-based query language for
the OEM model. It is the end-user query language for Tsimmis. It is also the query
language for the LORE lightweight object repository, a related project at Stanford building
a DBMS for the OEM data model.

A complete speci�cation of LOREL, including formal syntax and semantics is found
in Quass, Rajaraman, Sagiv, Ullman, and Widom [1995].3 Here, we shall give only an
example that suggests the avor of the language. It is based on the object structure
suggested by Fig. 4.

Example 9: \Find the books of which Aho is an author."

select library.book.title

where library.book.author = "Aho"

This query applies to the root object labeled library. If there were more than one root
object available, we could specify the root or roots in a from-clause

from library

3 There is a new generation of LOREL under development; see http://db.stanford.edu/lore for
details.

12

that could appear between the select- and where-clauses as in SQL.
We answer this query by looking for paths in the object structure that follow the

path expressions of the query, which are the sequences of labels connected by dots. For
example, in Fig. 4 there is one path that has the sequence of labels library, book, author,
although in practice there would be many. We can also �nd a path labeled library, book,
title in Fig. 4, and because the common pre�xes library and library.book match the
same objects, these two paths together form an object assignment that matches the path
expressions of the query. Fortunately, the condition of the where-clause, that the author
be \Aho," are satis�ed by the object assignment. Thus, the title object at the end of the
path corresponding to the select-clause becomes part of the answer. Technically, a copy
of this title object becomes a subobject of an object with label answer that is produced
by the query.

6.1. The Importance of Partial Object-Assignments

It is interesting to explore one of the major design decisions of LOREL that di�ers from
the corresponding approach in OQL or SQL. We believe the LOREL approach is correct
for languages that serve as information integrators, although the SQL approach may be
�ne for conventional query languages.

The reader may be aware of the peculiar way in which SQL handles OR operations
in where-clauses. Suppose we have three unary relations R, S, and T , and we wish to
compute R \ (S [T). Supposing each of these relations have a single attribute A, we
might expect the following SQL query to do the trick.

select R.A

from R, S, T

where R.A = S.A or R.A = T.A;

Unfortunately, if T is empty, the result is empty, even if there are elements in R \ S.
The reason is that SQL semantics requires a total assignment of tuples to the three relations
R, S, and T mentioned in the from-clause. If T (or S) is empty, we cannot �nd such a
total assignment, and thus there is no way to produce an answer.

We would expect intuitively that a partial assignment of tuples would be adequate.
For example, if T is empty, but R and S each contain the tuple (0), we would like to assign
this tuple to both R and S, assign nothing to T , and �nd that the where-condition is
satis�ed since R:A = S:A. We could then produce R:A, that is, (0), as one of the answer
tuples.

The distinction is not important in SQL, because there is unlikely to be an empty re-
lation in a conventional relational database. However, the analogous situation in mediated
databases is much more likely.

Example 10: Here is a LOREL query about the library suggested by Fig. 4. \Find all
books written by Aho or having subject compilers."

select library.book.title

where library.book.author = "Aho"

or library.book.subject = "compilers"

13

If a book, such as the one suggested by Fig. 4 does not have a subject subobject,4 then
there is no way to create an object assignment that matches all three path expressions in
the above query. Thus, the book suggested in Fig. 4 would not be an answer, even though
it intuitively matches the query.

Fortunately, LOREL requires only a partial match. If we match the path expressions
library.book.author and library.book.title to paths in Fig. 4 exactly as we did in
Example 3, that is enough to satisfy with where-condition. Thus, we produce the title
"Compilers..." as one of the answers to the above LOREL query.

7. Related Work

Various projects on the integration of heterogeneous sources (see Ahmed et al. [1991],
Kim et al. [1993], Batini et al. [1986], Hammer et al. [1993], Litwin et al. [1990], Thomas et
al. [1990], Gupta [1989], Su et al. [1996] and Motro [1995]) focus on integrating relatively
small numbers of structured databases. Most of the research on these projects focuses
on resolving the semantic and schematic heterogeneities that arise upon integration. The
solutions often rely on semantically rich data models that allow for easy representation of
the semantic connections between the distributed data. Unlike these systems, TSIMMIS
relies on a lightweight model that can easily adapt to di�erent information representations.
Furthermore, it relies on explicit view de�nition for specifying the integrated view. An
interesting alternative is presented by SIMS (Arens et al. [1993]) and the Information
Manifold (Levy et al. [1996]), where a reasoning phase is required for realizing which
sources have the data of interest, unlike TSIMMIS where view expansion is all that is
needed for �nding what data each source must contribute.

