
Capabilities-Based Query Rewriting in Mediator Systems�

Yannis Papakonstantinou Ashish Gupta Laura Haas

Stanford Univ. Junglee Corp. IBM Almaden Research Center

Computer Science Dpt. 4149B El Camino Way 650 Harry Road

Stanford, CA 94305 Palo Alto, CA 94306 San Jose, CA 95120

yannis@db.stanford.edu ashish@junglee.com laura@almaden.ibm.com

Abstract
Users today are struggling to integrate a broad

range of information sources providing di�erent lev-
els of query capabilities. Currently, data sources with
di�erent and limited capabilities are accessed either by
writing rich functional wrappers for the more primi-
tive sources, or by dealing with all sources at a \lowest
common denominator". This paper explores a third
approach, in which a mediator ensures that sources
receive queries they can handle, while still taking ad-
vantage of all of the query power of the source. We
propose an architecture that enables this, and identify
a key component of that architecture, the Capabilities-
Based Rewriter (CBR). The CBR takes as input a de-
scription of the capabilities of a data source, and a
query targeted for that data source. From these, the
CBR determines component queries to be sent to the
sources, commensurate with their abilities, and com-
putes a plan for combining their results using joins,
unions, selections, and projections. We provide a lan-
guage to describe the query capability of data sources
and a plan generation algorithm. Our description lan-
guage and plan generation algorithm are schema inde-
pendent and handle SPJ queries.1

1 Introduction
Organizations today must integrate multiple het-

erogeneous information sources, many of which are
not conventional SQL database management systems.
Examples of such information sources include biblio-
graphic databases, object repositories, chemical struc-
ture databases, WAIS servers, etc. Some of these sys-
tems provide powerful query capabilities, while oth-
ers are much more limited. A new challenge for the
database community is to allow users to query this
data using a single powerful query language, with lo-
cation transparency, despite the diverse capabilities of
the underlying systems.

Figure (1.a) shows one commonly proposed inte-
gration architecture [1, 2, 3, 4]. Each data source has
a wrapper, which provides a view of the data in that
source in a common data model. Each wrapper can
translate queries expressed in the common language
to the language of its underlying information source.
The mediator provides an integrated view of the data

1Research partially supported by Wright Laboratories,

Wright Patterson AFB, ARPA Contract F33615-93-C-1337.

Wrapper i

CBR

component

(1.b)

subqueries

target query

Mediator

Query Decomposition
 & Plan Formation

description of queries

supported by wrapper i

plan for
wrapper i

(1.a)

Client

Mediator

Wrapper 1 Wrapper 2 Wrapper n

Information
 Source 1

Information
 Source 2

Information
 Source n

Figure 1: (a) A typical integration architecture. (b)
CBR-mediator interaction.

exported by the wrappers. In particular, when the
mediator receives a query from a client, it determines
what data it needs from each underlying wrapper,
sends the wrappers individual queries to collect the
required data, and combines the responses to produce
the query result.

This scenario works well when all wrappers can sup-
port any query over their data. However, in the types
of systems we consider, this assumption is unrealis-
tic. It leads to extremely complex wrappers, needed
to support a powerful query interface against possibly
quite limited data sources. For example, in many sys-
tems the relational data model is taken as the common
data model, and all wrappers must provide a full SQL
interface, even if the underlying data source is a �le
system, or a hierarchical DBMS. Alternatively, this
assumption may lead to a \lowest common denomina-
tor" approach in which only simple queries are sent to
the wrappers. In this case, the search capabilities of
more sophisticated data sources are not exploited, and
hence the mediator is forced to do most of the work, re-

sulting in unnecessarily poor performance. We would
like to have simple wrappers that accurately reect the
search capabilities of the underlying data source. To
enable this, the mediator must recognize di�erences
and limitations in capabilities, and ensure that wrap-
pers receive only queries that they can handle.

For Garlic [1], an integrator of heterogeneous mul-
timedia data being developed at IBM's Almaden Re-
search Center, such an understanding is essential.
Garlic needs to deal e�ciently with the disparate data
types and querying capabilities needed by applica-
tions as diverse as medical, advertising, pharmaceu-
tical research, and computer-aided design. In our
model, a wrapper is capable of handling some set of
queries, known as the supported queries for that wrap-
per. When the mediator receives a query from a client,
it decomposes it into a set of queries, each of which
references data at a single wrapper. We call these in-
dividual queries target queries for the wrappers. A
target query need not be a supported query; it may
sometimes be necessary to further decompose it into
simpler supported Component SubQueries (CSQs) in
order to execute it. A plan combines the results of the
CSQs to produce the answer to the target query.

To obtain this functionality, we are exploring
a Capabilities-Based Rewriter (CBR) module (Fig-
ure 1.b) as part of the Garlic query engine (media-
tor). The CBR uses a description of each wrapper's
ability, expressed in a special purpose query capabil-
ities description language, to develop a plan for the
wrapper's target query.

The mediator decomposes a user's query into tar-
get queries q for each wrapper w without considering
whether q is supported by w. It then passes q to the
CBR for \inspection." The CBR compares q against
the description of the queries supported by wrapper
w, and produces a plan p for q, if either (i) q is di-
rectly supported by w, or (ii) q is computable by the
mediator through a plan that involves selection, pro-
jection and join of CSQs that are supported by w. The
mediator then combines the individual plans p into a
complete plan for the user's query.

The CBR allows a clean separation of wrapper
capabilities from mediator internals. Wrappers are
\thin" modules that translate queries in the common
model into source-speci�c queries.2 Hence, wrappers
reect the actual capabilities of the underlying data
sources, while the mediator has a general mechanism
for interpreting those capabilities and forming execu-
tion strategies for queries. This paper focuses on the
technology needed to enable the CBR approach. We
�rst present a language for describing wrappers' query
capabilities. The descriptions look like context-free
grammars, modi�ed to describe queries rather than
arbitrary strings. The descriptions may be recursive,
thus allowing the description of in�nitely large sup-
ported queries. In addition, they may be schema-
independent. For example, we may describe the ca-
pabilities of a relational database wrapper without re-

2In general, there is a one-to-one mapping and no optimiza-

tion is involved in this translation. All optimization is done at

the mediator.

ferring to the schema of a speci�c relational database.
An additional bene�t of the grammar-like description
language is that it can be appropriately augmented
with actions to translate a target query to a query of
the underlying information system. This feature has
been described in [5] and we will not discuss it further
in this paper.

The second contribution of this paper is an architec-
ture for the CBR and an algorithm to build plans for a
target query using the CSQs supported by the relevant
wrapper. This problem is a generalization of the prob-
lem of determining if a query can be answered using a
set of materialized queries/views [6, 7]. However, the
CBR uses a description of potentially in�nite queries
as opposed to a �nite set of materialized views. The
problem of identifying CSQs that compute the target
query has many sources of exponentiality even for the
restricted case discussed by [6, 7]. The CBR algorithm
uses optimizations and heuristics to eliminate sources
of exponentiality in many common cases.

In the next section, we present the language used to
describe a wrapper's query capabilities. In Section 3
we describe the basic architecture of the CBR, iden-
tifying three modules: Component SubQuery Discov-
ery, Plan Construction, and Plan Re�nement. These
components are detailed in Sections 4, 5 and 6, re-
spectively. Section 7 summarizes the run-time perfor-
mance of the CBR, while Section 8 compares the CBR
with related work. Finally, Section 9 concludes with
some directions for future work in this area.

