
MedMaker: A Mediation System Based on Declarative

Speci�cations�

Yannis Papakonstantinou, Hector Garcia-Molina, Je�rey Ullman

Computer Science Department

Stanford University

Stanford, CA 94305-2140, USA

Abstract
Mediators are used for integration of heterogeneous

information sources. In this paper we present a sys-
tem for declaratively specifying mediators. It is tar-
geted for integration of sources with unstructured or
semi-structured data and/or sources with changing
schemas. In the paper we illustrate the main features
of the Mediator Speci�cation Language (MSL), show
how they facilitate integration, and describe the im-
plementation of the system that interprets the MSL
speci�cations.

1 Introduction
Many applications require integrated access to het-

erogeneous information, stored at sources with dif-
ferent data models and access mechanisms [LMR90,
Gup89, C+94, A+91]. The TSIMMIS data-integration
system provides integrated access via an architec-
ture (see Figure 1.1) that is common in many
projects: Wrappers [C+94, FK93] (also called transla-
tors [PGMW95]) convert data from each source into a
commonmodel, as illustrated in Figure 1.1. The wrap-
pers also provide a common query language for ex-
tracting information. Applications can access data di-
rectly through wrappers, but they may also go through
mediators [PGMW95, Wie92]. A mediator combines,
integrates, or re�nes data from wrappers, providing
applications with a \cleaner" view. For example,
a mediator for Computer Science publications could
provide access to a set of bibliographic sources that
contain relevant materials. Users accessing the medi-
ator would see a single collection of materials, with,
for example, duplicates removed and inconsistencies
resolved (e.g., all authors names would be in the for-
mat last name, �rst name).

Our focus on this paper is on integration of sources
that do not have a well de�ned static schema. This
class of sources includes databases that have an often
changing schema, as well as information sources that
contain unstructured or semistructured data. There
are many applications that use such data. A typ-
ical example is electronic mail where objects have
some well de�ned \�elds" such as the destination and
source addresses, but there are others that vary from
one mailer to another. Furthermore, �elds are con-
stantly being added or modi�ed. The same situa-
tion arises with medical records, bibliographic infor-

of Source 3

Information Information
 Source 2 Source 3

Information
 Source 1

Integrated View 1

User/Application 2User/Application 1

Integrated View 2

Mediator 1 Mediator 2

Wrapper 1 Wrapper 2 Wrapper 3

OO View
of Source 1 OO View

Figure 1.1: The TSIMMIS architecture for integration

mation, knowledge representation frames[G+92], and
many others.

1.1 The OEM Model
Most applications that have to deal with un-

predictable, unstructured information use a self-
describing model [MR87], where each data item has
an associated descriptive label. In [PGMW95] we have
de�ned a self-describing data model, called the Object
Exchange Model (OEM), that captures the essential
features of the models used in practice. It also gener-
alizes them to allow arbitrary nesting and to include
object identity.

To illustrate the OEMmodel, consider the following
objects (one object per line):

<&1, person, set, f&11, &12, &13, &14g>
<&11, name, string, 'George Jones'>
<&12, department, string, 'CS'>
<&13, relation, string, 'employee'>
<&14,affiliations, set, f&141, &142g>

<&141, affiliation, string, 'AI'>
<&142, affiliation, string, 'DB'>

Each OEM object consists of an object-id (e.g., &12),
a label that explains its meaning (e.g., department),
a type (e.g., string), and a value of the speci�ed type

1

(e.g., 'CS'). Object-ids can be of di�erent types, but
for now, think of them as arbitrary strings that are
used to link objects to their subobjects. (For more
details, see [PGM].) Labels are strings that are mean-
ingful to the application or end user. Labels may have
di�erent meanings at di�erent sources. Indeed, it will
be the job of mediators to resolve these con
icts. Val-
ues may be either of an atomic type (e.g., 'George
Jones' is of type string), or be a set of subobjects
(e.g., the value of the \a�liations" object is f&141,
&142g).

Some OEM objects (e.g., the object identi�ed by
&1) are top-level objects, and we write them with the
leftmost indentation. For performance reasons clients
query object structures starting, by default, from the
top-level objects. For example, a simple query may
ask for top-level \person" objects that have a \depart-
ment" subobject with value 'CS'. Nevertheless, the
client is not restricted to query the object structure
starting from top-level objects, as will be explained in
Section 2.

The OEM model forces no regularity on data. For
example, a second person object may or may not have
subobjects with the same labels as the person shown
above. The fact that there is no schema, or each ob-
ject has its own schema if you will, makes it possible
to represent heterogeneous, changing information. It
also facilitates the representation of information inte-
grated from multiple heterogeneous sources, that typ-
ically have di�erent schemas.

1.2 The Mediator Speci�cation Language
(MSL)

Given a set of sources with wrappers that export
OEM objects, we would like to build mediators to in-
tegrate and re�ne the information. In particular, we
restrict our attention to mediators that provide inte-
grated OEM views of the underlying information. The
signi�cant programming e�ort involved in the hard-
coded development of TSIMMIS mediators suggests
the need for development of systems that facilitate
mediator development. Our mediation system, Med-
Maker, provides a high level language, calledMediator
Speci�cation Language (MSL) that allows the declar-
ative speci�cation of mediators. At run time, when
the mediator receives a request for information, Med-
Maker's Mediator Speci�cation Interpreter (MSI) col-
lects and integrates the necessary information from the
sources, according to the speci�cation. The process is
analogous to expanding a query against a conventional
relational database view. Indeed, MSL can be seen a
view de�nition language that is targeted to the OEM
data model and the functionality needed for integrat-
ing heterogeneous sources. The special requirements
of integration led to the introduction of a number of
useful concepts and properties, that are not found in
conventional view de�nition languages. In this paper
we present the following features:

� MSL mediator speci�cations can handle some
schema evolution of the underlying sources with-
out a need for rewriting of the speci�cation.

� MSL can handle structure irregularities of the
sources without producing erroneous or unex-
pected results.

� MSL can integrate sources for which we do not
fully know their object structures.

