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Abstract

One of the main tasks of mediators is to fuse information from heterogeneous information
sources. This may involve, for example, removing redundancies, and resolving inconsistencies in
favor of the most reliable source. The problem becomes harder when the sources are unstruc-
tured/semistructured and we do not have complete knowledge of their contents and structure.
In this paper we show how many common fusion operations can be speci�ed non-procedurally
and succinctly. The key to our approach is to assign semantically meaningful object ids to ob-
jects as they are \imported" into the mediator. These semantic ids can then be used to specify
how various objects are combined or merged into objects \exported" by the mediator. In this
paper we also discuss the implementation of a mediation system based on these principles. In
particular, we present key optimization techniques that signi�cantly reduce the processing costs
associated with information fusion.

1 Introduction

The TSIMMIS system provides integrated access to heterogeneous information, stored not only
in conventional databases but also in �le systems, the Web, and legacy systems. The TSIMMIS
architecture is shown in Figure 1. Wrappers [C+94, FK93] (or translators) convert data from each
source into a common model and also provide a common query language. Applications can access
data directly through wrappers, but they may also go through mediators [PGMU, Wie92, S+],
which provide an integrated view of the data exported by the wrappers.

The architecture of Figure 1 is common in many integration projects [PGMW95, C+94, A+91,
S+, LMR90, K+93]. However, the focus of our project is on semi-structured and/or unstructured
information. This is information that may not conform to a rigid schema �xed in advance, and is
frequently found, for instance, in the World-Wide-Web, SGML documents, semi-structured repos-
itories such as ACeDB [TMD92] (very popular among biologists in the Human Genome Project),
and Lotus NOTES. To represent such data, we use a \schema-less"(or self-describing [MR87])
object-oriented model, called Object Exchange Model (OEM) [PGMW95].

Mediators play the central role in information integration, and their most important task is
to perform object fusion. This involves grouping together information (from the same or di�erent
sources) about the same real-world entity. In doing this fusion, the mediator may also \re�ne" the
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Figure 1: The TSIMMIS architecture for integration

information by removing redundancies, resolving inconsistencies between sources in favor of the
most reliable source, and so on. A mediator may also have to avoid accessing a particular source if
another source provides similar information at a lower cost (either �nancial or computational).

In this paper we present an approach to object fusion that is based on semantic object identi�ers.
The basic idea is as follows. The mediator is speci�ed by a set of non-procedural, logic rules. Each
rule maps a set of objects at a source, that pertain to some identi�able real world entity, into a
\virtual" object at the mediator. The virtual object is assigned a semantically meaningful object
identi�er. Mediator objects that have the same object-id are then fused together, in a way that is
also speci�ed by the rules. The above description is conceptual; no objects are fused until a user
query arrives at the mediator. (The mediator speci�cation is like a database view.) Only when a
query arrives, are the sources queried for the object fragments that are necessary for composing
the selected fused objects.

For our speci�cations we use MSL (Mediator Speci�cation Language), originally introduced
in [PGMU]. However, in the original MSL, object fusion could not be performed. We have extended
MSL to allow rules to specify object fragments that can be fused together. As we will see in this
paper, this single concept signi�cantly increases the power and exibility of the language, and
makes it relatively easy to specify the most common fusion operations. It also makes it possible to
integrate objects that contain references to source objects. These \remote references" are translated
into semantically meaningful references at the mediator, allowing the integration of nested and
cross-referenced objects such as those found on the Web.

However, this added power also places a new burden on the query processing unit (the Mediator
Speci�cation Interpreter, or MSI). In particular, query processing is complicated because it may
not be clear in advance which sources contribute to the content of a single mediator object. Fur-
thermore, nontrivial computations may have to be performed for re�ning the integrated objects.
To address these problems, in this paper we present a set of optimization strategies that can sig-
ni�cantly reduce the number of queries sent to sources, and can as well cut down on the volume of
data that are fetched. This is achieved using the following techniques:

� We reconsider standard algebraic optimization techniques such as \pushing selections to the
wrapper" that have been used in [PGMU]. Object-id based fusion makes these optimizations
much harder. Nevertheless, we achieve signi�cant gains by using a modi�cation of resolution-
based techniques from deductive systems.
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� We develop an MSL variant of the well-known subsumption technique [Ull89] to limit the
number of queries sent to sources.

