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Abstract

Query processing and optimization in mediator systera that access distributed non-proprietary sources
pose many novel probl era. Cost-based query opti mzationis hard because the madi ator does not have access
to source statistics information and furthernore it may not be easy to mdel the source’s performance. At
the same time, querying remte sources may be very expensive becarse of high commection overhead, high
conputation time, financial charges, and tenporary wnavailahility. We propose a cost-based optimzation
techni que that caches statistics of actual calls to the sources and comsequently estimates the cost of the
possibe execution plars based on the statistics cache. Winvestigate issues pertaining to the design of
the statistics cache and experimentally anal yze various tradeoffs. Walso present a query result caching
mechani smthat allows ws to eflectivel y use results of prior queries when the source is not readily avail able.
Wenpl oy the novel invariats machan sm vhi ch shows howsenanti ¢ i nformation about data sources nay
be wsed to discover cached query results of interest.

1 Introduction

During the past few decades, the vorldhas wtnessed a spectacul ar expl osioninthe quantity of data availablein
one electrom ¢ formor another. This vast quantity of data has been gathered, organized, and stored by a small
army of individuals, working for different orgamzations on varied problems in vays that vere best suited to
accorpl ish the task inquestion. Wiederhol d[27 ] proposed the concept of a mediator as away of forml atingthe
senanti ¢ 1nf ormationnecessary to integrate i nformationfronthese heterogeneous sources and nake sense out of
a collection of potentially inconplete, inconsistent informationsystens and inherently inconpatible programs.
Intuitively, anediator is aprogranthat accesses and integrates ml tiple databases and/or sof t vare packages. In
particul ar, the user of a madi ated systemsends queries to the madiator, whichin turn passes al ong appropriate
subqueries to different software packages and/or databases in the nediated system The HERMES project
(short for IE terogeneous R easoning and ME diator Systen) at the University of Mryland [26 | 3, 25, 18] and
the TSIMMS project at Stanford Thiversity [39 ] provide a uniformfranevork for handling diflerent types of
heterogenei ty that exist between program and databases.

Inthis paper ve focus onissues rel ated to query processing and opti mzationin nedi ator systers that access

distributed non-proprietary infornationsources. Inthis paper, ve nake the foll ow ng contributions:

1. Intelligat Caches: Wshowhowa mediator nay maintain “local” caches consisting of the results of

previous calls to external software packages (local or remote). Furthernare, ve introduce the notion of
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an invariat that provides “knowtedge” about howto use a cache. In particul ar, invariants may be often
used to process calls to external packages even if these cdls were md prewously stored explicitly in the
cache.

. Queary Optimizaion Wshowhowgi ven any query ) to a nadiated systemM , ve can rewite both
the query and the nadi ator to a newquery @) "and a newnadiator M ' respectivel y such that the ansvers

to query @ wr.t. nadiated systemM coincides wth the ansvers to query @) "wr.t. M ad
. @ and M ' nake appropriate usage of

e the cache and 1 nvari ants,

o existing, vell-known query rewriting techniques (e.g., pushing selections down, joinreordering, etc.)

In general, given a query and a nediator our rewiter constructs a nunher of viable rewitings of the
query and the nediator. Fssentially, the rewitings are possible ewecution fas and the optimzer has to

choose one of thembased on an estimation of their cost.

. @st-Estimaes: The fundanent al probl emin cost estimationinnedi atedsystemnd is that nedi ators nay

access avariety ol software packages/databases. Some of these external sources nay have vell-understood
cost estimates for the queries that are sent to them For example, inrelational IBMs, cost noedels have
vell known characteristics [29, 30, 31].) Tbvever, in other cases, cost estinates may be hard to obtain
— for exanple, inseveral domains that exist wthin FERMES (face recognition system terrain reasoning
system transportationlogistics pl anni ng systemvi deoretrieval system) it is extrenely difficult to devel op
areasonable cost nodel . Whave devel oped a Domin Cost ad Statistics Madde (DCSM) within whi ch

both kinds of donains (ones with good cost-estinationfunctions, as vell as ones wthout) can be nadel ed
based on actual performance. DUSMis based on storing statistics on previous calls to data sources, in

order to estinate the cost of the calls that wll be 1ssued by a pl an.

. Losless arl Tassy Summizatias: If the size of the cached statistics becones too large, we nay

encounter problers in maintaini ng themand efficiently accessing them Wshowthat statistics caches
can be neatly “conpacted” through the use of a special process called sumwizaion Two kinds of
surmari zations are 1ntroduced — lossless surmarizations that reduce the size of a cache wthout 1osing
any infornation that was found in the original cache, and lossy sunmarizations that corpress cached
statistics, but may lose sone informationin the process, thus comprising the quality of cost estimation.

Our experinents conpare the tradeofs invol ved in lossy surmarizations.

. Distribued hifaataion ad Expairats: The al gorithra described in this paper have been

1mpl enented in an experimantal testbed on top of HERMS. Wwill report on specific experinents that
integrate data on 3-5 machines across the Internet (sites in Mryland, Cornell, Bicknell, and Italy). The
experinants ve report on wll deal with the foll owing packages — INGRES, flat files, and aspecial softvare
package called AVIS for content-based video information (that has no vell-understood cost estination
policies). Wwill report on experinents conparing the use of caching with and wthout invariants, as

vell as the use of the ICSM lossy and 1 ossless compression scheras.
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Hgure 1: Architecture of the HIRMS heterogeneous optimzer

In other vords, our framvork can be used in conjunction wth alnest any known query optimzation
paradi gm

In the next section, we wll give a short description of the Fermes systemand expl ain howthe Hrnes
systemincorporates the processing of external programs and informtionsources to ansver user queries. Then
ve wll present the proposed architecture for the optinizer for our systemand explain in detail howdiflerent

conponents of the optimzer works. K gure 1 shows the architecture of our query optimzation schera.