� MSL can manipulate both the values and the de-
scriptive semantic labels in the same fashion, get-
ting around problems such as schematic discrep-
ancies [KLK91].

The above capabilities are \packaged" in a high-level
declarative language that combines power with sim-
plicity and conciseness, thus allowing the client of an
heterogeneous system to easily de�ne an integrated
view.

In the next section we present an extended example
that illustrates the MSL language and some of its inte-
gration capabilities. Then, in Section 3 we discuss the
architecture and implementation of MedMaker. Sec-
tion 4 compares MedMaker to other systems for the
integration of heterogeneous information sources and
discusses ongoing and future work on MedMaker. The
complete syntax and semantics of MSL are provided
in [PGM].

2 A Mediator Speci�cation Example
For our extended example, we consider two sources

that contain information on the sta� of a Computer
Science department. The �rst source is a relational
database containing two tables with schemas
employee(first name,last name,title,reports to)
student(first name,last name,year)
A wrapper, named cs, exports this information as a
set of OEM objects, some of which are shown in Fig-
ure 2.2. Notice how the schema information has now
been incorporated into the individual OEM objects.1

A second source is a university \whois" facility that
contains information about employees and students.
A wrapper whois provides access to this source; sev-
eral sample objects are shown in Figure 2.3. Notice
that in this case there can be irregularities. For in-
stance, object &p1 contains an email subobject while
&p2 does not.

Let us now consider a mediator, called med, that
has access to wrappers cs and whois and exports a
set of \cs person" objects. Our goal in this example
is that each \cs person" object represents a person
appearing in both sources. The subobjects of each
\cs person" object should represent the combined in-
formation about this person. For example, since an
object with information about Joe Chung is exported
from both cs and whois, med combines this informa-
tion and exports the object of Figure 2.4.

1Two minor points: (1) After translation, we have lost
knowledge that objects at this sourcemust have a regular struc-
ture. If this information is important to the applications, it
could be exported as additional facts about this source. (2) One
could consider it ine�cient to repeat the schema in all objects,
in this case where there is a regular pattern to objects. This
problem can easily be addressed by data compression when ob-
jects are exported. Conceptually, we believe it is easier to think
of each object as having its own labels.

<&e1, employee, set, f&f1,&l1,&t1,&rep1g>
<&f1, first name, string, `Joe'>
<&l1, last name, string, `Chung'>
<&t1, title, string, `professor'>
<&rep1, reports to, string, `John Hennessy'>

<&e2, employee, set, f&f2,&l2,&t2g>
<&f2, first name, string, `John'>
<&l2, last name, string, `Hennessy'>
<&t2, title, string, `chairman'>

...
<&s3, student, set, f&f3,&l3,&y3g>

<&f3, first name, string, `Pierre'>
<&l3, last name, string, `Huyn'>
<&y3, year, integer, 3>

...
Figure 2.2: The OEM object structure of the cs wrap-
per

<&p1, person, set, f&n1,&d1,&rel1,&elm1g>
<&n1, name, string, `Joe Chung'>
<&d1, dept, string, `CS'>
<&rel1, relation, string, `employee'>
<&elm1, e mail, string, `chung@cs'>

<&p2, person, set, f&n2,&d2,&rel2g>
<&n2, name, string, `Nick Naive'>
<&d2, dept, string, `CS'>
<&rel2, relation, string, `student'>
<&y2, year, integer, 3>

...
Figure 2.3: The OEM object structure of whois

Problems in Mediator Speci�cation Creating
the integrated view from the wrapper views requires
the resolution of a number of problems:

� schema-domain mismatch: The whois source rep-
resents names by a long string that contains
both the �rst and the last name, while the cs
database represents names using the \last name"
and \�rst name" subobjects.

� schematic discrepancy: Data in one database cor-
respond to metadata of the other. In particular,
the status of a person { employee or student {
appears as a value in whois (it was part of a re-
lational table), while it appears in the schema of
cs (it was part of the relational schema).

� schema evolution: The format and contents of the
sources may change over time, often without no-
ti�cation to the mediator implementor. For ex-
ample, an attribute \birthday" may appear in ei-
ther of the two sources, or the \e mail" attribute
may be dropped. We would like our mediator
speci�cation to be insensitive to as many of these
changes as possible. For example, if \birthday" is
included or dropped, it should be automatically
included or dropped from the med view, without
need to change the mediator speci�cation.

<&cp1, cs person, f&mn1,&mrel1,&t1,&rep1,&elm1g>
<&mn1, name, string, `Joe Chung'>
<&mrel1, rel, string, `employee'>
<&t1, title, string, `professor'>
<&rep1, reports to, string, `John Hennessy'>
<&elm1, e mail, string, `chung@cs'>

Figure 2.4: Object exported by med

� structure irregularities: Source whois does not
follow a regular schema (i.e., it is a semistruc-
tured source.)

The Mediator Speci�cation of med The follow-
ing MSL speci�cation MS1 de�nes the med mediator
we have described, resolving the integration problems
we have discussed above. We will explain this speci�-
cation in the paragraphs that follow.

(MS1) Rules:
<cs person f<name N> <rel R> Rest1 Rest2g>
:- <person f<name N> <dept `CS'>

<relation R>|Rest1g>@whois
AND decomp(N, LN, FN)
AND <R f<first name FN>

<last name LN> | Rest2g>@cs
External:
decomp(string,string,string)(bound,free,free)

impl by name to lnfn
decomp(string,string,string)(free,bound,bound)

impl by lnfn to name

A speci�cation consists of rules that de�ne the view
provided by the mediator, and declarations of func-
tions that will be called upon for translating objects
from one format to another. Each rule (the above
speci�cation has only one rule) consists of a head and
a tail that are separated by the :- symbol. The tail
describes the patterns of objects that must be found
at the sources, while the head describes the pattern of
the top-level objects of the integrated view.