2 The Relational Query Description
Language(RQDL)

RQDL is the language we use to describe a wrap-
per's supported queries. We discuss only Select-
Project-Join queries in this paper. In section 2.1 we
introduce the basic language features , followed in sec-
tions 2.2 and 2.3 by the extensions needed to describe
in�nite query sets and to support schema-independent
descriptions. Section 2.4 introduces a normal form for
queries and descriptors that increases the precision of
the language. The complete language speci�cation ap-
pears in [8].

The description language focuses on conjunctive
queries. We have found that it is powerful enough
to express the abilities of many wrappers and sources,
such as lookup catalogs and object databases. Indeed,
we believe that it is more expressive than context-free
grammars (we are currently working on the proof).

2.1 Language Basics
An RQDL speci�cation contains a set of query tem-

plates, each of which is essentially a parameterized
query. Where an actual query might have a con-
stant, the query template has a constant placeholder,
allowing it to represent many queries of the same
form. In addition, we allow the values assumed by
the constant placeholders to be restricted by speci�er-
provided metapredicates. A query is described by a
template (loosely speaking) if (1) each predicate in the
query matches one predicate in the template, and vice
versa, and (2) any metapredicates on the placehold-
ers of the template evaluate to true for the matching

constants in the query. The order of the predicates in
query and template need not be the same, and di�er-
ent variable names are of course possible.

For example, consider a \lookup" facility that pro-
vides information { such as name, department, of-
�ce address, and so on { about the employees of a
company. The \lookup" facility can either retrieve
all employees, or retrieve employees whose last name
has a speci�c pre�x, or retrieve employees whose
last name and �rst name have speci�c pre�xes.3

We integrate \lookup" into our heterogeneous sys-
tem by creating a wrapper, called lookup, that
exports a predicate emp(First-Name, Last-Name,
Department, Office, Manager). (The Manager
�eld may be 'Y' or 'N'.) The wrapper also exports
a predicate prefix(Full, Prefix) that is success-
ful when its second argument is a pre�x of its �rst
argument. This second argument must be a string,
consisting of letters only. We may write the follow-
ing Datalog query to retrieve emp tuples for persons
whose �rst name starts with 'Rak' and whose last
name starts with 'Aggr':

(Q1) answer(FN,LN,D,O,M) :- emp(FN,LN,D,O,M),
prefix(FN,'Rak'), prefix(LN,'Aggr')

In this paper we use Datalog [9] as our query lan-
guage because it is well-suited to handling SPJ queries
and facilitates the discussion of our algorithms.4 We
use the following Datalog terms in this paper: Distin-
guished variables are the variables that appear in the
target query head. A join variable is any variable that
appears twice or more in the target query tail. In the
query (Q1) the distinguished variables are FN, LN, D,
O and M and the join variables are FN and LN.

Description (D2) is an RQDL speci�cation of
lookup's query capabilities. The identi�ers start-
ing with $ ($FP and $LP) are constant placeholders.
isalpha() is a metapredicate that returns true if
its argument is a string that contains letters only.
Metapredicates start with an underscore and a low-
ercase letter. Intuitively, template (QT2.3) describes
query (Q1) because the predicates of the query match
those of the template (despite di�erences in order and
in variable names), and the metapredicates evaluate
to true when $FP is mapped to 'Rak' and $LP to
'Aggr'.

(D2) answer(F,L,D,O,M) :- (QT2.1)
emp(F,L,D,O,M)
answer(F,L,D,O,M) :- (QT2.2)
emp(F,L,D,O,M),
prefix(L, $LP), isalpha($LP)
answer(F,L,D,O,M) :- (QT2.3)
emp(F,L,D,O,M),
prefix(L, $LP), prefix(F,$FP),
isalpha($LP), isalpha($FP)

3The \lookup" facility is very similar to a Stanford Univer-

sity facility.
4We could have used SPJ SQL queries instead of Datalog.

Then, we would use a description language that looks like SQL

and not Datalog. The same notions, i.e., placeholders, nonter-

minals, and so on, hold. The CBR algorithm is also the same.

In general, a template describes any query that can
be produced by the following steps:

1. Map each placeholder to a constant, e.g., map $LP
to 'Aggr'.

2. Map each template variable to a query variable,
e.g., map F to FN.

3. Evaluate the metapredicates and discard any tem-
plate that contains at least one metapredicate
that evaluates to false.

4. Permute the template's subgoals.

2.2 Descriptions of Large and In�nite
Sets of Supported Queries

RQDL can describe arbitrarily large sets of tem-
plates (and hence queries) when extended with non-
terminals as in context-free grammars. Nonterminals
are represented by identi�ers that start with an un-
derscore () and a capital letter. They have zero or
more parameters and they are associated with nonter-
minal templates. A query template t containing non-
terminals describes a query q if there is an expansion
of t that describes q. An expansion of t is obtained
by replacing each nonterminal N of t with one of the
nonterminal templates that de�ne N until there is no
nonterminal in t.

For example, assume that lookup allows us to pose
one or more substring conditions on one or more �elds
of emp. For example, we may pose query (Q3), which
retrieves the data for employees whose o�ce contains
the strings 'alma' and 'B'.

(Q3) answer(F,L,D,O,M) :- emp(F,L,D,O,M),
substring(O,'alma'), substring(O,'B')

(D4) uses the nonterminal Cond to describe the
supported queries. In this description the query tem-
plate (QT4.1) is supported by nonterminal templates
such as (NT4.1).

(D4)answer(F,L,D,O,M) :- (QT4.1)
emp(F,L,D,O,M), Cond(F,L,D,O,M)
Cond(F,L,D,O,M) : (NT4.1)
substring(F, $FS), Cond(F,L,D,O,M)
Cond(F,L,D,O,M) : (NT4.2)
substring(L, $LS), Cond(F,L,D,O,M)
Cond(F,L,D,O,M) : (NT4.3)
substring(D, $DS), Cond(F,L,D,O,M)
Cond(F,L,D,O,M) : (NT4.4)
substring(O,$OS), Cond(F,L,D,O,M)
Cond(F,L,D,O,M) : (NT4.5)
substring(M, $MS), Cond(F,L,D,O,M)
Cond(F,L,D,O,M) : (NT4.6)

To see that description (D4) describes query (Q3),
we expand Cond(F,L,D,O,M) in (QT4.1) with the
nonterminal template (NT4.4) and then again expand
Cond with the same template. The Cond subgoal
in the resulting expansion is expanded by the empty
template (NT4.6) to obtain expansion (E5).

(E5) answer(F,L,D,O,M) :- emp(F,L,D,O,M),
substring(O,$OS), substring(O,$OS1)

Before a template is used for expansion, all of its
variables are renamed to be unique. Hence, the sec-
ond occurrence of placeholder $OS of template (NT4.4)
is renamed to $OS1 in (E5). (E5) describes query
(Q3), i.e., the placeholders and variables of (E5) can
be mapped to the constants and variables of (Q3).