� We present intelligent schemes to avoid retrieving information that will eventually be dis-
carded. For example, if two sources s1 and s2 provide conicting information about some
object and the speci�cation indicates that the conicts are resolved in favor of s1, the medi-
ator will not query s2 for information that is already provided by s1.

� Because the structure and contents of the information at sources may not be known in ad-
vance, it is sometimes hard to discover which source contributes speci�c pieces of information
to a fused object. If MSI is not careful it may end up requesting some source for information
that can not be provided by this source. MSI resolves this problem by preceding the infor-
mation fusion phase with an information �nding phase that rules out sources that can not
contribute to the fused objects.

These strategies have been successfully used in MedMaker, an integration system implemented
at Stanford. These optimization strategies and the MedMaker components that deal with object
fusion are described in Section 4. Before that, we give a brief overview of the OEM model in
Section 2, and in Section 3 we give a sequence of examples that illustrate the power of MSL and of
fusion based on semantic object identi�ers.

2 The OEM Model

Most applications that have to deal with semi-structured information use a self-describing model,
where each data item has an associated descriptive label. Applications include tagged �le systems
[Wie87], Lotus NOTES [Mar93], the Teknekron's Information Bus [O+93], LOOM frames [MY89],
electronic mail, RFC1532 bibliographic records, and many more. In [PGMW95] we have de�ned
a self-describing data model [MR87], called the Object Exchange Model (OEM), that captures the
essential features of the self-describing models used in practice and also generalizes them to allow
nesting and to include object identity.

To illustrate the OEM model, consider a source that contains bibliographic information. A
wrapper, named s1, exports this information as a set of OEM objects, some of which are shown in
Figure 2 (one object per line.) Notice how the schema information has now been incorporated into
the labels of individual OEM objects.

Each OEM object consists of an object-id (e.g., &r1n), a label that explains its meaning (e.g.,
report num), a type (e.g., string), and a value of the speci�ed type (e.g., 'AB-123-456'.) Labels
are strings that are meaningful to applications or end-users. Labels may have di�erent meanings
at di�erent sources. Indeed, it will be the job of mediators to resolve these conicts. Values may
be either of an atomic type (e.g., 'John Patriot' is of type string), or be a set of sub-objects
object-id's (e.g., the value of the related object is f&r2g). To simplify the presentation, in the rest
of this paper, we assume that the type of all atomic objects is string and we omit type information
from objects.

From the point of view of the OEM model, object ids are arbitrary strings (starting with &)
that are used to link objects with their sub-objects (e.g., &r1t links the report of Figure 2 to
its title). Some OEM objects (e.g., the objects identi�ed by &r1, &r2) are top-level objects. In
our presentation they are the leftmost indented objects. For performance reasons, clients query
object structures starting, by default, from the top-level objects. For example, a simple query may
ask for top-level report objects that have a year sub-object with value 1988. Nevertheless, the
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<&r1, report, set, f&r1n, &r1a, &r1t, &r1y, &r1rg>

<&r1n, report num, string, 'AB-123-456'>

<&r1a,authors, set, f&b1a1g>

<&r1a1, author, string, 'John Patriot'>

<&r1t, title, string, 'UN Conspiracies'>

<&r1y, year, string, '1995'>

<&r1r, related, set, f&r2g>
...

<&r2, report, set, f&r2n, &r2a, $r2t, &r2y, &r2rg>

Figure 2: The OEM object structure of s1

client is not restricted to query the object structure starting from top-level objects, as is explained
in [PGM].

When we represent OEM objects within a mediator, we may use semantically meaningful object-
id's to facilitate with the integration tasks. For example, if the report num number of the report
in Figure 2 is a key and can be used to match up this report with other reports that should be con-
sidered the same entity, then we can use &AB-123-456 as the id for the report. Furthermore, if this
report object originally came from another source sss, then we extend the id to &AB-123-456@sss.
This convention is easy to implement and simpli�es fusion: Objects that need to be fused can be
identi�ed by their ids, yet the source of the information is clearly noted as to avoid confusion.

Finally, note that OEM poses no restrictions on the labels of sub-objects. For example, some
report objects have a single title object, others may not have any title, and others may have
multiple titles. In this way, OEM allows us to represent and integrate information from unstruc-
tured sources. Note also that OEM objects may be arbitrarily nested.

3 Object-Identity Based Information Fusion

In this section we explain how object fusion can be achieved with semantic object ids. We start
with a simple example that introduces MSL and demonstrates the basic principle of id based fusion.
We than present examples that illustrate a variety of fusion operations. These examples are not
exhaustive; they simply show how semantic ids can help in a variety of fusion scenarios.