Intuitively, we may think of the process of \cre-
ating" the virtual objects of the mediator as pattern
matching. First, we match the patterns that appear in
the tail against the object structure of cs and whois,
trying to bind the variables (represented by identi�ers
starting with a capital letter, such as N, Rest1, etc.)
to object components of cs and whois. Then we use
the bindings to \construct" the objects speci�ed in the
head of the rule.

The speci�cation is based on patterns of the form
<object-id label type value>, where we may place con-
stants or variables in each position. For simplicity we
can drop some of the �elds when they are irrelevant.
If one �eld is dropped, we assume it is the type, so we
have a pattern of the form <object-id label value>. If
two �elds are dropped, we assume they are the type
and the object-id. When the object-id is missing in a
tail pattern, it means that we do not care about the
object-id's appearing at the sources. When an object-
id is missing from a head pattern, it means we do not
care what object-id the mediator uses for the \gener-
ated" object.

When the label (value) �eld contains a constant the
pattern matches successfully only with OEM objects
that have the same constant in their label (value) �eld.
On the other hand, when the label (value) �eld con-
tains a variable, the pattern can successfully match
with any OEM object, regardless of the label (value)
of the object. For example, the pattern <name N>
can match with OEM objects <&1, name, string,
`Fred'> or <&2, name, string, `Tom'>. As a re-
sult of a successful matching, the variable N will bind
to the value of the speci�c OEM object (either `Fred'
or `Tom' in the example).

Returning to our mediator speci�cation example,
we match the patterns of the tail against the top-
level objects of the corresponding sources, trying to
bind the variables of the tail to appropriate object
components. In particular, we match the pattern
<person f�<name N> ... | Rest1g> against the ob-
jects of source whois, trying to bind the variables N,
R, and Rest1 to appropriate object components. That
is, we try to �nd top-level \person" objects that have
a \name" subobject, a \dept" subobject with value
`CS', and a \relation" subobject. The object iden-
ti�ed by &p1 (see Figure 2.3) satis�es these require-
ments. As a result, N binds to `Joe Chung', R binds
to `employee', and Rest1 binds to the remaining sub-
objects, i.e., it binds to f<&elm1, e mail, string,
`chung@cs'>g Let us name this set of bindings bw;1.
Other objects may also satisfy these conditions and
produce other bindings for N, R, and Rest1. For in-
stance, N can bind to `Nick Naive', R to `CS', and
Rest1 to f<&y2, year, integer, 3>g.

The speci�cation also indicates that we match
the pattern <R f<first name FN> ... | Rest2g>
against the objects at source cs, obtaining bind-
ings for the variables R, FN, LN, and Rest2.
Referring to Figure 2.2, we see that one of
these binding, call it bc;1, will bind R to
`employee', FN to `Joe', LN to `Chung', and Rest2
to f<&t1, title, string, `professor'> <&rep1,
reports to, string, `John Hennessy'>g.

The next step is to match the two sets of bind-
ings. A binding bw;i from whois matches a binding
bc;i from cs if the two bindings agree on the values
assigned to common variables (in this case, R) and
the name N found in whois "corresponds" to the last
name, �rst name pair LN, FN found in cs. For exam-
ple, binding bw;1 matches bc;1 because they both bind
R to `employee' and the name N = `Joe Chung' cor-
responds to last name LN = `Chung' and �rst name
FN = `Joe'.

External Predicates The correspondence between
names and �rst, last name pairs is given by the pred-
icate decomp(N,LN,FN). Conceptually, we can think
of decomp as a predicate that evaluates to true if N is
a valid decomposition of last, �rst names LN, FN. In
practice, decomp is implemented as a pair of functions,
name to lnfn and lnfn to name (in principle written
in any programming language), and de�ned in the me-
diator speci�cation. For example, the line decomp ...
by name to lnfn indicates that name to lnfn can be

called with a full name (the �rst bound parameter);
the function decomposes the name and returns the last
and �rst names (second and third free parameters).
Similarly, lnfn to name can compose a last, �rst name
pair and produce a full name. Thus, operationally, to
check if decomp(`Joe Chung', `Chung', `Joe') is
true, we can call name to lnfn with input parameter
`Joe Chung' and see if it returns `Joe' and `Chung'.
If it does, the predicate holds. Equivalently, we can
call lnfn to name to perform the check.2 We assume
that the resulting result would be the same in any
scenario. (Having more than one function for decomp
gives
exibility at execution time.)

Creation of the Virtual Objects For each set of
matching bindings from the tail patterns, we concep-
tually create an object in the med view.3 (We stress
that objects are not really materialized by the media-
tor speci�cation.) The head of the rule tells us how to
construct the view objects. For example, the matching
bindings bw;1 and bc;1 result in the object of Figure 2.4.

Note that even though Rest1 and Rest2 are bound
to sets of objects, and <name N> and <rel R> are
bound to single objects, we can include all four in-
side the curly braces that de�ne the subobjects for a
\cs person" object. In general, when variables that
have been bound to sets appear inside curly braces
fg in a rule head, the �rst level of their contents is
\
attened out" and included in the set value that is
described by the curly braces pattern.

Note also that our sample head did not specify any
types or object-id's for the view objects. The types,
of course, are simply set to the types of the bound
variables (string in our case.) For the object-id's,
any arbitrary unique strings can be used (e.g., &cp1,
&mn1, ... are used in Figure 2.4.)

MSL's Solutions to Mediator Speci�cation
Problems The speci�cation of med solves the inte-
gration problems mentioned earlier, mainly by exploit-
ing the free use of variables in the Mediator Speci�-
cation Language, and the schema/data combination
ability of OEM. For example, we were able simulta-
neously to bind variable R to a value in whois and
a label in cs, thus addressing the schematic discrep-
ancy. The schema evolution problem is handled by
the use of variables Rest1 and Rest2. If, say, new at-
tributes such as \birthday" are added to cs, no change
is required to the mediator speci�cation. The new at-
tribute will be included with Rest1 and propagated
to the integrated view. On the same time, the bind-
ings of variables Rest1 or Rest2 are not required to

2Of course, if the implementor had provided a function
check name lnfn that is called with all three parameters bound,
we would simply call check name lnfn with input parameters
`Joe Chung', `Chung', and `Joe.