2.3 Schema Independent Descriptions of
Supported Queries

Description (D4) assumes that the wrapper exports
a �xed schema. However, the query capabilities of
many sources (and thus wrappers) are independent of
the schemas of the data that reside in them. For exam-
ple, a relational database allows SPJ queries on all of
its relations. To support schema independent descrip-
tions RQDL allows the use of placeholders in place
of the relation name. Furthermore, to allow tables
of arbitrary arity and column names, RQDL provides
special variables called vector variables, or simply vec-
tors, that match lists of variables that appear in a
query. We represent vectors in our examples by iden-
ti�ers starting with an underscore (). In addition, we
provide two built-in metapredicates to relate vectors
and attributes: subset and in. subset(R, A)
succeeds if each variable in the list that matches R
appears in the list that matches A. in($Position,
X, A) succeeds if A matches a variable list, and
there is a query variable that matches X and appears
at the position number that matches $Position. (For
readability we will use italics for vectors and bold for
metapredicates).

For example, consider a wrapper called file-wrap
that accesses tables residing in plain UNIX �les. It
may output any subset of any table's �elds and may
impose one or more substring conditions on any �eld.
Such a wrapper may be easily implemented using the
UNIX utility AWK. (D6) uses vectors and the built-in
metapredicates to describe the queries supported by
file-wrap.

(D6) (QT6.1) answer(R) :- $Table(A),
Cond(A), subset(R, A)

(NT6.1) Cond(A) : in($Position,X, A),
substring(X,$S), Cond(A)

(NT6.2) Cond(A) :

In general, to decide whether a query is described
by a template containing vectors we must expand the
nonterminals, map the variables, placeholders, and
vectors, and �nally, evaluate any metapredicates. To
illustrate this, we show how to verify that query (Q7)
is described by (D6).

(Q7) answer(L,D) :- emp(F,L,D,O,M),
substring(O,'alma'), substring(O,'B')

First, we expand (QT6.1) by replacing the non-
terminal Cond with (NT6.1) twice, and then with
(NT6.2), thus obtaining expansion (E8).

(E8) answer(R) :- $Table(A),
in($Position,X, A),substring(X,$S),
in($Position1,X1, A),substring(X1,$S1),
subset(R, A)

Expansion (E8) describes query (Q7) because there
is a mapping of variables, vectors, and placeholders
of (E8) that makes the metapredicates succeed and
makes every predicate of the expansion identical to a
predicate of the query. Namely, vector A is mapped
to [F,L,D,O,M], vector R to [L,D], placeholders
$Position and $Position1 to 4, $S to 'alma', $S1 to
'B', and the variables X and X1 to O. We must be care-
ful with vector mappings; if the vector V that maps
to [X1; : : : ; Xn] appears in a metapredicate, we replace
V with [X1; : : : ; Xn]. However, if the vector V ap-
pears in a predicate as p(V) the mapping results in
p(X1; : : : ; Xn). Finally, the metapredicate in(4, O,
[F,L,D,O,M]) succeeds because O is the fourth vari-
able of the list, and subset([L,D], [F,L,D,O,M])
succeeds because [L,D] is a \subset" of [F,L,D,O,M].

Vectors are useful even when the schema is known
as the speci�cation may otherwise be repetitious, as
in description (D4). In our running example, even
though we know the attributes of emp, we save e�ort
by not having to explicitly mention all of the column
names to say that a substring condition can be placed
on any column.

2.4 Query and Description Normal Form
If we allow templates' variables and vectors to map

to arbitrary lists of constants and variables, descrip-
tions may appear to support queries that the underly-
ing wrapper does not support. This is because using
the same variable name in di�erent places in the query
or description can cause an implicit join or selection
that does not explicitly appear in the description. For
example, consider query (Q9), which retrieves employ-
ees where the manager �eld is 'Y' and the �rst and
last names are equal, as denoted by the double ap-
pearance of FL in emp.

(Q9) answer(FL,D) :- emp(FL,FL,D,O,'Y')

(D6) should not describe query (Q9). Nevertheless,
we can construct expansion (E10), which erroneously
matches query (Q9) if we map A to [FL,FL,D,O,'Y']
and R to [FL,D]:

(E10) answer(R):-$Table(A), subset(R, A)

This section introduces a query and description
normal form that avoids inadvertently describing joins
and selections that were not intended. In the nor-
mal form both queries and descriptions have only ex-
plicit equalities. A query is normalized by replac-
ing every constant c with a unique variable V and
then by introducing the subgoal V = c. Further-
more, for every join variable V that appears n > 1
times in the query we replace its instances with the
unique variables V1; : : : ; Vn and introduce the subgoals
Vi = Vj; i = 1; : : : ; n; j = 1 : : : ; i� 1. We replace any
appearance of V in the head with V1. For example,
query (Q11) is the normal form of (Q9).

(Q11) answer(FL1,D) :- employee(FL1,FL2,D,O,M),
FL1=FL2, M='Y'

Description (D6) does not describe (Q11) because
(D6) does not support the equality conditions that

 RQDL

Plan Refinement

Target Query

Specification

Plans (not fully optimized)

Component SubQueries

Component SubQuery Discovery

Algebraically Optimal Plans

Plan Construction

Figure 2: The CBR's components

appear in (Q11). Description (D12) supports equality
conditions on any column and equalities between any
two columns: (NT12.2) describes equalities with con-
stants and (NT12.3) describes equalities between the
columns of our table.

(D12) answer(R) :- (QT12.1)
$Table(A), Cond(A), subset(R, A)
Cond(A) : (NT12.1)
in($Position,X, A), substring(X, $S),
Cond(A)
Cond(A) : (NT12.2)
in($Position1,X, A), X=$C, Cond(A)

Cond(A) : (NT12.3)
in($Pos1,X, A), in($Pos2,Y, A),
X=Y, Cond(A)
Cond(A) : (NT12.4)

For presentation purposes we use the more compact
unnormalized form of queries and descriptions when
there is no danger of introducing inadvertent selections
and joins. However, the algorithms rely on the normal
form.

3 The Capabilities-Based Rewriter
The Capabilities-Based Rewriter (CBR) deter-

mines whether a target query q is directly supported
by the appropriate wrapper, i.e., whether it matches
the description d of the wrapper's capabilities. If not,
the CBR determines whether q can be computed by
combining a set of supported queries (using selections,
projections and joins). In this case, the CBR will pro-
duce a set of plans for evaluating the query. The CBR
consists of three modules, which are invoked serially
(see Figure 2):

� Component SubQuery (CSQ) Discovery:
�nds supported queries that involve one or more
subgoals of q. The CSQs that are returned con-
tain the largest possible number of selections and
joins, and do no projection. All other CSQs are
pruned. This prevents an exponential explosion
in the number of CSQs.

� plan construction: produces one or more plans
that compute q by combining the CSQs exported

by CSQ Discovery. The plan construction algo-
rithm is based on query subsumption and has
been tuned to perform e�ciently in the cases typ-
ically arising in capabilities-based rewriting.

� plan re�nement: re�nes the plans constructed
by the previous phase by pushing as many pro-
jections as possible to the wrapper.

EXAMPLE 3.1 Consider query (Q13), which re-
trieves the names of all managers that manage de-
partments that have employees with o�ces in the 'B'
wing, and the employees' o�ce numbers. This query
is not directly supported by the wrapper described in
(D12).

(Q13) answer(F0,L0,O1):-emp(F0,L0,D,O0,'Y'),
emp(F1,L1,D,O1,M1), substring(O1,'B')

The CSQ detection module identi�es and outputs
the following CSQs:

(Q14) answer14(F0,L0,D,O0) :-
emp(F0,L0,D,O0,'Y')

(Q15) answer15(F1,L1,D,O1,M1) :-
emp(F1,L1,D,O1,M1), substring(O1, 'B')

Note, the CSQ discovery module does not output
the 24 CSQs that have the tail of (Q14) but export a
di�erent subset of the variables F0, L0, D, and O0 (like-
wise for (Q15). The CSQs that export fewer variables
are pruned.