2 A short overview of the HERMES system

Inour franework, anediator is a set of rules of the form

A — Bl& &Bn&Dl& &Dm&El& &.Ek

vhere:
e ABy, . . Barelogical atom, and
e Dy, ., Pareatom of the formin(X i, ¢: fi(< args >) where d ; is anexternal package, £ ; is apredefined

functioninpackage d i, and < args > is alist of argunents. WMen the external functionf ;is calledwth
alist of arguments, its output is aset! of ansvers. The predicate in(X i, d: fi(< args >) succeeds if and
onlyif X is inthe set returned by executing £ ; on the list < args > of argunents. MNote, the function £ ;
may return compl ex data structures. Simlarly, the argumants to £ i my include conpl ex data types as
vell. Inthis paper, ve wll not gointo details of howthese complex types are handl ed and 1 npl emanted

—that is discussed in[26].

1If anelenentary value is obtained, it canbe treatedas asingletonset.



e The E ;’s are of the formrelop(V i, ¥) vhere relopis one of {=, >, <, >, and eachof V 1, ¥is either
a constant, or is of the formX ;. attril. -. atty vhere vhere X ; is a variable that gets instantiated to a
conpl ex type vhose attributes/fiel ds can be selected using the sequence of attributes shown above.

For exanpl e, consider the rule:

routetosupplies(From, Supl, To, R} in(Tuple, ingres: select=('inventory’, item, Supl)&
= (Tuple. loc, To)&

in(R, terraindb: findrte(From, To))

This above rule finds a route froma given location (From) to a place that has a given kind of supply item
Wen this is queried vith routetosupplies(“placel”, “h— 22fuel”, To, R)we request to find a place To that
has the ¢ “h-22fuel’’ and plan a path R from* ‘placel’’ toit. In this example, ve first execute a select
operation on an INGRES rel ation called inventory, finding all places that have the desired h-22 fuel. Then
ve attenpt to find a route fromplacel to the desired location using the findrte function defined in a terrain

database package (supplied to us by a third party).

This forms a very qui ck introduction to nediator construction in a l anguage such as that supported by HHR

MES — conpl ete details nay be found in [ 26 ]. Our approachis inpl emnted and tested using amxof relatively
“standard” external donains such as INGRES, PARATOX, TBASE flat file data, some “sem-standard” exter-

nal domains such as spatial datastructures and a text database, but also sone trul y unusual domains such as an
Arny path pl anner, a face recogni tion system a transportation logistics package, and a vi deo-retrieval system
called AVIS. Rrthernore, HERMS currently runs across the Internet, accessing about 10 sites 1ncluding sites
inthe BA, Hrope and Australia, and involving approxi mtely 10 Gigabytes of diferent form of data.

3 Anoverview of the query optimizer and its architecture

Thi s section provi des an overvi ewof the optimzationarchitecture (Fgure 1) and the functionof all the nodul es.
The conpl ete description of the modules will be givenin the followng sections. The optimzer consists of four

conponents described bel ow

Frst, the mle rewriter that takes a programand a query as input, and finds diflerent possible rewitings of

the original programal l oved by the possible adornments [ 33 ] of it. For sinplicity ve assune that donain calls
are al ways ground, i.e. inacall of the formin(X,d:£(Args)), verequire Args to be ground, but X can be either
ground or variable. If it is variable, thenit is instantiated to an ansver returned by d: £ (Args). Otherwise, v
checkif X is in the ansvers returned by the domain call. Hence, if X is ground, it can be used to prune the rest
of the query. The rewiter also derives rewitings of the original query and programso as to use the cache and

invariant manager nodul e instead of actually calling the external domain.

The cade adivaiat raegy (CTMfor short) nedule is used to mai ntain caches and to avoi d actual |y
calling an external donain vhen the ansver to that call 1s physically present in the cache. 'The caches are

usual ly scanned for exact matches. In addition to this, CIMuses expressions called invariants to find other



acceptable entries in the cache —intw tively, an invariant specifies certain relationships betveen different calls.
For example, if DC' 1 and DC' 5 are tw different calls, and DC' 1 s ansver 1s stored inthe cache, and the 1nvari ants
impl y that all ansvers to DC 1 are also ansvers to DC' 5, then ve may use the cached ansvers to DC' 1 toprovide
a partial ansver for DC 5 - in such cases, ve may avol d the need to execute the domin call DC o altogether.
Wwll explainthis in detail inthe next section. The decision as to vhen to use CIMcan be performed both
online or offline. Winvestigate the conditions under whichthe cache is useful and howto use this information

during optimzation.

The next nodul e is the drAnost adstatistics mdle(BCSMfor short). Tt is responsible for provi ding

estimates of calls to external programs/sources. Frmnowon, ve will refer to these program/sources as
donmrs. The nodul e keeps execution tine and cardinal ity statistics in a database and provides cost estinates

to the rule cost estimator. TCSMnay keep very detailed tables of statistics information. Alternatively, 1t nay

nal ntal n summari zed tabl es.

[IOSMis built as an extensible medule. Hnce, if a domin already provides a cost estimation nodule, the
BCSMcan be connected to themand avoi d cachi ng statistics for this domain. Hence, the estinates for calls to

these donains wll be directed to their respective donains.

Fnally, the mle ast estimabar takes the rewitten programs fromthe rule rewiter and conputes the cost

of each plan by obtaining the cost estimates of 1ndividual calls to the sources fromITSMand conhi ning the
results. The nodul e then decides on the best plan for executing the given query. Wwll not give the details of
rule rewiting and rule cost estimationespecially vhen the programcontains recursion due to space restrictions,

[33 gives a detailed discussion on this subject.

In this paper we assune that there are tvo nodes of operation for the mediator. 'The first node is the dl
aswers e vhere the madiator cal cul ates all the ansvers autonmatically. The second nede is the ieractive

node, vhere the nediator cal cul ates a first set of answers and presents themto the user. The madiator then
asks the user if he vants to see nore ansvers. If the ansver is yes, the next set of ansvers is evaluated. The

user has the choice of requesting all the remaimng ansvers at any tina.

4 Twariants and intelligent caching wing invariants

Whave seen above that donainfunctions are executed unifornhy in the nediator through the use of the in()
calls. Mst of the tine, however, these calls are costly operations. Ior exanple, the required donain nay be
located at a remote site, or the dorainnay charge an access fee per request, and soon. It is desirable tostore
the results of previous execution of the costly operations. Caching only prevents making the same call nore
than once. Hbvever, inorder to nake better use of the caches, we propose to use specialized knovtedge called

‘I nvariants.”