Recently a new generation of projects has focused on the integration of sources that
may not necessarily be structured databases. As we've discussed earlier, the integration
system must be able to process the client queries by using only queries supported by the
participating sources. HERMES (Subrahmanian et al. [1996]) solves this problem by a me-
diator speci�cation language where some literals explicitly specify the parameterized calls
that are sent to the sources. Unfortunately, this reduces the interface between the integra-
tion system and the sources to a limited set of explicitly listed parameterized calls. Unlike
HERMES, TSIMMIS and Garlic (Papakonstantinou, Gupta and Haas [1996]) use source
query capability descriptions that may describe in�nite sets of queries. Unlike TSIMMIS,
Garlic and Information Manifold consider the wrappers to be \thin" modules that support
the directly speci�ed queries. All capability extensions happen at the mediator level.

The importance of information-integration research is highlighted by the arrival of
�rst-generation commercial products. These include IBM's DataJoiner (Gupta and Lin
[1994]) and Microsoft's OLECOM (Blakeley [1996]).

8. Summary

We hope the reader has obtained a feel for the principal innovations in the Tsimmis system:

4 Do not confuse the title, which begins with \Compilers," with a subject, which does not exist in the
�gure.

14

1. The OEM data model, an object-oriented model that uses object labels to represent
both class information and attributes (instance variables) of objects.

2. The exibility of OEM in representing objects of varying structure.

3. The idea of mediator- and wrapper-generation and the way these components can be
expressed in the speci�cation language MSL.

4. The idea of query \normalization," allowing the power of a mediator or wrapper to
be increased by discovery of additional queries that its logical speci�cation implies it
can answer.

5. The query language LOREL for OEM objects and how its partial-match semantics
matches the exible structure of OEM objects.

References

R. Ahmed et al. [1991]. \The Pegasus Heterogeneous Multidatabase System," in IEEE

Computer, 24:19{27, 1991.

Y. Arens, C. Y. Chee, C.-N. Hsu and C. A. Knoblock [1993]. \Retrieving and Integrating
Data from Multiple Information Sources," in Intl Journal of Intelligent and Cooperative

Informations Systems 2:127{158, June 1993.

C. Batini, M. Lenzerini, and S. B. Navathe [1986]. \ A Comparative Analysis of Method-
ologies for Database Schema Integration," in ACM Computing Surveys, 18:323{364, 1986.

J. Blakeley [1996]. \Data Access for the Masses through OLE DB," ACM SIGMOD Int-

ernational Conf. on Management of Data, pp. 161-172.

Cattell, R. G. G. et al. [1994]. The Object Database Standard: ODMG{93, Morgan-
Kaufmann, San Mateo.

Chawathe S., H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ull-
man, and J. Widom [1994]. \The TSIMMIS project: integration of heterogeneous in-
formation sources," IPSJ Conference, Tokyo, 1994. Available by anonymous ftp as
pub/chawathe/1994/tsimmis-overview.ps from db.stanford.edu.

W. Chen, M. Kifer, and D.S. Warren [1993]. \Hilog: a foundation for higher-order logic
programming," in Journal of Logic Programming, 15:187{230, February 1993.

A. Gupta [1989]. Integration of Information Systems: Bridging Heterogeneous Databases.

IEEE Press, 1989.

P. Gupta and E. Lin [1994]. \DataJoiner: a practical approach to multidatabase access,"
Proc. PDIS Conf., page 264, 1994.

J. Hammer and D. McLeod [1993]. \An approach to resolving semantic heterogeneity in a
federation of autonomous, heterogeneous database systems," in Intl Journal of Intelligent

and Cooperative information Systems, 2:51{83, 1993.

15

Kifer, M. and G. Lausen [1989]. \F-logic: a higher-order logic for reasoning about objects,
inheritance, and schemes," ACM SIGMOD International Conf. on Management of Data,
pp. 143{146.