The plan construction module detects that a join
on D of answer14 and answer15 produces the required
answer of (Q13). Consequently, it derives the plan
(P16).

(P16) answer(F0,L0,O1) :-
answer14(F0,L0,D,O0),
answer15(F1,L1,D,O1,M1)

Finally, the plan re�nement module detects that
variables O0, F1, L1, and M1 in answer14 and answer15
are unnecessary. Consequently, it generates the more
e�cient plan (P19).

(Q17) answer17(F0,L0,D) :-
emp(F0,L0,D,O0,'Y')

(Q18) answer18(D,O1) :-
emp(F1,L1,D,O1,M1), substring(O1, 'B')

(P19) answer(F0,L0,O1) :-
answer17(F0,L0,D), answer18(D,O1)

2

The CBR's goal is to produce all algebraically op-
timal plans for evaluating the query. An algebraically
optimal plan is one in which any selection, projection
or join that can be done in the wrapper is done there,
and in which there are no unnecessary queries. More
formally:

De�nition 3.1 (Algebraically Optimal Plan P)
A plan P is algebraically optimal if there is no other
plan P 0 such that for every CSQ s of P there is a

corresponding CSQ s0 of P 0 such that the set of sub-
goals of s0 is a superset of the set of subgoals of s (i.e.,
s0 has more selections and joins than s) and the set
of exported variables of s is a superset of the set of
exported variables of s0 (i.e., s0 has more projections
than s.) 2

In the next three sections we describe each of the mod-
ules of the CBR in turn.

4 CSQ Discovery
The CSQ discovery module takes as input a target

query and a description. It operates as a rule pro-
duction system where the templates of the description
are the production rules and the subgoals of the target
query are the base facts. The CSQ discovery module
uses bottom-up evaluation because it is guaranteed to
terminate even for recursive descriptions [10]. How-
ever, bottom-up derivation often derives unnecessary
facts, unlike top-down. We use a variant of magic sets
rewriting [10] to \focus" the bottom-up derivation. To
further reduce the set of derived CSQs we develop two
CSQ pruning techniques as decsribed in Sections 4.2
and 4.3. Reducing the number of derived CSQs makes
the CSQ discovery more e�cient and also reduces the
size of the input to the plan construction module.

The query templates derive answer facts that cor-
respond to CSQs. In particular, a derived answer fact
is the head of a produced CSQ whereas the underly-
ing base facts, i.e., the facts that were used for deriv-
ing answer, are the subgoals of the CSQ. Nontermi-
nal templates derive intermediate facts that may be
used by other query or nonterminal templates. We
keep track of the sets of facts underlying derived facts
for pruning CSQs. The following example illustrates
the bottom-up derivation of CSQs and the gains that
we realize from the use of the magic-sets rewriting.
The next subsection discusses issues pertaining to the
derivation of facts containing vectors.

EXAMPLE 4.1 Consider query (Q3) and descrip-
tion (D4) from page 3. The subgoals emp(F,L,D,O,M),
substring(O, 'alma'), and substring(O,'B') are
treated by the CSQ discovery module as base facts.
To distinguish the variables in target query subgoals
from the templates' variables we \freeze" the vari-
ables, e.g. F,L,D,O, into similarly named constants,
e.g. f,l,d,o. Actual constants like 'B' are in single
quotes.

In the �rst round of derivations template (NT4.6)
derives fact Cond(F,L,D,O,M)without using any base
fact (since the template has an empty body). Hence,
the set of facts underlying the derived fact is empty.
Variables are allowed in derived facts for nontermi-
nals. The semantics is that the derived fact holds for
any assignment of frozen constants to variables of the
derived fact.

In the second round many templates can �re. For
example, (NT4.4) derives the fact Cond(F,L,D,o,M)
using Cond(F,L,D,O,M) and substring(o,'alma'),
or using Cond(F,L,D,o,M) and substring(o,'B').
Thus, we generate two facts that, though identical,
they have di�erent underlying sets and hence we must

retain both since they may generate di�erent CSQs.
In the second round we may also �re (NT4.6) again
and produce Cond(F,L,D,O,M) but we do not retain
it since its set of underlying facts is equal to the version
of Cond(F,L,D,O,M) that we have already produced.

Eventually, we generate answer(f,l,d,o,m) with
set of
underlying facts femp(f,l,d,o,m), substring(o,
'alma'), substring(o,'B')g. Hence we output the
CSQ (Q3), which, incidentally, is the target query.

The above process can produce an exponen-
tial number of facts. For example, we could
have proved Cond(o,L,D,O,M), Cond(F,o,D,O,M),
Cond(o,o,D,O,M), and so on. In general, assuming
that emp has n columns and we apply m substrings on
it we may derive nm facts. Magic-sets can remove this
source of exponentiality by \focusing" the nontermi-
nals. Applying magic-sets rewriting and the simpli-
�cations described in Chapter 13.4 of [10] we obtain
the following equivalent description. We show only
the rewriting of templates (NT4.4) and (NT4.6). The
others are rewritten similarly.

(D20) answer(F,L,D,O,M) :- (QT20.1)
emp(F,L,D,O,M), Cond(F,L,D,O,M)
Cond(F,L,D,Office,M) : (NT20.4)
mg Cond(F,L,D,Office,M),
substring(Office, $OS),
Cond(F,L,D,Office,M)
Cond(F,L,D,O,M) : (NT20.6)
mg Cond(F,L,D,O,M)

mg Cond(F,L,D,O,M) : (MS20.1)
emp(F,L,D,O,M)

Now, only Cond(f,l,d,o,m) facts (with di�erent
underlying sets) are produced. Note, the magic-sets
rewritten program uses the available information in a
way similar to a top-down strategy and thus derives
only relevant facts. 2

4.1 Derivations Involving Vectors
When the head of a nonterminal template contains

a vector variable it may be possible that a derivation
using this nonterminal may not be able either to bind
the vector to a speci�c list of frozen variables or to al-
low the variable as is in the derived fact. The CSQ dis-
covery module can not handle this situation. For most
descriptions, magic-sets rewriting solves the problem.
We demonstrate how and we formally de�ne the set
of non-problematic descriptions.

For example, let us �re template (NT6.1) of (D6)
on the base facts produced by query (Q3). Assume
also that (NT6.2) already derived Cond(A). Then
we derive that Cond(A) holds, with set of under-
lying facts fsubstring(o, 'alma')g, provided that
the constraint \ A contains o" holds. The constraint
should follow the fact until A binds to some list of
frozen variables. We avoid the mess of constraints us-
ing the following magic-sets rewriting of (D6).