3In reality, we �rst project the bindings of the variables of
the tail, into bindings of the variables that appear in the head of
the rule. Then we eliminate duplicated bindings, and �nally we
create an object of med for each set of bindings of the variables
of the head.

carry homogeneous sets of objects. For example, bind-
ing bw;1 binds Rest1 to f<&elm1, e mail, string,
'chung@cs'>g while bw;2 binds Rest1 to fg. In this
way, MSL can handle the integration of unstructured
sources that do not have a regular schema. Finally, the
ability to use external predicates allows us to process
atomic values in any desirable way.

One apparent limitation of the integrated view we
have de�ned for med is that it only includes informa-
tion for people that appear in both cs and whois. In
particular, we may wish to include information in med
even if it appears in a single source. In Section ??
we brie
y present other features of the MSL that let
us de�ne such views and let us perform other use-
ful integration tasks. (A complete description appears
in [PGM].) However, before doing so, in the following
section we illustrate how our Mediator Speci�cation
Interpreter (MSI) would process an incoming query
against the sample de�nition we have given.

Other Features of the Mediator Speci�cation
Language In the previous two sections we illus-
trated the basic functionality of the MSL language.
The language has additional features speci�cally de-
signed to facilitate the integration and querying of
heterogeneous sources. Due to space limitations, we
cannot provide examples for all these features. In-
stead, we brie
y summarize some features and refer
the reader to [PGM] for examples and details.

First, note MSL's ability to retrieve schema infor-
mation: One can place variables in the label positions
of an MSL query, and thus retrieve information about
labels and the object structure of a source. This is a
useful feature for exploring new or changing sources.
Second, MSL provides the wildcard feature that al-
lows searches for objects at any level in the object
structure of the source, without need to specify the
entire path to the desired object. The wildcard fea-
ture is especially useful when we form queries with-
out complete knowledge of the structure of the under-
lying data. (Without appropriate index structures,
wildcard searches may be expensive, so some sources
may not support them or may support them in a re-
stricted fashion.) Finally, MSL allows the speci�ca-
tion of semantic object-id's that semantically identify
an exported object and they have meaning beyond the
mediator call that yielded them. Semantic object-id's
provide a powerful mechanism for object fusion. Due
to space limitations we will not discuss any further
this feature.

3 Architecture and Implementation of
MSI

The Mediator Speci�cation Interpreter (the run-
time component of MedMaker) processes a query us-
ing a pipeline with the following three components (see
Figure 2.5):

1. The View Expander and Algebraic Optimizer
(VE&AO) reads the query and the mediator spec-
i�cation and discovers which objects it must ob-
tain from each source. Furthermore, it determines

View Expander

physical datamerge graph

 & Algebraic Optimizer

Cost-Based Optimizer

Datamerge Engine

logical datamerge program

mediator specification

answer

query

Figure 2.5: The basic architecture of MSI

the conditions that the obtained source objects
must satisfy.

2. The cost-based optimizer develops a plan for ob-
taining and combining the objects speci�ed by the
VE&AO. The plan speci�es what queries will be
sent to the sources, in what order they will be
sent, and how the results of the queries will be
combined in order to derive the result objects.

3. The datamerge engine executes the plan and pro-
duces the required result objects.

In the following subsection we use an example to
overview MSI's query processing. Subsections 3.2
to 3.5 discuss each component, the languages at each
interface, and various interesting query decomposition
and optimization issues.

3.1 Query Processing Overview
Let us assume that a client of mediator med wants

to retrieve all the data for `Joe Chung.' In this paper,
we use MSL (with one minor modi�cation discussed
below) as our query language.4 The use of MSL sim-
pli�es our discussion, and furthermore, MSL makes a
good query language because of its power and sim-
plicity. Using MSL, our query can be expressed as:

(Q1) JC :- JC:<cs person f<name `Joe Chung'>g>@med

The object pattern (or object patterns) that appears
in the tail of the query are matched against the ob-
ject structure of med in exactly the same manner that
tail patterns of MSL rules are matched against the
sources. One new MSL feature that appears in the
tail of our sample query is the object variable JC. The
operator : indicates that JC must bind to \cs person"
objects that have a \name" subobject with value `Joe
Chung'. The query head indicates that every object

4The TSIMMIS project at Stanford is also exploring a dif-
ferent query language, called LOREL. It is an object-oriented
extension to SQL and is oriented to the end-user. LOREL is
described in [Q+]. MSL is more powerful than LOREL (e.g.,
MSL allows the speci�cation of recursive views) and is targeted
to mediator speci�cation.

that JC binds to is included in the result. Unlike me-
diator speci�cation, when MSL is used for querying,
the objects speci�ed by the query rule head are mate-
rialized at the client.5

View Expansion Given our sample query, the
VE&AO replaces the object pattern of the query
tail with object patterns that refer to objects of the
sources, thus deriving the datamerge rule R2:

(R2) <cs person f<name `Joe Chung'> <rel R>
Rest1 Rest2g>

:- <person f<name `Joe Chung'> <dept `CS'>
<relation R> | Rest1g>@whois

AND decomp(`Joe Chung', LN, FN)
AND <R f<first name FN> <last name LN>

| Rest2g>@cs

Intuitively, the MSI derived the above rule by match-
ing the pattern JC:<cs person ...>@med of the query
tail against the head of the mediator speci�cation rule
of med.6 After the matching, we generate a datamerge
rule whose head is the head of the query and whose
tail is the mediator speci�cation rule's tail.

Execution Plan Now that the MSI knows what ob-
jects it has to �nd at the sources, the cost-based opti-
mizer builds a physical datamerge program that speci-
�es what queries should be sent to the sources, in what
order they should be sent, and how the results of the
queries should be combined in order to produce the
query result. Here we informally describe a possible
(and e�cient) plan for our running example:

1. Bindings for the variables R and Rest1 are ob-
tained from the source whois. The bindings are
obtained in two steps. First the following query
is sent to whois:

<bind for whois f<bind for R R>
<bind for Rest1 Rest1>g>

:- <person f<name `Joe Chung'> <dept `CS'>
<relation R> | Rest1g>@whois

Labels bind for whois, bind for R and
bind for Rest1 are simply place-holders that al-
low the MSI to conveniently pick out the desired
information from the returned result objects.