3.1 A Simple Example

Let us consider a mediator called simple that exports objects with label techreport. The
techreport objects fuse information about reports that have the same report number and are
exported by the sources s1 and s2. In particular, if source s1 contains a report and its title, the
exported techreport object contains the corresponding title. If source s2 contains the postscript
for the report, then a postscript subobject is also included in the techreport. Note, the speci�-
cation of the techreport object appears in two rules. Each rule describes the contribution of only
one of the sources.

(MS1) (R1.1) <trep(RN) techreport f<title T>g>@simple :-

<report f<report num RN> <title T>g>@s1
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(R1.2) <trep(RN) techreport f<postscript P>g>@simple :-

<report f<report num RN> <postscript P>g>@s2

A speci�cation consists of rules that de�ne the view exported by the mediator. Each rule
consists of a head followed by a :- and a tail. The head describes view objects, whereas the tail
describes conditions that must be satis�ed by the source objects. In general, the heads and tails
are based on patterns of the form <object-id label value>. We may omit the object-id �eld when it
is irrelevant. If it is missing from a tail pattern it means that we do not care about the object-id
appearing at the source. If it is missing from a head pattern it means that the mediator has to
invent an arbitrary, yet unique, object-id for the \generated" object.

Going back to our example, the �rst rule declares that:

� if there is a pair of bindings t and r for variables T and RN (variables are identi�ers starting
with a capital letter) such that s1 contains a report top-level object that has a report num

subobject with value r and a title subobject with value t,

� then mediator simple exports a techreport object, with object-id trep(r), that has a
title subobject with value t and a unique system-generated object-id.

The semantics of the second rule are de�ned accordingly. Notice how techreport objects at
the mediator are assigned the semantic object id trep(RN). ( We add the function symbol trep
to the report number obtained from the source to uniquely identify how this id was generated.)
Observe that (MS1.1) does not prevent the techreport with object-id trep(r) to have subobjects
other than title, thus allowing the second rule to add more subobjects to the same techreport
objects. In general this is how object fusion is achieved: MSL allows rules to incrementally and
independently insert information into a semantically identi�ed mediator object. In the examples
that follow we will show how this feature provides signi�cant power and exibility to mediator
speci�cations. Incidentally, note that the simplicity of OEM facilitates such id based fusion. In
particular, if objects had rigid schemas it would not be as natural to combine object fragments.

To illustrate how MSL speci�cations are used at run time, assume that a client of simple wants
to retrieve all data of techreport's with object-id trep('123'). As our query language, in this
paper, we use MSL itself (with minor modi�cations discussed below). The use of MSL simpli�es
our discussion, and furthermore, MSL is convenient because of its expressive power.1 Using MSL
our query can be expressed as:

(Q2) <trep('123') techreport V> :- <trep('123') techreport V>@simple

The object pattern (or patterns in the general case) that appears in the query tail is evaluated
against the object structure of the mediator in exactly the same way that the mediator speci�cation
rule tails are evaluated against the object structures of the wrappers. The object pattern of the
query head does not include the usual @ notation because it is implied that the objects described
by the query head refer to the result that will be materialized at the client.

Given the sample query (Q2) and the mediator speci�cation (MS1), the Mediator Speci�cation
Interpreter (MSI) develops a plan (through a series of steps described in Section 4) that speci�es
the queries that will be sent to the sources and how the received results will be transformed and
combined into the answer objects. In our example, MSI sends to s1 and s2 the queries (Q3) and
(Q4).

1The TSIMMIS project at Stanford also uses a di�erent query language called LOREL [Q+]. It is an object-
oriented extension to SQL and is oriented to end-users. LOREL queries are translated to MSL queries before being
processed by mediators.
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(Q3) <trep('123') techreport f<title T>g> :-

<report f<report num '123'> <title T>g>@s1

(Q4) <trep('123') techreport f<postscript P>g> :-

<report V:f<report num '123'> <postscript P>g>@s2

The two answer objects received from s1 and s2 are then merged into a single techreport object.
Note, MSI then copies the fused answer to the client's memory. The subobjects of the techreport
objects are also copied, and so on recursively up to some maximum depth (imposed by the size of
the client's memory).