(D21) answer(R) :- (QT21.1)
$Table(A), Cond(A),
subset(R, A)

Cond(A) : (NT21.1)
mg Cond(A), in($Position,X, A),
substring(X,$S), Cond(A)
Cond(A) : mg Cond(A) (NT21.2)
mg Cond(A) : $Table(A) (MS21.1)

When rules (NT21.1) and (NT21.2) �re the �rst
subgoal instantiates variable A to [f,l,d,o,m] and
they derive only Cond([f,l,d,o,m]). Thus, magic-
sets caused A to be bound to the only vector of inter-
est, namely [f,l,d,o,m]. Note a program that de-
rives facts with unbound vectors may not be problem-
atic because no metapredicate may use the unbound
vector variable. However we take a conservative ap-
proach and consider only those programs that produce
facts with only bound vector variables. Magic-sets
rewriting does not always ensure that derived facts
have bound vectors. In the rest of this section we de-
scribe su�cient conditions for guaranteeing the deriva-
tion of facts with bound vectors only. First we pro-
vide a condition (Theorem 4.1) that guarantees that
a program (that may be the result of magic rewriting)
does not derive facts with unbound vectors. Then we
describe a class of programs that after being magic
rewriteen satisfy the condition of Theorem 4.1.

Theorem 4.1 A program will always produce facts
with bound vector variables if in all rules \ H(V) :
�tail" tail has a non-metapredicate subgoal that
refers to V , or in general V can be assigned a binding
if all non-metapredicate subgoals in tail are bound. 2

Intuitively, after we magic-rewrite a program it will
keep deriving facts with unbound vectors only if a
nonterminal of the initial program derives uninstan-
tianted vectors and in the rules that is used it does
not share variables with predicates or nonterminals s
that bind their arguments (otherwise, the magic pred-
icate will force the the rules that produce uninstan-
tianted vectors to focus on bindings of s.) For ex-
ample, speci�cation (MS6) does not derive uninstan-
tianted vectors because the nonterminal Cond, that
may derive uninstantianted variables, shares variables
with $Table(A). [8] provides a formal criterion for de-
ciding whether the bottom-up evaluation derives facts
that have vector variables. This criterion is used by
the following algorithm that derives CSQs given a tar-
get query and a description.

Algorithm 1
Input: Target query Q and Description D
Output: A set of CSQs si; i = 1; : : : ; n
Method:

Check if the program derives
facts with vector variables (see [8])

Reorder each template R in D such that
All predicate subgoals occur in

the front of the rule
A nonterminal N appears after M if N

depends on M for grounding.
Metapredicates appear at the end of the rule

Rewrite D using Magic-sets
Evaluate bottom-up the rewritten description D

as described in [8]

Note, template R can always be reordered. The proof
appears in [8].

4.2 Retaining Only \Representative"
CSQs

A large number of unneeded CSQs are generated by
templates that use vectors and the subsetmetapred-
icate. For example, template (QT12.1) describes for
a particular A all CSQs that have in their head any
subset of variables in A. It is not necessary to gener-
ate all possible CSQs. Instead, for all CSQs that are
derived from the same expansion e, of some template
t, where e has the form

answer(V) :- hpredicate and metapredicate listi,
subset(V , W)

and V does not appear
in the hpredicate and metapredicate listi we generate
only the representative CSQ that is derived by map-
ping V to the same variable list as W .5 All repre-
sented CSQs, i.e., CSQs that are derived from e by
mapping V to a proper subset of W are not gener-
ated. For example, the representative CSQ (Q15) and
the represented CSQ (Q18) both are derived from the
expansion (E22) of template (QT12.1).

(E22) answer(R) :- $Table(A),
in($Position,X, A), substring(X,'B'),
subset(R, A)

The CSQ discovery module generates only (Q15) and
not (Q18) because (Q15) has fewer attributes than
(Q18) and is derived by by mapping the vector R to
the same vector with A, i.e., to [F1,L1,D,O1,M1].
Representative CSQs often retain unneeded attributes
and consequently Representative plans, i.e., plans con-
taining representative CSQs, retrieve unneeded at-
tributes. The unneeded attributes are projected out
by the plan re�nement module.

Theorem 4.2 Retaining only representative CSQs
does not lose any plan, i.e., if there is an algebraically
optimal plan ps that involves a represented query s
then ps will be discovered by the CBR. 2

The intuitive proof of this claim is that for every
plan ps there is a corresponding representative plan
pr derived by replacing all CSQs of ps with their rep-
resentatives. Then, given that the plan re�nement
component considers all plans represented by a repre-
sentative plan, we can be sure that the CBR algorithm
does not lose any plan. The complete proof appears
in [8].
Evaluation: Retaining only a representative CSQ of
head arity a eliminates 2a� 1 represented CSQs thus

5In general, the hlist of predicates and metapredicates imay

contain metapredicates of the form in(hpositioni,hvariableii,
V),i = 1; : : : ;m. In this case, the template describes all

CSQs that output a subset of W and a superset of S =

fhvariablei1; : : : ; hvariableimg. The CSQ discoverymodule out-

puts, as usual, the representativeCSQ and annotates it with the

set S that provides the \minimum" set of variables that repre-

sented CSQs must export. In this paper we will not describe

any further the extensions needed for the handling of this case.

eliminating an exponential factor from the execution
time and from the size of the output of the CSQ dis-
covery module. Still, one might ask why the CSQ dis-
covery phase does not remove the variables that can
be projected out. The reason is that the \projection"
step is better done after plans are formed because
at that time information is available about the other
CSQs in the plan and the way they interact (see Sec-
tion 6). Thus, though postponing projection pushes
part of the complexity to a later stage, it eliminates
some complexity altogether. The eliminated complex-
ity corresponds to those represented CSQs that in the
end do not participate in any plan because they retain
too few variables.

4.3 Pruning Non-Maximal CSQs
Further e�ciency can be gained by eliminating any

CSQ Q that has fewer subgoals than some other CSQ
Q0 because Q checks fewer conditions than Q0. A CSQ
is maximal if there is no CSQ with more subgoals and
the same set of exported variables, modulo variable
renaming. We formalize maximality in terms of sub-
sumption [10]:

De�nition 4.1 (Maximal CSQs) A CSQ sm is a
maximal CSQ if there is no other CSQ s that is sub-
sumed by sm. 2

Evaluation: In general, the CSQ discovery module
generates only maximal CSQs and prunes all others.
This pruning technique is particularly e�ective when
the CSQs contain a large number of conditions. For
example, assume that g conditions are applied to the
variables of a predicate. Consequently, there are 2g �
1 CSQs where each one of them contains a di�erent
proper subset of the conditions. By keeping \maximal
CSQs only" we eliminate an exponential factor of 2g

from the output size of the CSQ discovery module.

Theorem 4.3 Pruning non-maximal CSQs does not
lose any algebraically optimal plan. 2

The reason is that for every plan ps involving a
non-maximal CSQ s there is also a plan pm that in-
volves the corresponding maximal CSQ sm such that
pm pushes more selections and/or joins to the wrapper
than ps, since sm by de�nition involves more selections
and/or joins than s.

5 Plan Construction
In this section we present the plan construction

module (see Figure 2.) In order to generate a (rep-
resentative) plan we have to select a subset S of the
CSQs that provides all the information needed by the
target query, i.e., (i) the CSQs in S check all the sub-
goals of the target query, (ii) the results in S can be
joined correctly, and (iii) each CSQ in S receives the
constants necessary for its evaluation. Section 5.1 ad-
dresses (i) with the notion of \subgoal consumption."
Section 5.2 checks (ii), i.e., checks join variables. Sec-
tion 5.3 checks (iii) by ensuring bindings are avail-
able. Finally, Section 5.4 summarizes the conditions
required for constructing a plan and provides an e�-
cient plan construction algorithm.