Invariants are expressions that showpossible substitutions for a domain call. Suppose we have a spatial index
and ve can performrange queries on this index. The function range returns all the points at a given distance

toa givenpoint. Suppose ve knowthat all the points infile “points” lie wthin a 1005100 square. Then ve can



wite the foll owng invariant:

Dist > 142 = spatial:range(‘‘mapl’’,X,Y,Dist) = spatial:range(‘‘points’’,X,Y,142).
This says that given a very big range query, ve can shrink it to the smallest admssible range query, 1.e., a
range of 142. 'The equality in this 1nvariant indicates that the ansver set returned by one of the donain calls
1s identical to the other’s. This invariant uses semantic infornation specific to a certain domin. Suppose we
wite anore general invariant for aspecific relational database (let’s call it relation) whichsupports afunction
called select < given a table name, attribute nane and val ue, selects all the tuples fromthe giventable vhere
the given attribute stores sonething less than the g ven val e.

V1 <= V2 = relation: select < (Table, Attr, V2) D relation: select < (Table, Attr, Vi)
This invariant says that given a call to select < |, we can replace it by another call to select < wth a
smller value. The relation between these two calls is not that of equality as in the previous exanple. In
stead, 1t states that all the answers returned by relation:select<(File,Attr,V1) wll also be returned
by relation:select<(File,Attr,V2). Ience, invariants are vieved as sound, but not necessarily conplete
rewite rules, inour system Invariants are intended to enhance the intelligent use of caches vhen processing a
domain call. The query processor is expected to first check the cache to see 1f the ansver for a domain call 1s
already storedinit. Then, it wll use the invariants to substitute domaincalls and checkif these calls are inthe
cache. If the invariants indicate that there is a domaincall in the cache that provides a partial list of ansvers,
then the actual donaincall nay need to be performed eventually. Feninthis case, ve expect to get a first set
of ansvers quickly using the fast cache and 1nvariant processing. Insome cases, the user may not vant the rest

of the ansvers to his/her query and the actual donain calls may not need to be executed at all.

Formally, aninvariant is an expression of the form
Condition = DomainCall; R DomainCall,

vhere R is one of =, D and DomainCall;, DomainCall are tvo domain calls and Condition is a conjunction
of ators in the underlying language. Wwll assume that the invariants only use sinple conditions such as
conparisons and al so that there are no free variables inthe invariants, i.e. all the variables in Condition appear

elther inDomainCall; or in DomainCalls.

A cache consists of alist of ground domaincalls of the forndomain:function(argi,...,argll) and the ansver
sets associated witheach domaincall. Fence, ve may viewthe cache as a collection of pairs of the form(donain

call, ansver set). The domaincall inthis pair is used as the uni que index to the ansver set.

4.1 Query processing with caching and invariants

Inthis section ve specify howdonaincalls are handledinthe presence of caches andinvariants. For this purpose,
ve are going to define aspecial prograncal l ed “Cache and Tnvari ant Mnager” (CIM for short.) Diring run-tine
(i.e., vhen ve execute the plan) the CTMbehaves like any other donain. Thus, no special operators are needed

fromthe HERMES execution engine inorder to retrieve data fromthe cache.

Suppose ve execute the domincall domain:function(argl,...,argll) in CIM. Then, the follow ngoperations
take place in CIM:



e First CIM tries to match this call wth one of the calls already in the cache. Inthis case, all the ansvers
associated wth the cached call are returned to the nediator and the cached entry replaces the actual

domain call.

e In case there is no such entry in the cache, then CIM consul ts the invariants. Suppose the followngis an

invariant in CIM,
Condition = DomainCall 1 = DomainCall 2.

and there exists a substitution ¢ vhere DomainCall 16 = domain: function(argl, . . . , ,afgiditionf
1s true and DomainCall_26 is inthe cache. Inthis case, the ansver set for DomainCall 26 is passed on to

the madiator and this set replaces the actual domain call.

e K nally, suppose bothof the above twoconditions are not satisfied, but CIM contains the fol l ownginvari ant,
Condition = DomainCall 1 O DomainCall 2.

and that there exists asubstitution® vhere DomainCall_ 1 = domain: function(argl, . . . , atgiditiond
1s true andthere exists anentryDomainCall_2f inthe cache. Inthis case, the ansver set for DomainCall_2¢
1s passedontothe nediator to provide a stset of the actual ansver set for domain:function(argl,...,argh).

If these ansvers are not sufficient, CIM must 1nvoke the actual donain call.

Note that several decisions need to be taken vhen invoking the CIM nodule. For example; 1t 1s possible to make

the actual domaincall inparallel whenever a partial ansver set is obtained. Inthis case, CIM is used to quicken
the response tine for the first set of answers. Inthe interactive nede, the partial set of answers nay prove to be
sufficient and the actual call nay not need not be made. This may be acconplished since the query processor

stops the execution of all the rumming external programs vhen they are no longer needed. The advantage of
having a separate cache and i nvariant nanager is that it is possible to buildspecial purpose caches for diflerent
domins, hence making the overall systemvery flexible.

The query processor for the nediator does not need to knowof the existence of the caches and the invariants.

All their processing is done in the CIMmdule. W only need to direct the relevant calls to this nedule
instead of actual donains. Suppose ve build a sinple decoding systemin CIMvhere a call to CIMof the form
CIM:domain&function is translated into a call to function in domain. Then, ve can sinply replace all the
occurrences of this function call inthe nadiator wth CIM: domain&function. The decisiontosendall calls for a
certain donainor sona specific function calls can be nade prior to query execution. Inthis case, the madiator

is edited as described above for those calls (and domains). As for the other calls, there is a decision that can be
made vhether to use CIMor not. Fven though the run-tine query processor does not knowof CIM the rule

rewiter and the rule cost estimator can be made avare of 1t. Inthis case, one of the rewiting choices is then

vhether to nake the actual call or a call to CIMinstead.



5 Rue Rewriter

The rde rewriter (see Fgure 1) transforms the rules of the programP, that contains the query and the
madi ator specification, into equi valent programs, that will reflect plans, by appl yi ng one of the foll owing trans-

formations:
1. Replace asubgoal G with acall to the cache and invariant nanager.
2. Rsh selections to the source.

3. Rearrange the order of the subgoal s of the rule, as longas it is conpatible with the permssibl e adornnents

of every donain call.