3.2 Merging Information with Incomplete Knowledge of the Source Contents

It is not necessary to know the structure of the source reports in order to fuse them. Speci�ca-
tion (MS5) demonstrates that we can group all information about reports into techreport objects,
without knowing the structure and contents of the reports subobjects.

(MS5) (R5.1) <trep(RN) techreport V>@all :- <report V:f<report num RN>g>@s1

(R5.2) <trep(RN) techreport V>@all :- <rep V:f<report num RN>g>@s2

Variable V binds to set values that contain all subobjects of report provided that at least one of the
subobjects has the label report num. Then, every object of the set value becomes a subobject of
the techreport, regardless of whether the other source also provides the same piece of information.

Note, OEM provides the exibility to integrate information without having to worry about the
presence of subobjects with same label. In some cases this may be desirable. For instance, say each
source contains a di�erent title for the same report. We may want to record these two potentially
di�erent titles in the fused object. In other cases, however, we may wish to eliminate one of the
titles. We will show how this can be done in Section 3.5. Fortunately, the OEM model does not
force a decision on us: the person writing the mediator speci�cation can decide if redundancies or
inconsistencies are allowed.

3.3 Removing Redundancies

The example of Section 3.2 does generate one redundancy that is not very useful: each techreport

object contains two report num subobjects with identical values but di�erent object-id's. This
redundancy can be eliminated as shown by mediator (MS6). It assigns the semantic object-id
rnOID(RN) to the report num subobjects with value RN. In this way, the report num subobjects
that have the same value are assigned the same object-id and hence they degenerate into the same
report num object.

(MS6) (R6.1) <trep(RN) techreport f<rnOID(RN) report num RN> <O1 L1 X1>g>@nored :-

<report f<report num RN> <O1 L1 X1>g>@s1 AND NOT L1=report num

(R6.2) <trep(RN) techreport f<rnOID(RN) report num RN> <O2 L2 X2>g>@nored :-

<report f<report num RN> <O2 L2 X2>g>@s2 AND NOT L2=report num

Note, the variables L1 and L2 that appear in label positions allow the patterns <O1 L1 X1> and
<O2 L2 X2> to match with any subobject of the reports of s1 and s2, provided that L1 and L2

are not equal to report num. Then, the subobjects that are bound to <O1 L1 X1> or <O2 L2 X2>

become subobjects of the mediator techreports. ( If we did not have explicit NOT conditions the
pattern <O1 L1 X1> and <O2 L2 X2> would also match with report num objects.)
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Comparison of object-id based fusion with outerjoin Outerjoin has also been suggested
as a way to join information from sources that may or may not contribute to the joined object.
MSL contains a variant of outerjoin (see extended version [PGM]) that could be used to implement
the example above. Using outerjoin we could, in a single rule, create a techreport virtual object
with report number r if there is a report with number r at s1 or s2. However, we believe that the
object-id based fusion scheme we illustrated above is more powerful. In particular, with object-
id based fusion we can easily join objects from the same source. The need for this arises if, for
example, s1 has multiple report objects that refer to the same real-world report. To do the same
with outerjoin, we would have to know the maximum number of outerjoins that we may need to
apply, something that is data-dependent. Furthermore, object-id based fusion is a more modular
solution: If we want to add one more source we simply introduce one more rule.

3.4 Blocking Sources and Resolving Inconsistencies

More than one source may o�er information about the same real world entity. If all sources o�er
roughly the same information we may want to avoid retrieving information about an entity from
some source(s) if some other source provides us enough information about this entity. Information
sources that charge their users make this scenario particularly important; if we can retrieve enough
information from some \cheap" source, we want to avoid retrieving similar information from an
\expensive" source. In this section we show speci�cations where the presence of some data \blocks"
the retrieval of other data. In the next subsection we show that MSL's exibility allows blocking
at various levels of granularity, from blocking entire objects to selectively blocking subobjects that
meet various conditions.

As our example, assume that source s1 can be accessed for free whereas s2 charges a fee for
providing information. In this case, we may wish to have mediator save, de�ned by (MS7), that
collects from s2 only information about reports that do not appear in s1.

(MS7) (R7.1) <trep(RN) techreport V>@save :- <report V:f<report num RN>g>@s1
(R7.2) provides(RN) :- <report f<report num RN>g>@s1
(R7.3) <trep(RN) techreport V>@save :-

NOT provides(RN) AND <report V:f<report num RN>g>@s2

Rule (R7.1) declares that every report of s1 becomes a techreport of save. Then (R7.2) collects
in relation provides the report numbers RN of all reports that come from s1. In general, MSL
speci�cations may de�ne and use relations that serve as \intermediate" results. We could as well
use OEM objects for storing intermediate results, but we believe that sometimes the use of relations
makes the speci�cation clearer.