5.1 Set of Consumed Subgoals
We associate with each CSQ a set of consumed sub-

goals that describes the CSQs contribution to a plan.
Loosely speaking, a component query consumes a sub-
goal if it extracts all the required information from
that subgoal. A CSQ does not necessarily consume
all its subgoals. For example, consider a CSQ se that
semijoins the emp relation with the dept relation to
output each emp tuple that is in some department in
relation dept. Even though this CSQ has a subgoal
that refers to the dept relation it may not always con-
sume the dept subgoal. In particular, consider a tar-
get query Q that requires the names of all employees
and the location of their departments. CSQ se does
not output the location attribute of table dept and
thus does not consume the dept subgoal with respect
to query Q. We formalize the above intuition by the
following de�nition:

De�nition 5.1 (Set of Consumed Subgoals for
a CSQ) A set Ss of subgoals of a CSQ s constitutes
a set of consumed subgoals of s if and only if

1. s exports every distinguished variable of the tar-
get query that appears in Ss, and

2. s exports every join variable that appears in Ss
and also appears in a subgoal of the target query
that is not in Ss.

2

Theorem 5.1 Each CSQ has a unique maximal set
of consumed subgoals that is a superset of every other
set of consumed subgoals. 2

The proof of the uniqueness of the maximal consumed
set appears in [8]. Intuitively the maximal set de-
scribes the \largest" contribution that a CSQ may
have in a plan. The following algorithm states how
to compute the set of maximal consumed subgoals of
a CSQ. We annotate every CSQ s with its set of max-
imal consumed subgoals, Cs.

Algorithm 2
Input: CSQ s and target query Q
Output: CSQ s with computed annotation Cs
Method:

Insert in Cs all subgoals of s
Remove from Cs subgoals that have a
distinguished attribute of Q not exported by s
Repeat until size of Cs is unchanged

Remove from Cs subgoals that:
Join on variable V with subgoal g
of Q where g is not in Cs, and
Join variable V is not exported by s

Discard CSQ s if Cs is empty.

This algorithm is polynomial in the number of the
subgoals and variables of the CSQ. Also, the algorithm
discards all CSQs that are not relevant to the target
query:

De�nition 5.2 (Relevant CSQ) A CSQ s is called
relevant if Cs is non-empty. 2

Intuitively, irrelevant CSQs are pruned out because in
most cases they do not contribute to a plan, since they
do not consume any subgoal. Note, we decide the rel-
evance of a CSQ \locally," i.e., without considering
other CSQs that it may have to join with. By pruning
non-relevant CSQs we can build an e�cient plan con-
struction algorithm that in most cases (Section 5.2)
produces each plan in time polynomial in the num-
ber of CSQs produced by the CSQ discovery module.
However, there are scenarios (see the extended ver-
sion [8]) where the relevance criteria may erroneously
prune out a CSQ that could be part of a plan. We
may avoid the loss of such plans by not pruning irrel-
evant CSQs and thus sacri�cing the polynomiality of
the plan construction algorithm. In this paper we will
not consider this option.

5.2 Join Variables Condition
It is not always the case that if the union of con-

sumed subgoals of some CSQs is equal to the set of
the target query's subgoals then the CSQs together
form a plan. In particular, it is possible that the join
of the CSQs may not constitute a plan. For exam-
ple, consider an online employee database that can be
queries for the names of all employees in a given divi-
sion. The database can also be queried for the names
of all employees in a given location. Further, the name
of an employee is not uniquely determined by their lo-
cation and division. The employee database cannot
be used to �nd employees in a given division and in a
given location by joining the results of two queries -
one on division and the other on location. To see this,
consider a query that looks for employees in "CS" in
"New York". Joining the results of two independent
queries on division and location will incorectly return
as answer a person named "John Smith" if there is a
"John Smith" in "CS" in "San Jose" and a di�erent
"John Smith" in "Electrical" in "New York".

Intuitively, the problem arises because the two in-
dependent queries do not export the information nec-
essary to correctly join their results. We can avoid this
problem by checking that CSQs are combined only if
they export the join variables necessary for their cor-
rect combination. The theorem of Section 5.4 formally
describes the conditions on join variables that guaran-
tee the correct combination of CSQs.

5.3 Passing Required Bindings via
Nested Loops Joins

The CBR's plans may emulate joins that could not
be pushed to the wrapper, with nested loops joins
where one CSQ passes join variable bindings to the
other. For example, we may compute (Q13) by the
following steps: �rst we execute (Q23); then we col-
lect the department names (i.e., the D bindings) and
for each binding d of D, we replace the $D in (Q24)
with d and send the instantianted query to the wrap-
per. We use the notation /$D in the nested loops plan
(P25) to denote that (Q24) receives values for the $D
placeholder from D bindings of the other CSQs { (Q23)
in this example.

(Q23) answer23(F0,L0,D,O0):-emp(F0,L0,D,O0,'Y')
(Q24) answer24(F1,L1,O1,M1):-emp(F1,L1,$D,O1,M1)

(P25) answer(F0,L0,O1) :- answer23
(F0,L0,D,O0), answer24(F1,L1,O1,M1)/$D

The introduction of nested loops and binding pass-
ing poses the following requirements on the CSQ dis-
covery:

� CSQ discovery: A subgoal of a CSQ s may con-
tain placeholders /$hvari, such as $D, in place of
corresponding join variables (D in our example.)
Whenever this is the case, we introduce the struc-
ture /$hvari next to the answers that appears
in the plan. All the variables of s that appear
in such a structure are included in the set Bs,
called the set of bindings needed by s. For ex-
ample, B24 = fDg and B23 = fg. CSQ discovery
previously did not use bindings information while
deriving facts. Thus, the algorithm derives use-
less CSQs that need bindings not exported by any
other CSQ.

The optimized derivation process uses two sets
of attributes and proceeds iteratively. Each it-
eration derives only those facts that use bind-
ings provided by existing facts. In addition, a
fact is derived if it uses at least one binding that
was made available only in the very last itera-
tion. Thus, the �rst iteration derives facts that
need no bindings, that is, for which Bs is empty.
The next iteration derives facts that use at least
one binding provided by facts derived in iteration
one. Thus, the second iteration does not derive
any subgoal derived in the �rst iteration, and so
on. The complete algorithm that appears in [8]
formalizes this intuition.

The bindings needed by each CSQ of a plan impose
order constraints on the plan. For example, the exis-
tence of D in B24 requires that a CSQ that exports D is
executed before (Q24). It is the responsibility of the
plan construction module to ensure that the produced
plans satisfy the order constraints.

Evaluation The pruning of CSQs with inappropri-
ate bindings prunes an exponential number of CSQs
in the following common scenario: Assume we can put
an equality condition on any variable of a subgoal p.
Consider a CSQ s that contains p and assume that n
variables of p appear in subgoals of the target query
that are not contained in s. Then we have to generate
all 2n versions of s that describe di�erent binding pat-
terns. Assuming that no CSQ may provide any of the
n variables it is only one (out the 2n) CSQs useful.

5.4 A Plan Construction Algorithm
In this section we summarize the conditions that are

su�cient for construction of a plan. Then, we present
an e�cient algorithm that �nds plans that satisfy the
theorem's conditions. Finally, we evaluate the algo-
rithm's performance.

Theorem 5.2 Given CSQs si; i = 1; : : : ; n with cor-
responding heads answeri(V i

1 ; : : : ; V
i
vi
), sets of maxi-

mal consumed subgoals Ci and sets of needed bindings
Bi, the plan

answer(V1; : : : ; Vm): �answer1(V
1

1
; : : : ; V 1

v1
);

: : : ; answern(V
n
1
; : : : ; V n

vn
)

is correct if

� consumed sets condition: The union of maxi-
mal consumed sets [i=1;:::;nCi is equal to the tar-
get query's subgoal set.