Note that the rule rewiter processes only the rules that wll be used for ansvering the query. Let us illustrate
the rule rewiter’s workings with the foll ow ng exanpl e.

Exage5.1 Consider the folloving mediator (M).

(M) (R) m(4,C) :- p(4,B), q(B,C).

R) p(A,B) :- in(Ans, di:p f£f()), =(Ans.1, A), =(Ans.2, B).
p(A,B) :- in(4, dil:p_£b(B)).

q(B,C) :- in(Ans, d2:q_ff()), =(Ans.1, B), =(4ns.2, C).
K) q(B,C) :- in(C, d2:q_bf(B)).

Let us also consider the query (Q7)
(Q7) 7-m(a,C)

The query rewiter first adorns the predicates in a way that indicates the in-going and outgoing argunants

of every predicate. The formar are annotated with a $b, that stands for “bound”’, and the latter wth $f,
that stands for “free”. 'Then, the subgoals of a rule are re-ordered in all possible ways, provided that there
is a corresponding adornment. In our exanple, the query rewiter develops two programs that can conpute

the query. The first one, (PB) assumes that first ve obtain all B bindings fromdonain d1 and then ve pass

B bindings to d2 and obtain corresponding C bindings. DNote, the rewiter pushes the condition A = a to the
source. Consequently, it projects out the attribute A of the p predicate. T avoid confusion, ve replace p wth
p»% vhere a is aremnder that we have projected the A attribute that woul d al ways be equal to a. In general

our query rewriter performs all the traditional al gebraic optimzations (push selections and projections dovn)
but ve will not further deal with set this of optimzations in this paper. ([33 ] provides an extensive list of
al gebrai ¢ optimzations that can be applied.)

(P8) (F) m >%(a, C): % (B), ®(8, C).
(RI0) p »%(B) : —in(B, d1: pf(a)).
(RI1) q 2%%(B, C): —in(C, d2 :Wf(B)).

The second plan, (P12), assumes that ve first obtainB and € bindings fromd2 and then ve pass B bindings to
di.



(P12) (R3) m 58%(a, C): §5%%(B, ¢),>$"(B).
(Rl4) p »%*(B) : —in(X, di: fbb(a, B)).
(RI5) q $5%%(B, C): —in(B, C, d2f%()).

Assuming that the rule rewiter derives more than one planfor a query (sonething expected inall but the nost
trivial nediators) ve have to estinate the cost of each plan and select the best. This is the task of the TCSM
modul e, vhichis presented in the next section.

6 Domain Cost and Statistics Module (DCSM)

As discussed in the introduction, heterogeneous systems necessitate the devel oprant of different cost estimate
strategies. Inoptinzationof relational queries, typically ve have extensive statistics about the relations (e.g.,
select /project selectivities, cardinalities, and so on) and ve al so understand the behavior of the basic operators
(select, project,...) Tence, cost estimators can be customzed for the specific domain. This is not hovever a
reasonabl e assunption for a general purpose cost estimator of a heterogeneous system A systemlike HERMS

may integrate arbitrary donains vhose internals ve wll not knowin general . Rirthernore, the domains nay

be non-proprietary and hence ve nay not be able to access statistics informationevenif 1t exists. Sometines,

even the devel oper of these systems nmay not knowthe appropriate cost functions. In addition, the access to a

domin at a renote site may vary greatly fromtine to tine because of network del ays.

Recall that the mediator in the HERMS systemonly knovs a set of functions for any given domain, their

input /output types and the use of these functions. The madiator nay not knowthe function that best charac-
terizes the time it takes to eval uate the calls. Fence using curve fitting techni ques [34 | to approximate the costs
nay not be practical since ve do not knowthe shape of the function. Also, cost functions do not easily adapt

to abrupt and unexpected changes in the costs of domincalls. Fnally keeping diflerent cost functions for the
different cost parareters such as time and cardinality, for different calling patterns, 1.e. vhere sone argumants
are set to known constants, vhere the others are only known to be bound and even nai ntai ni ng these functions

vastes alot of offline CPUtine. Inthis system ve provide a general cost estimation techni que that can adapt

to the behavior of the underl ying systemeasily. Wnowexpl ain the BICSMnodul e in greater detail.

The DCSH nodul e provi des cost estimates for domain calls. In particular, it provides the single function called

cost vhich given a domain call pattern, returns an estimate of the cost of executing the given domin call.

A domun adl paternis an expression of the formdomain:function(Argi,...,Argll) vhere ArgI is either

a constant or the special synbol $b  wvhich stands for bound. WWenmever $b  appears at position I of a domain
call pattern, it neans that ve know ArgI is bound but its exact value is not available. Fr exanple, the
call DCSM:cost(d:£(5,$b)) 1s asking the DCSM nodul e for cost estimates of a domin call d:f where the first
argurant is 5 and the second argurent is sone constant that ve do not knowyet. Recall that ve assune all

domincalls are ground before they are executed, hence there cannot be afree variable inadomincall pattern.

Simlarly, ve define predaite patterrs. Predicate patterns nay contain the synbol $f to indicate that a corre-
spondi ng variable nay be free vhen this predicate is evaluated. For exanple, a predicate pattern of the form



. p$f,$b,a

third one 1s a known constant a.

indicates that the first argunant of a three place predicate is free, the second one is bound and the

A o3t estitibe (associated vith a domin-call pattern or a predicate pattern) is a cost vector of the form

[Tr, T, Cardjhere T ; is the (estinated) tine tofindall ansvers, T pis the (estimated) tine required to retrieve
the first ansver, and Card is the (estinated) cardinality of the ansver set. Tt is possible that a specific cost
estinator 1s available for sone domain but this estinator does not provide sone of the paramaters nentioned

above. 'Then the missing paraneters still can be provided by the ICSMnodul e vhile getting the others from

the better estimator easily. Fommowon, we wll restrict our attention to domins wth no cost estimation

capabilities. Wnowstart describing the basic components of the DCSH modul e.