2. Bindings for LN and FN can be obtained from one
of the decomp functions, i.e., from name to lnfn.
We call it with bound parameter N = `Joe
Chung' and obtain LN = `Chung' and FN =
`Joe'.

5Here we do not address the problem of materializing OEM
objects at clients. The various issues and strategies are dis-
cussed in [PGMW95].

6If there were several rules, the MSI would look for one or
more matching rule heads. If more than one headmatches, then
more than one rule will be considered; resulting objects will be
added to the result.

3. For each of the R binding of step (1), we combine
it with the single binding of step (2), and sub-
mit a query to cs to obtain a binding for Rest2.
For example, for the binding R = `employee' we
send the following query to cs:

<bind for cs f<bind for Rest2 Rest2>g>
:-<employee f<first name `Joe'>

<last name `Chung'>|Rest2g>@cs

4. Once MSI obtains bindings for Rest2 as well, it
generates objects that follow the pattern of the
head of (R2). For example, considering the bind-
ings we have illustrated so far, the MSI would
generate the object of Figure 2.4.

3.2 View Expansion and Algebraic Opti-
mization

The VE&AO matches the query against the medi-
ator speci�cation rules and rewrites the query so that
references to the virtual mediator objects are replaced
by references to source objects. The result is a logical
datamerge program that is a set of MSL rules specify-
ing the result. In Section 3.1 we illustrated the view
expansion and algebraic optimization process. There,
expression (R2) was the logical datamerge program.
In the rest of this section we explain the VE&AO pro-
cess in more detail. In general, the VE&AO formulates
the logical datamerge programs in two steps:

� First it matches the query tail conditions with
rule heads. The successful matches result in ex-
pressions called uni�ers. Intuitively, our uni�ers
describe the match between the query and the
rule, the conditions that must be pushed to the
sources, and other information necessary for the
rewriting of the query. Note, they can be viewed
as extensions of the uni�ers used in resolution of
�rst order clauses [GN88].

� Then for every uni�er a logical datamerge rule is
formed. The rule head is formed by applying the
uni�er to the query head, while the rule tail is
formed by applying the uni�er to the mediator
speci�cation rule tails and subsequently forming
their conjunction.

For example, consider the query Q1 (Section 3.1) and
the speci�cation MS1 of med. The match7 results in
the uni�er �1 where

�1 =

"
N 7! 0Joe Chung0;

JC)
< cs person f< name 0Joe Chung0 >

< rel R > Rest1 Rest2g >

#

The above uni�er consists of one mapping, indicated
by the 7!, and one de�nition, indicated by the).
(The need for discriminating between mappings and
de�nitions will become apparent in the next para-
graphs.) The application of �1 to the query head

7Before we match a query with one or more rules we must
rename the variables that appear in the query and the rules, so
that no two rules, or a query and a rule have identically named
variables.

causes the substitution of JC by the structure follow-
ing the). Similarly, the application of �1 to the me-
diator rule tail causes the substitution of N by 'Joe
Chung'. Combining the transformed query head with
the transformed mediator rule tail we obtain the logi-
cal datamerge rule Q2.

In general, a uni�er may contain any number of
mappings and/or de�nitions. When the VE&AO
matches a query condition with a rule head it gen-
erates all uni�ers � such that

1. If we apply the mappings to the query con-
dition and the mediator rule head, the trans-
formed query condition pattern is contained
in the rule head pattern. In the example,
the transformed query condition <cs person
f<name 'Joe Chung'>g> is contained in the
transformed rule head <cs person f<name 'Joe
Chung'> <relation R>
Rest1 Rest2g> because they have the same la-
bel cs person and every subobject pattern of the
query condition pattern (i.e., the pattern <name
'Joe Chung'>) is identical to a subobject pat-
tern of the rule head. Containment guarantees
that any mediator object generated by the trans-
formed rule satis�es the query condition pattern.

2. There is a de�nition for every object, value, or
\rest" variable that appears in the query head
and also appears in the query tail preceding a \:".
The de�nition carries all the information about
the structure of the mediator objects that bind
to the query variable. For example the de�nition
of JC carries all the required information about
the mediators cs person objects.

3.3 Pushing Conditions to the Sources
The VE&AO pushes conditions such as \the

name must equal 'Joe Chung'" to the correspond-
ing source. Indeed, VE&AO pushes to the sources
all conditions that can be pushed, thus implementing
the (well-known in relational DB's) \push selections
down" algebraic optimization. In our environment
with nested objects that may have unknown structure,
algebraic optimization is substantially more challeng-
ing than in a relational environment. To illustrate this
point, assume that the following query, that retrieves
the data of 3rd year students, is sent to mediator med
(speci�ed by MS1):
S :- S:<cs person f<year 3>g>@med
Mediator med joins data from two sources, and we can-
not tell in advance whether the \year" object comes
from one source or the other. In particular, when
we match the query against the mediator speci�ca-
tion, the <year 3> pattern can be \pushed" either
into Rest1 or into Rest2. The two possibilities corre-
spond to the uni�ers �1 and �2:

�1 =

"
Rest1 7! f< year 3 >g;

S) < cs person
f< name N > < rel R >
Rest1 Rest2g >

#

�2 =

"
Rest2 7! f< year 3 >g;