W. Kim et al. [1993]. \On Resolving Schematic Heterogeneity in Multidatabase Systems,"
in Distributed And Parallel Databases, 1:251{279, 1993.

A. Levy, A. Rajaraman, and J. Ordille [1996]. \Querying Heterogeneous Information
Sources Using Source Descriptions," Proc. VLDB Conf., 1996.

W. Litwin, L. Mark, and N. Roussopoulos [1990]. \Interoperability of Multiple Au-
tonomous Databases," in ACM Computing Surveys, 22:267{293, 1990.

A. Motro [1995]. \Multiplex: A FormalModel for Multidatabases and its Implementation,"
Technical Report ISSE-TR-95-103, George Mason University, 1995.

Y. Papakonstantinou, A. Gupta, and L. Haas [1996]. \Capabilities-Based Query Rewrit-
ing in Mediator Systems," to appear in PDIS 96. Available by anonymous ftp as
pub/papakonstantinou/1995/cbr-extended.ps from db.stanford.edu.

Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina [1996]. \Object fusion
in mediator systems," Proc. VLDB Conf., 1996. Available by anonymous ftp as
pub/papakonstantinou/1996/fusion.ps from db.stanford.edu.

Papakonstantinou, Y., A. Gupta, H. Garcia-Molina, and J. D. Ullman [1995]. \A
query translation scheme for rapid implementation of wrappers," Proc. DOOD Conf.,
1995. Available by anonymous ftp as pub/papakonstantinou/1995/transgen.ps from
db.stanford.edu.

Papakonstantinou Y., H. Garcia-Molina, and J. Widom [1995]. \Object exchange across
heterogeneous information sources," Proc. Intl. Conf. on Data Engineering, March,
1995. Available by anonymous ftp as pub/papakonstantinou/1994/object-exchange-

heterogeneous-is.ps from db.stanford.edu.

Y. Papakonstantinou, H. Garcia-Molina, J. D. Ullman [1995]. \MedMaker: A Media-
tion System Based on Declarative Speci�cations", Proc. Intl. Conf. on Data Engineering,
March, 1996. Available by anonymous ftp as pub/papakonstantinou/1995/medmaker.ps
from db.stanford.edu

Quass, D., A. Rajaraman, Y. Sagiv, J. D. Ullman, and J. Widom [1995]. \Querying
semistructured heterogeneous information," Proc. DOOD Conf., 1995. Available by anony-
mous ftp as pub/quass/1994/querying-full.ps from db.stanford.edu.

Rajaraman, A., Y. Sagiv, and J. D. Ullman [1995]. \Answering queries using templates
with binding patterns," Proc. PODS Conf., pages 105{112, 1995. Available by anonymous
ftp as pub/rajaraman/1994/limited-opsets.ps from db.stanford.edu.

Su, S. Y. W. et al. [1996]. \ NCL: a common language for achieving rule-based inter-
operability among heterogeneous systems," in Journal of Intelligent Information Systems:

Integrating Arti�cial Intelligence and Database Technologies 6:2{3, pp. 171-198, June 1996.

16

V. S. Subrahmanian et al. [1996]. \HERMES: A heterogeneous reasoning and mediator
system," available at http://www.cs.umd.edu/projects/hermes/overview/paper.

J. Thierry-Mieg, and R. Durbin [1992]. \Syntactic de�nitions for the acedb data base
manager," Technical Report MRC-LMB xx.92, MRC Laboratory for Molecular Biology,
1992.

G. Thomas et al. [1990] \Heterogeneous Distributed Database Systems for Production
Use," in ACM Computing Surveys, 22:237{266, 1990.

J. D. Ullman [1988] Principles of Database and Knowledge-Base Systems, Vol I: Classical

Database Systems. Computer Science Press, New York, NY, 1988

J. D. Ullman [1989] Principles of Database and Knowledge-Base Systems, Vol II: The New

Technologies. Computer Science Press, New York, NY, 1989

Vassalos, V. [1996]. \Wrapper speci�cation and query processing in the TSIMMIS project,"
unpublished memorandum.

Wiederhold, G. [1992]. \Mediators in the architecture of future information systems," in
IEEE Computer 25:3, pp. 38{49.

17