6.1 Cost vector database

Thi s database records cost 1nfornmationabout donmaincalls as they get executed by the nediator. Inthe sinplest
version, for each domain call, 1t contains a triple of the form(domain call, cost vector, record._ time),
vhere record. time is the adwd tine (together with the day) the call was recorded in the database. For
sitplicity, ve wll ignore the record time information for now Hence, the cost vector database consists of
tables for different donain calls, where the colunms correspond to the tine to conpute the first ansver, tine

to corpute all the ansvers, the cardinality of the ansver and the argunents to which this val ues correspond

to. Sore of this information nay not be available for sone domin calls since all ansvers may not have been
obtained (e.g. pruning nay have been applied, or the nediator nay have been vorkingininteractive node and

the user stopped the query execution). Wnowgi ve sone exanpl e tables that wll be used throughout the rest

of the paper toillustrate the working of the IZSMnodul e.

Exage 6.1 Let us reconsider the nadiator (M), the query (Q7) and the tvocandi date pl ans (F8) and (RL2).
Inorder toestimte the cost of the tvoplans ve have to estimate the cost of the domaincalls di:p_ bf, d1:pbb,

d2:q bf and d2:q_ ff that appear in the tvo plans. Let us assure that the tables (T16), (T17), (T18) and
(T19) of Hgure 2 describe the total execution tine and the cardinalities of di:p. bf, di:pbb, d2:qbf and
d2:q £f calls that have been issued in the past. Note, the sane val ue for an argunent nay appear nore than

once in the tables corresponding to different calls. Note also that for presentation simplicity ve include only
the attributes Card and T 4 wiile in general we have also the response time to first ansver and the tine vhen

the call was 1ssued.

MNow ve nay estimate the cost of a domaincall, e.g., di:p.  bf(a), for the execution tine to all the ansvers,
by taking the average of the two entries in the table (T16) of Hgure 2, nanely 2.00 and 2. 20 to get 2.10. W
nay al so estinate the cost of a domincall vhere ve do not knowone or nore of the paramaters. For exanple,

consider the call d1:pbf($b). Wecan estinate its cost by taking the average, i.e. (2.0042.2042.8042. 84) /4.

6.2 Summary Tables

Though the tables of Hgure 2 have the necessary infornation, there are three inportant problers regarding

their use and nai ntenance:
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di:p bf(a) di:p bb(A,B)
A|cCard | T, A/B[Card | T,
(116) a 4 2.00 (117) alg 0 2.50
a 5 2.20 a|d 1 2.70
c 8 2.80 c| g 1 2.68
c 8 2.84 c|d 0 2.65
d2:q bf(B)
B|Card | T, d2:q f£()
g | 40 [50.0 Card | Ty
('T18) g | 41 |5L0 ('T19) 100 | 50.0
g 39 49.0 95 48.0
d 30 48.0 106 | 52.0
d 35 52.0

K gure 2: Tables in the cost vector database

o fly dtadled statistics irfarstiar Keeping the full statistics data of all the calls puts a heavy

burden on storage.

o exparive aggegtianfurtias: Wrepeatedly appl y conputationally expensi ve aggregation func-
tions —1in our exarples, the average function. Thus, the tine required for calcul ating the cost nay be

prohi bi tivel y 1 ong.

Inthe foll owng subsections ve wll showhowve sol ve the above probl ems using off11ne sunmizatios of the

statistics informationstored 1n the cost vector database.

6.2.1 Iess-less Summizatias

As we have seen above, the cost vector database contains very detailed statistics that nake 1t very hard for
the ICSMnodul e to anal yze and naintain rel evant cost infornmationfor domain calls. In nany cases ve nmay
surmarize the statistics tables wthout 1osing any i nfornation that nay be useful during cost estimation, i.e.,
any statistics question posed by the cost estimator wll have the same ansver on the surmmarized tabl e and the
original table. Wcall these sunmarizations [ess-less. Tor exanple, the sumarization of the table (T16) of
Fgure 2 vith the table (T20) of Fgure 3 and the corresponding sunmarization of the table (T19) of Hgure 2
wththe table (T21) of Fgure 3 are loss-less. Ineflect, the tuples wthA=’a’ (or A="c?) have been aggregated
into a single tuple. The 1 attributes indicate the mmher of original table tuples that correspond to the
surmarized table tuples.

The exanpl e suggests a rather strai ghtforvard surmarization procedure:

1. Split the attributes of every statistics table into a set of dmusios that consist of all attributes of
the corresponding call, and the set of malrics that reflects the the response tine of the call, and the

cardinality of the result. (Mote that in general ve may have nore netrics attributes than response tine

11



di:p bf(a) -
A[Card | T, |1 d2:9.£20
('120) (1) Card | Ty | 1]
a| 45 | 2102
2L 100 | 50.0 | 3|

Hgure 3: Sunmarization of tuples withidentical values for the dinensions attributes

di:p bb(4,$b) ‘
AfCard| T, [1 di:p bf($b)
(122) (23) [Card][ Ty [1
a| 05 ] 260 | 2
c| 0.5 | 2.665 | 2 | 37 [50.0[5]

K gure 4: Dropping dinensions attributes vhose bindings ve can not predict

and cardinality ) Tnour rumning exanple, the set of dinensions of table (T16) is {A} and the set of metrics
is {Card, 3.

2. For all tuples that have identical values d 1, d, . , g onthe dimansion attributes, aggregate the natrics
attributes into a single pair of average response tine T ; and average cardinality Card and create a single
tuple (dy, ¢, . . ¢ Card, ;T 1)vhere 1is the nunber of original table tuples that have been aggregated
into the specific tuple.

6.2.2 Iessy Summizias

The surmari zation described all ows us to avol d the expensi ve average aggregationonly vhen all the argunents

of a domain call are set to constants. VMen, hovever, sone constant is known to be bound, but its specific
val ue 1s not known, ve still need aggregation. Suppose for example, ve vant to estimate the tine i1t wll take

to execute the call di: p bf($b) based on table (T20) in figure 3. Then, again the must general conclusion ve
can drawis the average of all the tuples for this table. In fact, we can derive such a table and put 1t in our

sumary tables. Let us notivate this idea by the followng exarnple.