S) < cs person
f< name N > < rel R >
Rest1 Rest2g >

#

 x060:<binding_for_N, ’Mary Web’>

 x062:<binding_for_R, ’staff’>

 x066:<binding_for_Rest1, {x0314}>

 x0314:<year, 3>

Result of Qw

 x0204:<dept, ’Simple Studies’>

 x0210:<year, 3>

 x036:<binding_for_N, ’Nick Naive’>

 x038:<binding_for_R, ’student’>

 x040:<binding_for_Rest1, {x0204,x0210}>

x032:<binding_for_whois, {x036,x038,x040}>

x0102:<binding_for_Rest2, {x0168}>

 x0168:<telephone, 1234567>

Result of Qc1

x056:<binding_for_whois, {x060,x062,x066}>

Nick Naive

Constructor(cp(N,R,Rest1,Rest2),1,2,3,4)

Mary Web

student

staff

Nick Naive

{x0204,x0210}

{x0314}

Nick Naive student

MaryWeb
Naive Nick{x0204,x0210}

{x0314}

{x0204,x0210} x0102

Nick Naive student {x0204,x0210} {x0168}

Mary Web

Qw Result
x032
x056

N R Rest1

N

student
staff

R Rest1 LN FN

N R Rest1 Qcs Result

N R Rest1 Rest2

Query(Qw,whois)

Extractor(epw(N,R,Rest1),1)

External Pred(decompose_name,1,1,keep,2)

Parameterized Query(Qcs(R,LN,FN),cs,2,keep,4,discard,5,discard)

Extractor(epc(Rest2),4)

Figure 3.6: A physical datamerge graph

The two uni�ers give rise to the following two rules,
that constitute the logical datamerge program:
(R3)<cs person f<name N> <rel R> Rest1 Rest2g>

:- <person f<name N> <dept 'CS'> <relation R>
|Rest1:f<year 3>gg>@whois

AND decomp(N, LN, FN)
AND <R f<first name FN> <last name LN>

|Rest2g>@cs
(R4)<cs person f<name N> <relation R> Rest1 Rest2g>

:- <person f<name N> <dept 'CS'> <relation R>
| Rest1g>@whois

AND decomp(N, LN, FN)
AND <R f<first name FN> <last name LN>

| Rest2:f<year 3>gg>@cs

Note, mappings of the form Rest1 7! f< year 3 >g
cause the attachment of the conditions speci�ed inside
the fg to the speci�ed variable (Rest1 in the exam-
ple). If Rest1 has already some conditions S asso-
ciated with it, VE&AO would merge S with the the
<year 3> condition.

Note, the examples of the previous paragraphs
dealt with single condition queries. Nevertheless, the
demonstrated techniques have been easily extended
and implemented for multiple condition queries.

3.4 The Physical Datamerge Graph and
the Datamerge Engine

The optimizer receives the logical datamerge pro-
gram from the VE&AO and generates a physical
datamerge graph. This graph speci�es the queries to
be sent to the sources as well as the mechanics for
constructing the query result from the results received
from the sources. The graph is then executed by the
datamerge engine, which produces the query result.

In this section we illustrate datamerge graph execu-
tion through a detailed example. Our goal is not to de-
scribe our implementation in full detail, but rather to
show the capabilities of our datamerge engine. As our

starting point we use logical datamerge rule Q3. From
it, the optimizer may generate the physical datamerge
graph of Figure 3.6. This is a \data
ow" graph, where
the nodes (rounded boxes) represent the operations to
be executed by the engine. The rectangles next to
the arcs of the graph represent tables that
ow dur-
ing a sample run of this graph. Typically, the tuples
of the tables carry bindings for the logical datamerge
program variables.

The datamerge engine executes the graph in a
bottom-up fashion. First, the lower query node
is executed. This causes query Qw to be sent to
source whois, obtaining bindings for N, R, and Rest1.
Query Qw is provided to the engine by the optimizer,
and is de�ned as:
(Qw) <bind for whois f<bind for N N>

<bind for R R>
<bind for Rest1 Rest1>g>

:- <person f<name N> <dept 'CS'>
<relation R>
| Rest1:fyear 3gg>@whois

The result of Qw is placed in the mediator's mem-
ory. In Figure 3.6 we show this result at the bottom
of the �gure. The numbers with a \x" pre�x repre-
sent object addresses in the mediator's memory. For
example, one result object is at address x032; it has
label bind for whois and its value is a set contain-
ing the objects at locations x036, x038 and x040. For
readability, we omit the object-id and type �elds of
the objects from the �gure.

The query operator produces a table where each
line contains the address of a top-level result object
(x032 and x056 in the example). For readability, we
add a heading row to our tables (Qw Result in this
case), but these do not appear in practice.

The table is passed to the next operator in the
graph, an extractor node that extracts bindings of
the variables N, R, and Rest1 (from the \bind-
ing for whois" objects) and outputs a table of corre-
sponding (N, R, Rest1) tuples. The extractor node has
two parameters: the �rst is the optimizer provided ob-
ject pattern epw, de�ned by
<bind for whois f<bind for N N> <bind for R R>

<bind for Rest1 Rest1>g>
epw indicates where the desired bindings are found in
the result objects; the second parameter (1) indicates
the column of the input table that contains the ob-
jects that are the subject of the extraction. Again,
the heading row in the output table is only for read-
ability. Also for reabability, in the N and R columns we
write strings, while in reality we have pointers to the
strings. Similarly, in the Rest1 column we write the
full sets while in reality the column contains pointers
to the indicated sets.

Then, for every tuple, the external pred(-icate) node
invokes the predicate decomp. The other parameters
for this node indicate: the number of arguments for
decomp (1); the column of the input table containing
the one input parameter (1); whether the input col-
umn is kept in the output table;8 and the number of

8As opposed to extractor nodes that always dicard their in-
put column (after using it).

result arguments from decomp (2).
The next node is the parameterized query node. For

each tuple of its input table, this node generates a
query for source cs requesting bindings for Rest2 that
are needed to construct �nal result objects. The query
to send is de�ned by Qcs which is provided by the
optimizer along with the graph:

(Qcs(R,LN,FN)) <bind for Rest2 Rest2>
:-<$R f<last name $LN>

<first name $FN>|Rest2g>@cs

The values for query parameters $R, $LN, and $FN are
taken from the 2nd, 4th, and 5th columns of the in-
coming table. (The keep and discard parameters
again indicate if the inputs columns remain in the out-
put table.) Thus, for our sample data, two queries
Qcs1 and Qcs2 are emitted:

(Qc1) <bind for Rest2 Rest2>
:-<student f<last name 'Naive'>

<first name 'Nick'>|Rest2g>@cs
(Qc2) <bind for Rest2 Rest2>

:-<staff f<last name 'Web'>
<first name 'Mary'>|Rest2g>@cs

Let us assume that Qc1 returns only the x0102
\binding for Rest2" object and Qc2 does not return
anything. In this case, the parameterized query node
outputs the table shown in Figure 3.6. After the upper
extractor node extracts Rest2 bindings from the re-
sults of the parameterized query node, the constructor
node is activated and creates the �nal result objects.
The form of these objects is de�ned by the pattern
cp(N,R,Rest1,Rest2) where

cp(N,R,Rest1,Rest2) =
<cs person f<name N> <relation R> Rest1 Rest2g.

For each row in the input table, the constructor
operator takes a row (1st, 2nd, 3rd, and 4th values),
assigns them to the N, R, Rest1, and Rest2 values in
cp, creating one of the �nal result objects.9

Through this example we have illustrated how the
entire mediation process can be described by a low
level executable graph. The nodes of our datamerge
graphs are the \machine language" of MedMaker
which is run by our implementation of the datamerge
engine. (Indeed, it is interesting to compare them with
relational algebra expressions.)

3.5 Cost-Based Optimization Challenges
There are more than one physical datamerge graphs

that correspond to a logical datamerge program. The
optimizer has to select the \optimal" graph. However,
optimization of a powerful object-oriented language
that operates on autonomous and heterogeneous infor-
mation sources is much harder than the optimization
of traditional SQL queries on a conventional database.
Our current implementation uses some very simple
heuristics to guide datamerge graph selection. This
seems to work well, at least for simple scenarios. In
the rest of this section we brie
y discuss some of our
research directions for optimization.

9Our current implementation does not have a duplicate elim-
ination feature, though the MSL semantics describe duplicate
elimination in the OEM context.

Note the following two hard problems for the cost-
based optimizer of a mediator: First, the limited query
capabilities of the underlying sources may prohibit
even simple algebraic optimizations, such as \push
selections and projections down". For example, the
source whois may not be able to evaluate the condi-
tion on \year" that appears in Qw. A solution to this
problem appears in [PGH]. A second problem arises
when the wrappers do not provide cost and statistics
information. In this case, the optimizer has to rely
on ad-hoc heuristics (e.g., the outer patterns of the
join order are the ones that have the greatest num-
ber of conditions) or tries to build its own statistics
database that is based on results of previous queries
and on sampling.

4 Related Work and Discussion
In this section we contrast MedMaker to other het-

erogeneous information source integration systems, we
discuss our motivation behind the design of OEM and
MSL, and we describe our ongoing work on Med-
Maker.

It is widely accepted that the relational data
model and the corresponding view de�nition lan-
guages are insu�cient to provide integration, even of
relational databases [KLK91]. Thus, many projects
have adopted (or de�ned) OO models to facilitate in-
tegration (some examples are [C+94, A+91]). We de-
scribed in Sections 1 and 2 the OEM features that
make it suitable for integration of heterogeneous in-
formation systems. Another di�erence between OEM
and conventional OO models is that OEM is much
simpler and does not have a strong typing system.
OEM supports only object nesting and object identity,
while other features, such as classes, methods, and in-
heritance are not supported directly. (Nevertheless,
classes and methods can be \emulated" [PGMW95]).

We believe that MSL mediator speci�cations tend
to be short and simple and avoid questions such as
\what is the class of the view objects?", that compli-
cate object-oriented view de�nition[AB91]. In spite of
its simplicity, MSL is quite powerful. For instance, it
allows the construction of arbitrarily complex object
structures (which XSQL [KKS92] does not).

MSL and OEM can be seen as a form of �rst-order
logic. Indeed, we borrowmany concepts from logic ori-
ented languages such as datalog [Ull88, Ull89], HiLog
[CKW93], O-Logic [Mai86], and F-Logic [KL89].
HiLog �rst proposed { under a logic framework { the
idea of mixing schema and data information.10

A very important di�erence between MedMaker
and other integration systems is that MedMaker can
integrate conventional well-structured databases that
have a static schema and at the same time can in-
tegrate sources that do not have a regular schema,
or sources that have an often-changing schema. The
ability to integrate all kinds of sources is due to:

1. OEM's absence of schema, that allows the intu-
itive representation of heterogeneous, semistruc-
tured, and changing information.

10[KLK91] has also proposed an interestingmixing of schema
and data information for the relational data model.

2. MSL's ability to exploit regularities and complete
knowledge of the schema (the example of Sec-
tion 3.3 demonstrated the tradeo� between per-
formance and partial knowledge of the schema).

Though systems that integrate well-structured con-
ventional databases exist (e.g., [A+91, K+93, BLN86,
LMR90, T+90, Gup89]) and recently systems for the
integration of sources with minimal structure have also
appeared [Fre, S+93], we do not know of view de�ni-
tion based systems ([A+91, Ber91, CWN94] and oth-
ers) that handle the whole spectrum of information
sources simultaneously, and with MSL's
exibility.

Note, MedMaker performs integration by \work-
ing" with the structures of the source objects. Se-
mantic information is e�ectively encoded in the MSL
rules that do the integration. There are many projects
that followMedMaker's \structural" approach [Ber91,
DH86, B+86], as well as many projects that follow a
semantic approach [HM93, H+92]. We believe that the
power of the structural approach, along with the
ex-
ibility, generality, and conciseness of OEM and MSL
make the \structural" approach a better candidate for
the integration of widely heterogeneous and semistruc-
tured information sources.

Acknowledgments
We are grateful to Koichi Munakata for design-

ing and implementing the datamerge engine. We
also thank Joachim Hammer, Pierre Huyn, Dallan
Quass, Anand Rajaraman, Anthony Tomasic, Vasilis
Vassalos, Jennifer Widom, and the entire Stanford
Database Group for numerous fruitful discussions and
comments.