Finally, (R7.3) exports a techreport for every report of s2 unless the report appears in the
relation provides. Note, we use traditional \negation by failure" semantics. In e�ect, the relation
provides prevents (or blocks) s2 from exporting a report via the third rule if the \same" report
has been exported by s1 via the �rst rule. In Section 4.6 we demonstrate techniques used by the
query optimizer that prevent the mediator from retrieving \blocked" data from the wrappers.

There are many variations to the blocking scheme of (MS7). Just to illustrate one, let us assume
that if s1 does not provide author and title for a report then we retrieve this report from s2

also. In this case, all we have to do is replace (R7.2) with the following rule.

provides(RN) :- <report f<report num RN> <title T> <author A>g>@s1
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Calculated Priorities So far, we have assigned priorities in a static way. For example, source
s1 has priority over s2. However, the computing power of MSL allows the expression of arbitrarily
complex blocking schemes. For example, we may assign priorities to the various pieces of infor-
mation in a dynamic way. The implementor may provide an external predicate called calc that
calculates how credible are the pieces of information provided by each source. (We have described
in [PGMU] how external predicates interface with MSL.) To illustrate this, let us assume that
reports with most recent date subobject are given the highest priority, i.e., if there are multiple
report objects that refer to the same report we retain only the report with the most recent date.
The predicate calc is given the value of the date subobject and returns an integer that is the
priority P of the speci�c piece of information.

(MS8) (R8.1) <trep(RN) techreport V>@med :- <O report V:f<report num RN>g>@s1
AND NOT notbest(O,RN)

(R8.2) <trep(RN) techreport V>@med :- <O report V:f<report num RN>g>@s2
AND NOT notbest(O,RN)

(R8.3) provides(O,RN,P) :- <O report f<report num RN> <date D>g>@s1

AND calc(D,P)

(R8.4) provides(O,RN,P) :- <O report f<report num RN> <date D>g>@s2

AND calc(D,P)

(R8.5) notbest(O1,RN) :- provides(O1,RN,P1) AND provides(O2,RN,P2) AND P1<P2

If relation provides(O,RN,P) contains the tuple (o; r; p), then there is a report object identi�ed
by o (the object-id indicates whether it comes from s1 or s2) that has report number r and priority
p. If notbest(O1,RN) contains a tuple (o1; r) then there is a report object identi�ed by o2 that
has the same report number r with o1 and greater priority p2 than the priority p1 of o1. Hence,
o1 is not the most credible report object for the speci�c report. Rules (R8.1) and (R8.2) do not
retrieve report objects whose object-id's O appear in the notbest relation.

3.5 Removing Inconsistencies Using Fine-Grained Blocking

In Section 3 we showed that speci�cations such as (MS1) may cause the same techreport to have
multiple title objects. In this section we show that using negation and label variables we may block
subobjects that come from one source (presumably the less reliable source) in favor of subobjects
that come from the other source (the more reliable). In e�ect, we use �ne-grained blocking, i.e.,
blocking where we individually access each subobject (using label variables) and decide whether it
must be blocked or not.

For example, (MS9) resolves all inconsistencies in favor of s1, i.e., if s1 provides some report
subobject with label F, then s2 should not provide a subobject with the same label. Note, in this
example we assume that no report has two subobjects with the same label and di�erent values.2

(MS9 (R9.1) <trep(RN) techreport f<field(RN,F) F V>g>@med :-

<report f<report num RN> <F V>g>@s1
(R9.2) provides(RN,F) :- <report f<report num RN> <F V>g>@s1

(R9.3) <trep(RN) report f<field(RN,F) F V>g>@med :-

NOT provides(RN,F) AND <report f<report num RN> <F V>g>@s2

The subgoal NOT provides(RN,F) blocks (R9.3) from exporting any subobject with label f of a
report identi�ed by r if the tuple (r; f) is in provides, i.e., if data about the f subobject of the
report with number r can be found in s1.