Exage 6.2 Recall the mediator givenin exanple 6.1. The tables (T17) and (TI8) of Fgure 2 containin
their dimensions set the attribute B, 1.e., they provide the expected response tines and cardinalities for specific
val ues of the B attribute. Fbwever, if ve assure that the predicates p and q of exanple 6.1 are “hi dden” from

the user, thenit is inpossible that the cost estinator wll ever ask the response tine for aspecific B value. The
reasonis that ve can not knowthe specific B val ues until ve start executing the programand obviously by that
timei1t wll be toolate to undo our decisions. Thus, we can renave the B attribute fromthe dinensions set and

derive the sunmarized tables of K gure 4.

The intuition that allowed us to renove B fromthe dimansions set can be inplemanted by a procedure that
inspects the gi vennedi ator programand deci des vhi ch attributes nayever be instantiatedto aspecific constant

during the rewiting phase. All attributes that can never be i1nstantiated to a specific constant are dropped
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fromthe dinensions sets. Simmlarly, ve can vatchfor the access patterns for the tables and decide which tables
are needed very frequently and decide to create these table. Alternatively, dropthe tables that are not accessed

very of ten.

Sunmarization has a dual purpose; first, it redees the storage space needed for statistics. Second, 1t provides

fast resporses to the questions of the cost estimator. Whave the option of naintainingeither surmary tables

and provi ding for rough and out-of - date estinmates but saving time and space, orusing the cost vector database
for all purposes which is very tine and space consumng. In Section 8 we give the experimantal results for
the utility of the IUSMnodule. Wrnote here that, i1t is possible to performthe sunmaries in a nore hi ased
fashion, especially for the remte domin calls by observing the 1oad of the network, by giving precedence to

more recent statistics. Currently ve are exploring these possibilities.

6.3 Cost Estimation using Cost Vector Database and Summary Tables

MNow given a domin call to the ICSMrnodul e, ve describe howwve can nake use of the cost vector database

and the sunmary tables to estimate the cost of the given call. At any given tine ve nay have a couple of
different tables for a domaincall d:f. Having these tables does not guarantee that we can estinate the cost of
the given call pattern wthout any cal cul ations. The followng exanple illustrates this point.

Exagle6.3 Suppose ve have a three place domain call d:£(A4,B,C). For this domain call ve have three
tables; namel yd:£(4,B,C), d:£($b,B,C), d:£($b,$b,C), andd:£($b,$b,$b). Now we vant to estinate the
cost of the call d:f(a,$b,2) by a sinple table lookup. (Mote that the table d:£($b,B,C) means that the
variables B and C are set to known constants vhere the first argunent is only known to be bound. Simmlarly,
d:f(A,B,C) means that all the arguments are set to known constants. )

Obviously, the table d:£(A,B,C) inthe cost vector database cammot be used for this call, since it invol ves
performng aggregate operations. Then, ve look if there is a table for d:£(4,$b,C). Wsee that there is no
such table. Mext, we relax our call and ook if ve have table d: £($b,$b,C) or d:£(4,$b,$b). Wsee that we
have d:£($b,$b,C), hence ve lookin the table for the entry d:£($b,$b,2). Suppose now there is no entry for
C=21nthis table. Then, ve relax the call one more tine and 1ook if we have the table d:£($b,$b,$b) whichis
the average of all the information for this donain call. Since ve have 1t, we look up the only tuple and get our

estinate.

The corplete al gorithmfor estinating a domain call’s cost i1n the nost lossless way, given a collection
of (possibly surmarized) tables, is given by the followng steps. Let us assume that the call has the form
plct, . » & Sb, ., .$b)

1. Find a table s vhose set of dimensions attributes contains the first n col umms of p.
2. Find the specific tuple s(c 1, . , g) of s. If it is found, returnit to the cost estinator. If not continue:

3. MNondetermmistically replace one of the constants ¢ 1, . . g wtha $b and recursively call the al gorithm
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7 Rue Cost Estimator

The rde ot estimbar associ ates cost and statistics information wth every rule that vas output fromthe
rule rewiter starting fromthe query. The rule cost estimator invokes a function f ., that, giventhe cost vectors

of the subgoals of arule, estinates the cost vector of the head.

Exagle7.1 Recall the nedi ator gi veninexarmpl e 6. 1 and the pl ans generated for thi s nedi ator inexanple 5. 1.
Let us assune that the mode of operationis all ansvers to the query ?-m(a,C) as giveninexanple 6. 1. Now

ve have access to the following pieces of information:

o The expected tine to all the ansvers (T 4(p*%f)) for conputingp »%%, or equivalently in(B, di: pf(a)),
and the expected cardinality (Card(di:p. bf(a))) of dl:pbf(a) tuples.

o The estimated time T ;(g*™%%) for ¢*®%% or equivalently for in(C, d2: &£(B)).

Now ve can estimate the cost of executing (P8) by the following formla, that considers that ve first execute
in(B, di:p bf(a)) that takes tine T ;(p>%%) and then ve issue Card(di:p bf(a)) in(C, d2:q bf(B)) calls
that each one takes T 4(q*®%%). Thus, the cost is given by formmla 1.

Ti(p™*) + (Card(d1 : pbt(a)))(Ta(q*>™)). (1)
Sinnlarly, ve nay estinate the cost of executing (PL2) by the forrmla 2.
Ta(d2: qff())+ (Card(d2: q£f()))(Ta(d1: pab(a, B)) (2)

vhere T 3(d2: qff())is the tine needed for executing in(Ans, d2:q_ ££()), Card(d2: qff())is the nurher of
Ans tuples that ve receive fromthe in(Ans, d2:q- f£()) call, and T4(d1: pab(a, B))s the time to execute an
in(X, di:p.ab(a,B)) call.

Consider a query p(t 1, . , #%) that involves using a rule R having head p(s 1, . , §). The processing of this
query causes certain argunents in the head of R (i.e. certain s ;’s) to becone bound, while others are free.
Suppose ve wish to estinmate the cost vector of rule R with respect to this particular call (and hence with
respect to the bindings generated by this call). Suppose the body of R (suitably instantiatedwr.t. this call) is
g1, - » g (inthat order). Our estinationprocedure uses the followingsteps:

1. If g is of the formin(X, d: f(argl, ., .argk))thenve convert g ; intoadomain-call patternd : f(a 1, . , &)
vhere a ; = argiif argiis aconstant anda; = $b otherwse. Then, we invoke the call DCSM : cost(d: f(a 4,

and obtain the cost vector for this call pattern.