References
[A+91] R. Ahmed et al. The Pegasus heteroge-

neous multidatabase system. IEEE Com-

puter, 24:19{27, 1991.

[AB91] S. Abiteboul and A. Bonner. Objects and
views. In Proc. ACM SIGMOD Conference,
pages 238{47, Denver, CO, May 1991.

[B+86] Y.J. Breibart et al. Database integration in
a distributed heterogeneous database system.
In Proc. 2nd Intl. IEEE Conf. on Data Engi-

neering, Los Angeles, CA, February 1986.

[Ber91] E. Bertino. Integration of heterogeneous data
repositories by using object-oriented views.
In Proc Intl Workshop on Interoperability in

Multidatabase Systems, pages 22{29, Kyoto,
Japan, 1991.

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe.
A comparative analysis of methodologies for
database schema integration. ACM Comput-

ing Surveys, 18:323{364, 1986.

[C+94] M.J. Carey et al. Towards heterogeneous mul-
timedia information systems: The Garlic ap-
proach. Technical Report RJ 9911, IBM Al-
maden Research Center, 1994.

[CKW93] W. Chen, M. Kifer, and D.S. Warren. Hilog:
a foundation for higher-order logic program-
ming. Journal of Logic Programming, 15:187{
230, February 1993.

[CWN94] S. Chakravarthy, Whan-Kyu Whang, and
S.B. Navathe. A logic-based approach to
query processing in federated databases. In-

formation Sciences, 79:1{28, 1994.

[DH86] U. Dayal and H. Hwang. View de�nition
and generalization for database integration
in a multidatabase system. In Proc. IEEE

Workshop on Object-Oriented DBMS, Asilo-
mar, CA, September 1986.

[FK93] J.C. Franchitti and R. King. Amalgame:
a tool for creating interoperating persis-
tent, heterogeneous components. Advanced

Database Systems, pages 313{36, 1993.

[Fre] M. Freedman. WILLOW:
Technical overview. Available by anonymous
ftp from ftp.cac.washington.edu as the �le
willow/Tech-Report.ps, September 1994.

[G+92] M.R. Genesereth et al. Knowledge Inter-
change Format. Version 3.0. Reference Man-
ual. Technical Report Logic-92-1, Stanford
University, 1992. Also available by URL
http://logic.stanford.edu/kif.html.

[GN88] M.R. Genesereth and N.J. Nillson. Logical

Foundations of Arti�cial Intelligence. Morgan
Cau�man, 1988.

[Gup89] A. Gupta. Integration of Information Sys-

tems: Bridging Heterogeneous Databases.
IEEE Press, 1989.

[H+92] M. Huhns et al. Enterprise information mod-
eling and model integration in Carnot. Tech-
nical Report Carnot-128-92, MCC, 1992.

[HM93] J. Hammer and D. McLeod. An approach to
resolving semantic heterogeneity in a federa-
tion of autonomous, heterogeneous database
systems. Intl Journal of Intelligent and Co-

operative information Systems, 2:51{83, 1993.

[K+93] W. Kim et al. On resolving schematic hetero-
geneity in multidatabase systems. Distributed
And Parallel Databases, 1:251{279, 1993.

[KKS92] M. Kifer, W. Kim, and Y. Sagiv. Query-
ing object-oriented databases. In Proc. ACM

SIGMOD, pages 59{68, 1992.

[KL89] M. Kifer and G. Lausen. F-logic: a higher-
order language for reasoning about objects,
inheritance, and scheme. In Proc. ACM SIG-

MOD Conf., pages 134{46, Portland, OR,
June 1989.

[KLK91] R. Krishnamurthy, W. Litwin, and W. Kent.
Language features for interoperability of het-
erogeneous databases with schematic discrep-
ancies. In Proc. ACM SIGMOD, pages 40{9,
Denver, CO, May 1991.

[LMR90] W. Litwin, L. Mark, and N. Roussopou-
los. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22:267{
293, 1990.

[Mai86] D. Maier. A logic for objects. In J. Minker, ed-
itor, Preprints of Workshop on Foundations of

Deductive Database and Logic Programming,
Washington, DC, USA, August 1986.

[MR87] L. Mark and N. Roussopoulos. Information in-
terchange between self-describing databases.
IEEE Data Engineering, 10:46{52, 1987.

[PGH] Y. Papakonstantinou, A. Gupta, and L. Haas.
Capabilities-based query rewriting in media-
tor systems.
Available via ftp at db.stanford.edu �le
/pub/papakonstantinou/1995/cbr-extended.ps.

[PGM] Y. Papakonstantinou and H. Garcia-Molina.
Object fusion in mediator systems (ex-
tended version). Available by anony-
mous ftp at db.stanford.edu as the �le
/pub/papakonstantinou/1995/fusion-extended.ps.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and
J. Widom. Object exchange across hetero-
geneous information sources. In Proc. ICDE

Conf., pages 251{60, 1995.

[Q+] D. Quass et al. Querying semistruc-
tured heterogeneous information. To ap-
pear in DOOD95. Available by anony-
mous ftp at db.stanford.edu as the �le
/pub/quass/1994/querying-submit.ps.

[S+93] K. Shoens et al. The Rufus system: Infor-
mation organization for semistructured data.
In Proc. VLDB Conference, Dublin, Ireland,
1993.

[T+90] G. Thomas et al. Heterogeneous distributed
database systems for production use. ACM

Computing Surveys, 22:237{266, 1990.

[Ull88] J.D. Ullman. Principles of Database and

Knowledge-Base Systems, Vol. I: Classical

Database Systems. Computer Science Press,
New York, NY, 1988.

[Ull89] J.D. Ullman. Principles of Database and

Knowledge-Base Systems, Vol. II: The New

Technologies. Computer Science Press, New
York, NY, 1989.

[Wie92] G. Wiederhold. Mediators in the architecture
of future information systems. IEEE Com-

puter, 25:38{49, 1992.