2In [PGM] we generalize MSL to handle the case where multiple subobjects with the same label exist.
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3.6 Handling References

When we import objects from sources and fuse them into mediator objects we must be careful
with the object references that are imported. For example, assume that reports stored in s1 have
references to related reports, also stored in s1. From an OEM point of view, each report contains a
subobject related the value of which is a set containing the s1 object ids of the referenced reports3

(see example OEM structure of Figure 2.) If we are not careful when we import related into the
mediator, we will end up with object references that point to the original objects of s1 and not to
the corresponding fused techreport objects.

In this section we show two ways to resolve this problem. The �rst solution is more e�cient
but assumes that we know which are the subobjects that contain references to fused objects (the
subobject related in our example.) The second one is less e�cient but it works even if we do
not know which objects contain references. The latter solution is very useful when we integrate
structures that are deeply nested and we do not have complete information about their structure
(as is the case with World-Wide-Web).

The �rst solution is implemented by (MS10). Rule (R10.1) puts in the techreport objects
all information of the source reports with the exception of the related subobject. Rule (R10.2)
creates a related object and inserts it into the appropriate techreport. For simplicity we omit
the corresponding rules for s2.

(MS10) (R10.1) <trep(RN) techreport f<L X>g>@all-with-ref :-

<report f<report num RN> <L X>g>@s1 AND NOT L=related

(R10.2) <trep(RN) techreport f<related f<trep(REL) techreport fg>g>g>@s1

<report f<report num RN> <related f<report f<report num REL>g>g>g>@s1

Our second solution does not rely on knowing what subobjects may refer to s1 objects that are
fused. The basic idea is to create two virtual objects for each techreport. The �rst virtual object
(as before) has the id trep(RN) and its related subobject contains s1 object-ids. The second
mediator object contains the same information except that its object-id is identical to the object-id
in s1. The �rst copy is needed for fusion, since its semantic id is used to combine fragments from
other sources. The second copy is simply used so that ids in the �rst are to valid mediator objects.

(MS11) (R11.1) <trep(RN) techreport f<L X>g>@all-with-ref :-

<report f<report num RN> <L X>g>@s1
(R11.2) <O techreport V>@all-with-ref :-

<techreport V:f <report num RN> g>@all-with-ref
AND <O report f<report num RN>g>@s1

The �rst rule (and the analogous one for s2 that is not shown) generates the �rst copy of each
techreport fused object. (Note that these objects contain s1 ids.) The second rule generates the
copy objects and simply changes the id. If fused objects are expected to contain s2 ids, then another
rule would be needed to generate virtual copies with s2 ids. Note that we only create copies of the
top-level techreport objects; these \reuse" the same subobjects, such as title. Furthermore, the
copies are virtual and hence not materialized at the mediator unless necessary.

3.7 Other Types of Fusion

We have only had space here to touch on a few representative fusion examples. There are of course
many others. In closing this section we briey comment on some interesting cases.

3OEM allows top-level objects to be subobjects as well.
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Figure 3: The basic architecture of MSI

� Fusion with Canonical Forms. In our examples we assumed that source objects had some
semantic key (like report num) that could be used for fusion. Often keys exist but are
represented di�erently at sources. As a trivial example, phone number may uniquely identify
customers, but one source may represent a phone number as (415) 555-1111 whereas another
source may represent the same number as +1.415.555.1111. In these cases, key values can
be mapped (via external predicates) to a canonical form that can then be used to form the
semantic id.

� Fusion with No Keys. Often, when dealing with heterogeneous and autonomous sources,
objects have no well de�ned keys. So, to decide if two customer records represent the same
person, we need to apply a complex function that compares their names, addresses, and phone
numbers, say. The output is not a canonical key, but simply a fused record that somehow
combines the information. We can use MSL (and external predicates) to de�ne this type of
fusion, but it introduces many problems that are beyond the scope of this paper. Just to
mention one, the fusion process can have an unbounded number of steps, each quite expensive.
That is, after we fuse two customer records, we have generated a new record. Now this record
must be compared against all other customer records for a potential match, generating even
more records.

� Complex Fusion. When fusing fragments into a single mediator object, we have used relatively
simple schemes to combine the data, for example, selecting one title over another. It is of
course possible to have more complex functions. For instance, if each fragment contains
a temperature subobject, we could compute an average or maximum temperature for the
fused object. Such functions are incorporated into MSL speci�cations as external predicates
[PGMU]. However, it is important to note that it becomes very expensive to search over such
fused data. For example, if we want to search for objects with average temperature of 80
degrees, it is not easy to push any condition on temperature to the source. Since our focus is
on e�cient searching (see next section), we concentrate here on mediator speci�cations that
allow MSI to e�ciently process the query.