2. If g is anIIBpredi cate then conpute the cost vector of g i byrecursivel yinvokingthe described procedure
for the rules defining g ; and then addi ngup the cardinalities and the execution tines of the resul ts produced
by each rule.

3. Assuning that
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(a) ve inplemant the join of the subgoals using nested-loops wth left toright order, and

(b) ve performmo duplicate elimmnation, i.e., for every result ve receive fromg ; ve issue acall to giqs

regardless of vhether ve have issued againthis call 2

ve can associate with the body of the rule the cost vector

[Ti,, %, Cardl = 5Ty 0;_1Card;_y, ITs,, HCard;]

Assuming that ve do no duplicate el1mnation ve can wite

[T., ¥ Card] = [T, T, Card

8 Implementation and Experimental Results for the Hermes Opti-
mizer

The HFRMB systencurrently i ntegrates 3 rel ational TBMs (Paradox, Thise and Ingres), one object-oriented

B (ObjectStore), mltimedia packages (MACS and AVIS), a (S Arny path plamning package, a face

recogni tion package, as vell as flat file data, text databases (in particular a TSA Today neve-wre corpora),
and a spatial database. Tt runs on the Thi x/Xwindows platformas vell as on the FC/Wndovs platform and

includes over 80,000 lines of C-code. 1000 of these lines relate to the @ (QP) part of this paper, while the rest
relate to a particular query processor QP as described in [18, 3. The systemis currently capable of accessing
data distributed at ten selected sites across the Internet (5inthe TSA, 4 in Hrope, 1in Australia).

Inorder to determne the performance of the al gorithra described here, we ran a nurher of experinents. For
space reasons, ve report belowonly a small set of experinental data that is representative of the totality of the
experinantal resul ts obtained. All timngval ues are gi veninmlliseconds and they showthe “queryimitialization
+ vait for response + display the results” tinas.

ExatirgRade Gls withGirgan)/ a Tivaiats: Hgure 5 shows asnall representati ve sanpl e

of the tines obtained when running queries that required accessing data/operations ina video retrieval package
called AVIS. AVIS. It is easy tosee fronthese figures that using caches al ways leads to savings intine when the
sof tvare/datais located at renate sites. Firthernore, usinginvariants is useful vhen the queryis not explicitly
cached — in such cases both partial invariants and equality invariants lead to significant savings in tine over
actual l y naking the call. Wfound partial invariants to be al ways useful, except the size of the partial ansver
returned pl ays asignificant role. CIMmust keep the ansvers fromthe cache in nemry and conpare themwi th

the ansvers fromthe actual call. Walso found the overhead of checking the cache and the invariants w thout
success and naking the actual call to be negligible in our experimants.

The Utilityd D@M: The table in figure 6 shows our results on the utility of the TCSM In particul ar, ve
show for arepresentative set of queries that inter-operate betveen AVIS and INGRES data located across the
netvork, the timas taken to conpute the first ansver and all ansvers. In each of these two cases, three tinas

are show: (1) the actual rumming tine of the query, (2) the running tine of the query as predicated by the

?Note, caching gets around the di sadvantages of comnbini ng duplicate elimnation and pipelinednested-1oops.
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Qery Type Time for Time for Comments
First As. Al As.
Find all actors 10 cache 1776 2581 sites in USA
in “The Rope” 10 1nvar. 48374 49039 sites in Italy
cache, noinv. 300 1021 both USA Ttaly sites
cache 4+ equality inv. 873 1646 both USA Ttaly sites
result: 6 tudes (421 bytes) cache + partial inv. 501 2490 sites in USA
(22 bytes frompartial inv.) 321 73175 sites in Italy
Find all frams in 10 cache 1459 2756 sites in USA
“The Rope” in which 10 1nvar. 11023 12158 sites in Italy
Phillip appeared. cache, mo inv. 351 1405 both USA Ttaly sites
cache 4+ equality inv. 1807 2775 both USA Ttaly sites
result: 20 tupes (3108 bytes) cache + partial inv. 1983 2073 sites in USA
(421 bytes frompartial inv.) 1941 16553 sites in Italy
Find the objects that appear 10 cache, 10 1nvar. 1420 2319 sites in USA
betveen frams 4 and 47 cache only 326 1153
in “The Rope” cache + equality inv. 504 1386
cache 4+ partial inv. 578 2989 sites in USA
result: 19 tudes (182 bytes) no cache; 1o invar. 6600 7526 sites in Italy
(130 bytes frompartial inv.) cache + partial inv. 439 7795 sites in Italy
Find the objects that appear 10 cache, 10 1nvar. 1178 2426 sites in USA
betveen frams 4 and 127 cache only 357 1450
in “The Rope” cache + equality inv. 709 1960
cache 4+ partial inv. 431 4092 sites in Italy
result: 24 tudes (247 bytes) no cache; 1o invar. 3926 4941 sites in Italy
(130 bytes frompartial inv.) cache + partial inv. 447 7273 sites in Italy

Hgure 5: Frecuting Renote Calls with Caching and/or Tnvari ants

ICSMusing Lossless Tables, and (3) the tine taken for the query as predicated by the TCSMusing Lossy
Tables, vhere the lossy tables are obtained by dropping all the attributes of the cached domin call statistics.

! !

In the table bel ow each of queries ¢ and ¢ ’ are “equivalent” in the sense that query ¢ ’ is a rewiting of query
t. 'The actual queries are listed in the appendix. The lossy tables are obtained for dropping all the attributes
inthe cost vector tables of all the domincalls. The cost vector database (lossless) contains about 20 different

instantiations for the argunents of a domin call inthe corresponding tables.

There are several points to be noted vhen examning the above tables. Frst, when ve look at the tines taken

to conpute All Ansvers, the Lossy and the Lossless HCSMpredictions closel y match the actual runm ng tines
(though it is certainly not perfect inits predictions, e.g. the case of query2’). The BCSMerrs both vays,
sonatims over-predicting the time taken, and sonetims under-predicting the tine taken, Lossy tables do
vorse minly as aresult of the discrepancy between the expected and the real cardinalities of the outputs.