� join variables condition: If the set of maximal
consumed subgoals of CSQ si has a join variable
V then every CSQ sj that contains V in its set of
maximal consumed subgoals Cj exports V .

� bindings passing condition: If V 2 Bi then
there must be a CSQ sj ; j < i that exports V . 2

The proof is based on the theory of containment map-
pings appropriately extended to take into considera-
tion nested loops [8].

The plan construction algorithm in the extended
version of the paper [8] is based on Theorem 5.2. The
algorithm takes as input a set of CSQs derived by the
CSQ discovery process described later, and the target
query Q. At each step the algorithm selects a CSQ s
that consumes at least one subgoal that has not been
consumed by any CSQ s0 considered so far and for
which all variables of Bs have been exported by at
least one s0. Assuming that the algorithm is given m
CSQs (by the CSQ discovery module) it can construct
a set that satis�es the consumed sets and the bindings
passing conditions in time polynomial inm. Neverthe-
less, if the join variables condition does not hold the
algorithm takes time exponential inm because we may
have to create exponentially many sets until we �nd
one that satis�es the join variables condition. How-
ever, the join variables condition evaluates to true for
most wrappers we �nd in practice (see following dis-
cussion) and thus we usually construct a plan in time
polynomial in m.

For every plan p there may be plans p0 that are
identical to p modulo a permutation of the CSQs of p.
In the worst case there are np! permutations, where np
is the number of CSQs in p. Since it is useless to gen-
erate permutations of the same plan, The algorithm
creates a total order � of the input CSQs and gener-
ates plans by considering CSQ s1 before CSQ s2 only
if s1 � s2, i.e., the CSQs are considered in order by
�. Note, a query s2 must always be considered after
a query s1 if s1 provides bindings for s2. Hence, �

must respect the partial order
�

b where s1
�

b s2 if s1
provides bindings to s2.

The plan construction algorithm �rst sorts the in-

put CSQs in a total order that respects the PO
b
�.

Then it procedes by picking CSQs and testing the con-
ditions of Theorem 5.2 until it consumes all subgoals
of the target query. The algorithm capitalizes on the
assumption that in most practical cases every CSQ
consumes at least one subgoal and the join variables
condition holds. In this case, one plan is developed in
time polynomial in the number of input CSQs. The
following lemma describes an important case where
the join variables condition always holds.

Lemma 5.1 The join variables condition holds for
any set of CSQs such that

1. no two CSQs of the set have intersecting sets of
maximal consumed subgoals, or

2. if two CSQs contain the subgoal g(V1; : : : ; Vm) in
their sets of maximal consumed subgoals then they
both export variables V1; : : : ; Vm.

2

Condition (1) of Lemma 5.1 holds for typical wrap-
pers of bibliographic information systems and lookup
services (wrappers that have the structure of (D12)),
relational databases and object oriented databases {
wrapped in a relational model. In such systems it is
typical that if two CSQs have common subgoals then
they can be combined to form a single CSQ. Thus, we
end up with a set of maximal CSQs that have non-
intersecting consumed sets. Condition (2) further re-
laxes the condition (1). Condition (2) holds for all
wrappers that can export all variables that appear in
a CSQ. The two conditions of Lemma 5.1 cover essen-
tially any wrapper of practical importance.

6 Plan Re�nement
The plan re�nement module �lters and re�nes con-

structed plans in two ways. First, it eliminates plans
that are not algebraically optimal. The fact that CSQs
of the representative plans have the maximum num-
ber of selections and joins and that plan re�nement
pushes the maximum number of projections down is
not enough to guarantee that the plans produced are
algebraically optimal. For example, assume that CSQs
s1 and s2 are interchangeable in all plans, and the set
of subgoals of s1 is a superset of the set of subgoals of
s2 and s1 exports a subset of the variables exported
by s2. The plans in which s2 participates are alge-
braically worse than the corresponding plans with s1.
Nevertheless, they are produced by the plan construc-
tion module because s1 and s2 may both be maximal,
and do not represent each other because they are pro-
duced by di�erent template expansions. Plan re�ne-
ment must therefore eliminate plans that include s2.

Plan re�nement must also project out unnecessary
variables from representative CSQs. Intuitively, the
necessary variables of a representative CSQ are those
variables that allow the consumed set of the CSQ to
\interface" with the consumed sets of other CSQs in
the plan. We formalize this notion and its signi�cance
by the following de�nition (note, the de�nition is not
restricted to maximal consumed sets):

De�nition 6.1 (Necessary Variables of a Set of
Consumed Subgoals:) A variable V is a necessary
variable of the consumed subgoals set Ss of some CSQ
s if, by not exporting V , Ss is no longer a consumed
set. 2

The set of necessary variables is easily computed:
Given a set of consumed subgoals S, a variable V of S
is a necessary variable if it is a distinguished variable,
or if it is a join variable that appears in at least one
subgoal that is not in S.

Due to space limitations the complete plan re�ne-
ment algorithm and its evaluation appear in [8]. Its
main complication is due to the fact that unecessary
variables cannot always be projected out when the
maximal consumed sets of the CSQs intersect.

7 Evaluation
The CBR algorithm employs many techniques to

eliminate sources of exponentiality that would other-
wise arise in many practical cases. The evaluation
paragraphs of many sections in this paper describe the
bene�t we derive from using these techniques. Re-
member that our assumption that every CSQ con-
sumes at least one subgoal led to a plan construction
module that develops a plan in time polynomial to the
number of CSQs produced by the CSQ detection mod-
ule, provided that the join variables condition holds.
This is an important result because the join variables
condition holds for most wrappers in practice, as ar-
gued in Subsection 5.4.

The CBR deals only with Select-Project-Join
queries and their corresponding descriptions. It pro-
duces algebraically optimal plans involving CSQs, i.e.,
plans that push the maximum number of selections,
projections and joins to the source. However, the CBR
is not complete because it misses plans that contain
irrelevant CSQs (see De�nition 5.2 and the discussion
of Section 5.1.) On the other hand, the techniques
for eliminating exponentiality preserve completeness,
in that we do not miss any plan through applying one
of these techniques (see justi�cations in Sections 4.2,
4.3.)

8 Related Work
Signi�cant results have been developed for the res-

olution of semantic and schematic discrepancies while
integrating heterogeneous information sources. How-
ever, most of these systems [11, 12, 4, 13] do not
address the problem of di�erent and limited query
capabilities in the underlying sources because they
assume that those sources are full-edged databases
that can answer any query over their schema.6 The
recent interest in the integration of arbitrary infor-
mation sources, including databases, �le systems, the
Web, and many legacy systems, invalidates the as-
sumption that all underlying sources can answer any
query over the data they export and forces us to re-
solve the mismatch between the query capabilities pro-
vided by these sources. Only a few systems have ad-
dressed this problem.

HERMES [11] proposes a rule language for the
speci�cation of mediators in which an explicit set of
parameterized calls can be made to the sources. At
run-time the parameters are instantiated by speci�c
values and the corresponding calls are made. Thus,
HERMES guarantees that all queries sent to the wrap-
pers are supported. Unfortunately, this solution re-
duces the interface between wrappers and mediators
to a very simple form (the particular parameterized

6The work in query decomposition in distributed databases

has also assumed that all underlying systems are relational and

equally able to perform any SQL query.

calls), and does not fully utilize the sources' query
power.