As a �nal comment on MSL, we stress that MSL is not a language for the end-user. It is a
language for succinctly describing mediators using very few primitives.
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4 Architecture and Implementation of MSI

The Mediator Speci�cation Interpreter (the run-time component of MedMaker) processes a query
using the following three components (see Figure 3):

1. The Query Decomposer and Algebraic Optimizer (QD&AO) reads the query and the mediator
speci�cation and determines the conditions that source objects must satisfy to contribute to
the answer. It also determines how the source objects are combined to construct the required
query result. QD&AO tries to minimize the number and result sizes of queries sent to the
sources. QD&AO produces a datamerge program.

2. The Plan Generator develops an execution plan for obtaining and combining the objects
speci�ed by QD&AO. The plan speci�es what queries will be sent to the sources, in what
order they will be sent, and how the results of the queries will be combined in order to derive
the result. The plan generator produces a physical datamerge program.

3. The Datamerge Engine executes the physical datamerge program and produces the result.

In [PGMU], we described how the above components work when the MSL speci�cations do not
contain semantic object-id's. Object-id based fusion presents a number of new challenges, and in
this paper we focus on handling them using uni�cation and resolution concepts. Subsection 4.1
reviews the basic QD&AO algorithm, while the necessary extensions for object fusion are described
in Subsection 4.2. The remaining subsections describe various optimization techniques that are
particularly e�ective for object fusion.

4.1 The Basic Query Decomposition and Algebraic Optimization Algorithms

In this section, we show how QD&AO formulates a datamerge program from a query and a mediator
speci�cation. Recall, the query refers to mediator objects. It is �rst transformed into a datamerge
program that refers to source objects only. More precisely, a datamerge program is a collection
of rules whose tails refer only to the source object structures and whose heads describe the object
structure of the answer objects. The datamerge rules push as many conditions as possible to
sources.

As a �rst step QD&AO transforms queries and mediators into normal form MSL. Normal form
MSL is very similar to full MSL except that patterns always have three �elds and certain constructs
(like V:f<title 'abc'>g are not allowed. Having fewer and more regular constructs simpli�es the
query processing work that follows. In the extended version of the paper [PGM], we give the syntax
of full and reduced MSL and present an algorithm for converting expressions into normal form MSL.
As an example, the algorithm converts the query

(Q12) <X tr V> :- <X tr V:f<title 'abc'>g>@m

into the query

(Q13) <X tr f<Void Vl Vv>g> :- <X tr f<T2 title 'abc'> <Void Vl Vv>g>@m

As the second and main step, QD&AO generates a logical datamerge program by matching the
query tail conditions with rule heads. The process considers each condition c in the query tail,
starting from the leftmost. (In our initial example there is only one condition, but later examples
will show multiple conditions.) Condition c is compared against rule heads; cmatches a rule r if the
rule can produce objects that satisfy the condition. Each successful match produces a uni�er that
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describes the match between c and r. For each uni�er, we replace the condition c by conditions on
the sources speci�ed in r (see below). In the tail of this datamerge rule we still have the remaining
query tail conditions which may refer to mediator objects. For each of these, we repeat the process
of unifying them against some mediator rule until the tail of the datamerge rule only refers to
objects at the sources.4

To illustrate consider the following mediator (MS14) that contains a single rule. (Note, there
is no information fusion in this example.)

(MS14) (R14.1) <trep(RN) tr f<O L X>g>@m1 :- <r f<rn RN> <O L X>g>@s1

Let us now consider the query (Q15) that retrieves the tr objects where the object-id is trep('123').

(Q15) <trep('123') tr V> :- <trep('123') tr V>@m1

The match of this query and speci�cation (MS14) results in the single uni�er � where

� = [(R14:1) : RN 7! 01230; V 7! f< O L X >g]

The above uni�er maps the variables to the left of 7! to the constructs to the right of 7!. In
general, variables map to constants, variables, terms, or set patterns of the form f< o1 l1 v1 >

: : : < on ln vn >g. (Note, the latter case (mapping to set patterns) di�erentiates between our
uni�ers and uni�ers of �rst-order logic.) The uni�er also contains the name (R14.1) of the rule that
matched to the query.