Wien looking at the figures for conputing the “first” ansver, ICSMs predictions are often good, yet in som
cases, 1t can vastly under-predict the actual timaes taken. These are cases whenit is hard to predict the anount
of “backtracking” that the HIRMS systemmght take in actually processing a derived query. The rule cost
estimator cal cul ates the cost of cal cul ating predicates as if the first ansver is going to be found by cornbining
the first ansvers returned for the calls nade to compute it. Inreality, the anount of tine spent on backtracki ng

cannot be negl ected as our experinents have shown. One way to remady this sol ution can be to cache, especially
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Qery First Asver Al Asvers

Atual Lossless Lossy Atual Lossless Lossy

Tine wDGEM wDGEM Tine wDGEM wDGEM
queryl 2245 2487 2666 2439 2647 3033
queryl’ 2384 2487 2666 9958 10825 14346
query2 14054 2681 2622 55432 52725 61185
query2’ 3834 2681 2622 14213 27861 32233
query3 2620 1378 1319 4651 4479 4520
query4 3187 1335 1276 10485 9269 9515.

Hgure 6: The Wility of BCSM

the tine for the first ansver of predicates inthe same way ve cache statistics for domain calls.
Our experience, supported by the experimantal figures shown above also inply that vhen Q1 1is a rewiting of
Q2:

1. If ve vant all ansvers, and IICSMpredicts Q1 1s better than Q2, then ve have found that Q1 al nast
al vays runs much faster than Q2. Rwthernore, the predicted values and the real values are quite close

to one another.

2. The situationis slightly stranger vhen first ansvers are being conputed. If TSMpredicts Q1 is better
than Q2 by at least a 50% margin, then Q1 is usually runs faster than Q2. Fovever, if TICSMpredicts
Q1 1s better than Q2 by a small margin, then the results are unpredictable; in sore cases Q1 executes
faster, vhile in others Q2 nay do much better.

9 Related Work and Conclusiorns

There 1s now a great deal of vork in nediated systers techm ques. For exanple, there have been several
efforts to integrate nul tiple rel ational THMs[8 | 19] and relational TBMks, object-oriented TBMEs and/or file
systers [9, 13, 22, 14, 15]. Our approach in the this paper diflers fromthe above approaches in the following
ways: first, 1nnest of the above approaches, there are well-devel oped cost nadels for eval uating the behavi or
of queries. In contrast, in our franework, ve wsh to madiate between arbitrary “non-traditional” databases
(including face databases, video repositories, databases of plans for tramsportation logistics, etc.) where such
cost models are not al vays available. Firthernore, when cost nodels are available, we wuld like to take
maxi al advantage of themas vell. Second, our notion of aninvariant is um que and applies in a uni formway
to heterogeneous data “exchanged” during conputation of conpl ex queries that apply to miltiple data sources.
Third, we have, presented experinental results that apply not only to heterogeneous databases consisting of
“traditional” sources, but also a mmber of “non-traditional” sources.

Cost based optimzationinnedi ated systers is a novel problenthat is different fronmtraditional distributed
query optimzation. An extensive discussion of the differences and the need for novel research in the area of
optimzation in nediated systers appears in[42 ]. The nest inportant diflerence is the absence of statistics

of non-proprietary sources. [40, 41] find out the performance behavior of a non-proprietary source by probing
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it wth carefully organi zed sampl e queries and appl yi ng regression nethods for estinating various paraneters
of a predetermned cost nedel. Their nethod is very effective but 1t is inapplicable when we do not have a
predetermned cost nodel . This is the case wth nany unconventional sources. For exanple, it 1s very difficult
togenerate a cost nodel for the face recogni tionor the videoretrieval or terrain reasoning/path pl anni ngsources
of HEMS.

Wik on caching in databases has been done extensively through the notion of a mieridized vew| 1 , 2,6,
7, 10, 11, 20, 21, 23, 24]. These papers showhowvievs (and their naterializations) nay be defined for different
kinds of databases such as rel ational BV, object-oriented IBMs, and object-relational system. Howvever,
it is only recently that materialized vievs vere studied in the context of mediated systers [17  ]. Consequently,
very little work has been done on howto effectivel y use such naterialized nadi ated vievs to effectivel y process
queries [31, 32, 37, 38]. A materialized nadiated viewnay be vieved as a domin cache and hence, all the
al gorithra in this paper deal wth howto effectively use such caches to process queries (and optimize then) in
a distributed heterogeneous database managerant system In addition to this work, there has been vork on
cachingin the deductive database conmuni ty through the use of OLDEresol ution [35 , 36]. Our work eflecti vel y
shows howsuch caches may be defined vhen vievs access non-1ogi cal datarepresentations and sof t ware packages
and furthermore, through the use of invariants, shows howsuch caches nay be eflectivel y used.
A dkmowledgats: This research was partially supported by the Arny Research Office under grant DAAH
04-95-10174, by the Air Rorce Office of Scientific Research under grant F49620- 93- 1- 0065, by ARPA /Rore Labs
contract N. F30602- 93-C-0241 (Order N. A716), and by an INSF Young Investi gator avard ITR-93-57756.
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Appendix: List of Queries Usedin 2nd Experiment

queryl(Hrst, Last, Object, Size) :-
in(Size, vi deo: vi deosize("rope’)) &

in(Object, vi deo: franes_to_ objects(’rope’, Frst, Last)).

queryl’ (First, Last, Object, Size) :-
in(Object, video: franes_to objects(’rope’, First, Last) &

in(Size, vi deo: vi deosize(’rope’)).

query2(Hrst, Last, Object, Frames, Actor) :-
in (Object, video:frams toobjects ("rope’, Hrst, Last)) &
in(Franes, video: object_ to frames(’rope’, Object)) &
in (Actor, relation:equal (*cast’, role, Object)).

query2’ (First, Last, Object, Frams, Actor) :-
in (Object, video:frams toobjects ("rope’, Hrst, Last)) &
in (Actor, relation:equal ("cast’, role, Object)) &
in(Fanes, video: object . toframs(’rope’, Object)).

query3(Hrst, Last,Object, Actor) :-
in (Object, video:frams toobjects ("rope’, Hrst, Last)) &
in (Actor, relation:equal (*cast’, role, Object)).

queryd(Hrst, Last,Object, Actor) :-
in (P relation:all ("cast’)) &
=(Pnam, Actor) &
=(Prole, Object) &
in (Object, video:frams toobjects (*rope’, Frst, Last)).
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