DISCO [14]describes the set of supported queries
using context-free grammars. This technique reduces
the e�ciency of capabilities-based rewriting because
it treats queries as "strings."

The Information Manifold [15] develops a query ca-
pabilities description that is attached to the schema
exported by the wrapper. The description states
which and how many conditions may be applied on
each attribute. RQDL provides greater expressive
power by being able to express schema-independent
descriptions and descriptions such as \exactly one con-
dition is allowed."

TSIMMIS suggests an explicit description of the
wrapper's query capabilities [5], using the context-
free grammar approach of the current paper. (The
description is also used for query translation from the
common query language to the language of the un-
derlying source.) However, TSIMMIS considers a re-
stricted form of the problem wherein descriptions con-
sider relations of prespeci�ed arities and the mediator
can only select or project the results of a single CSQ.

This paper enhances the query capability descrip-
tion language of [5] to describe queries over arbitrary
schemas, namely, relations with unspeci�ed arities and
names, as well as capabilities such as \selections on
the �rst attribute of any relation." The language also
allows speci�cation of required bindings, e.g., a bibli-
ography database that returns \titles of books given
author names." We provide algorithms for identifying
for a target query Q the algebraically optimal CSQs
from the given descriptions. Also, we provide algo-
rithms for generating plans for Q by combining the
results of these CSQs using selections, projections, and
joins.

The CBR problem is related to the problem of de-
termining how to answer a query using a set of mate-
rialized views [16, 6, 7, 17]. However, there are signi�-
cant di�erences. These papers consider a speci�cation
language that uses SPJ expressions over given rela-
tions specifying a �nite number of views. They cannot
express arbitrary relations, arbitrary arities, binding
requirements (with the exception of [7]), or in�nitely
large queries/views. Also, they do not consider gener-
ating plans that require a particular evaluation order
due to binding requirements.

[6] shows that rewriting a conjunctive query is in
general exponential in the total size of the query and
views. [17] shows that if the query is acyclic we can
rewrite it in time polynomial to the total size of the
query and views. [6, 7] generate necessary and suf-
�cient conditions for when a query can be answered
by the available views. By contrast, our algorithms
check only su�cient conditions and might miss a plan
because of the heuristics used. Our algorithm can be
viewed as a generalization of algorithms that decide
the subsumption of a datalog query by a datalog pro-
gram (i.e., the description). Recently [18] proposed
Datalog for the description of supported queries. It
also suggested an algorithm that essentially �nds what
we call maximal CSQs.

9 Conclusions and Future Work
In this paper, we presented the Relational Query

Description Language, RQDL, which provides pow-
erful features for the description of wrappers' query
capabilities. RQDL allows the description of in�nite
sets of arbitrarily large queries over arbitrary schemas.
We also introduced the Capabilities-Based Rewriter,
CBR, and presented an algorithm that discovers plans
for computing a wrapper's target query using only
queries supported by the wrapper. Despite the in-
herent exponentiality of the problem, the CBR uses
optimizations and heuristics to produce plans in rea-
sonable time in most practical situations.

The output of the CBR algorithm, in terms of the
number of derived plans, remains a major source of
exponentiality. Though the CBR prunes the output
plans by deriving a plan only if no other plan pushes
more selections, projections or joins to the source, it
may still be the case that the number of plans is ex-
ponential in the number of subgoals and/or join vari-
ables. For example, consider the case where our query
involves a chain of n joins and each one of them can
be accomplished either by a left-to-right nested loops
join, or a right-to-left nested loops join, or a local join.
In this case, CBR has to output 3n plans where each
of the plans employs one of the three join methods.
Then, the mediator's cost-based optimizer would have
to estimate the cost of each one of the plans and choose
the most e�cient. We could modify the CBR to gener-
ate all of these plans or only some of them, depending
on the time to be spent on optimization.

Currently, we are looking at implementing a CBR
for IBM's Garlic system [1]. We are also investigating
tighter couplings between the mediator's cost-based
optimizer and the CBR. Finally, we are investigating
more powerful rewriting techniques that may replace
a target query's subgoals with combinations of seman-
tically equivalent subgoals that are supported by the
wrapper.

Acknowledgements
We are grateful to Mike Carey, Hector Garcia-

Molina, Anand Rajaraman, Anthony Tomasic, Je�
Ullman, Ed Wimmers, and Jennifer Widom for many
fruitful discussions and comments.

References
[1] M.J. Carey et al. Towards heterogeneous multimedia

information systems: The Garlic approach. In Proc.

RIDE-DOM Workshop, pages 124{31, 1995.

[2] Y. Papakonstantinou,
H. Garcia-Molina, and J. Widom. Object exchange
across heterogeneous information sources. In Proc.

ICDE Conf., pages 251{60, 1995.

[3] J.C. Franchitti and R. King. Amalgame: a tool
for creating interoperating persistent, heterogeneous
components. Advanced Database Systems, pages 313{
36, 1993.

[4] R. Ahmed et al. The Pegasus heterogeneous multi-
database system. IEEE Computer, 24:19{27, 1991.

[5] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina,
and J. Ullman. A query translation scheme for the
rapid implementation of wrappers. In Proc. DOOD

Conf., pages 161{86, 1995.

[6] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In Proc. PODS Conf.,
pages 95{104, 1995.

[7] A. Rajaraman, Y. Sagiv, and J. Ullman. Answer-
ing queries using templates with binding patterns. In
Proc. PODS Conf., pages 105{112, 1995.

[8] Y. Papakonstantinou, A. Gupta, and L. Haas.
Capabilities-based query rewriting in mediator sys-
tems. Available via ftp at db.stanford.edu �le
/pub/papakonstantinou/1995/cbr-extended.ps.

[9] J.D. Ullman. Principles of Database and Knowledge-

Base Systems, Vol. I: Classical Database Systems.
Computer Science Press, New York, NY, 1988.

[10] J.D. Ullman. Principles of Database and Knowledge-

Base Systems, Vol. II: The New Technologies. Com-
puter Science Press, New York, NY, 1989.

[11] V.S. Subrahmanian et al. HERMES: A heterogeneous
reasoning and mediator system.
http://www.cs.umd.edu/projects/hermes/overview/paper.

[12] J. Hammer and D. McLeod. An approach to resolving
semantic heterogeneity in a federation of autonomous,
heterogeneous database systems. Intl Journal of Intel-
ligent and Cooperative information Systems, 2:51{83,
1993.

[13] A. Gupta. Integration of Information Systems: Bridg-
ing Heterogeneous Databases. IEEE Press, 1989.

[14] A. Tomasic, L. Raschid, and P. Valduriez. Scaling
heterogeneous databases and the design of DISCO.
Technical report, INRIA, 1995.

[15] A. Levy, A. Rajaraman, and J. Ordille. Query pro-
cessing in the information manifold. In Proc. VLDB,
1996.

[16] P.A. Larson and H.Z. Yang. Computing queries from
derived relations. In Proc. VLDB Conf., pages 259{
69, 1985.

[17] Xiaolei Qian. Query folding. In Proc. ICDE, pages
48{55, 1996.

[18] A. Levy, A. Rajaraman, and J. Ullman. Answering
queries using limited external processors. In Proc.

PODS, pages 227{37, 1996.