After the uni�cation, we apply � to the query and the rule and we replace the transformed
query condition with the transformed rule tail of (R14.1). When � is applied to the query head
V is substituted by f<O L X>g. Similarly, applying � to the rule tail of (R14.1), we replace RN by
'123'. Thus, we derive datamerge rule (DR1).

(DR1) <trep('123') tr f<O L X>g> :- <r f<rn '123'> <O L X>g>@s1

Formal Speci�cation of Uni�ers. To de�ne the matching process more precisely, we give a few
additional details. The notation �(e) represents the expression e where the substitutions indicated
by uni�er � have been performed. A condition e1 matches with the head e2 of rule r if there is
a uni�er � from e1 to e2, as described by De�nition 4.1 below. (Note, both e1 and e2 are MSL
patterns.)

De�nition 4.1 (Uni�er � from e1 to e2) A mapping � is a uni�er from e1 to e2 if the pattern
�(e1) is included in the pattern �(e2), as described by De�nition 4.2. 2

De�nition 4.2 (Pattern e1 is included in e2) A pattern e1 is included in a pattern e2 if and
only if

(a) e1 has identical object-id and label �elds as e2
(b) if the value �eld of e1 is of the form fe11,: : :,e

n
1g

then the value �eld of e2 is of the form fe12,: : :,e
m
2 g and for every pattern ei1; i = 0; : : : ; n

there is a pattern e
j
2
; j = 0; : : : ; m such that ei1 is included in e

j
2
.

else e1 and e2 have the same value �eld. 2

4It is easy to see that in the absence of recursion this process terminates. In the presence of recursion more complex
resolution strategies are required [GN88]. Also, note that the matching of query conditions with rules corresponds to
resolution of Horn clauses, whereas the uni�ers that we use are extensions of uni�ers of �rst order clauses [GN88].
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For example, the condition of query (Q15) matches with (R14.1) because the uni�er � maps the
condition to the rule head. This is because the pattern �(<trep('123') tr V>) =<trep('123' tr

f<O L X>g> is included in the pattern �(<trep(RN) tr f<O L X>g>) = <trep('123') tr f<O L

X>g>. (In this example the patterns are identical but this is not necessary in general.)
The algorithm for computing the uni�ers from a pattern s to a pattern r and the algorithm

for applying a uni�er � to a pattern p are given in the extended version of this paper [PGM].
Using these algorithms it is straightforward to develop datamerge programs (as described above).
Note, computing uni�ers is important not only for developing datamerge programs but also for
performing the subsumption based optimizations of Sections 4.3 and 4.5.

4.2 Query Processing with Fusion

Object-id based fusion introduces additional complexity to the QD&AO process because multiple
rules or multiple instantiations of the same rule may contribute to the same mediator object. This
is more challenging because we have to simultaneously match the query tail conditions with the
heads of more than one rule. In this section, we generalize our QD&AO algorithm to cover this
case.

Let us consider mediator (MS1) of Section 3 that merges information from sources s1 and s2.
The �rst step is to convert the rules to normal form MSL. At the same time we rename variables
so that no two rules have common variables; this is to avoid confusion when rules are merged into
a single datamerge rule. (We have also abbreviated some labels; this is just to have more compact
patterns in this paper.)

(MS16) (R16.1) <trep(RN1) tr f<T1 title T>g>@m :-

<Ro1 r f<RNo1 rn RN1> <T1 title T>g>@s1

(R16.2) <trep(RN2) tr f<Poid postscript P>g>@m :-

<Ro2 r f<RNo2 rn RN2> <Poid postscript P>g>@s2

Rules (R16.1) and (R16.2) contribute information to the same tr objects. Furthermore, di�erent
instantiations of the same rule may contribute information to the same tr object. For example,
assume that s1 has two r objects for the same report number (the source may have duplicates
for the same report). Then rule (R16.1) will have two di�erent instantiations with the same RN1
binding and possibly di�erent T bindings. These two instantiations will both contribute information
to the same tr.

Let us now submit to m query (Q13) which asks for all the subobjects of the tr objects where
the title is 'abc'. Since the subobjects of the query may come from di�erent rules, we rewrite the
query (Q13) as (Q17):

(Q17) <X tr f<Void Vl Vv>g> :- <X r f<T2 title 'abc'>g>@m AND

<X r f<Void Vl Vv>g>@m

In this transformed form, we break up the tail so that every set pattern f ... g contains exactly
one object pattern < ... >. Such a transformation is straightforward.5

Now we can match the two patterns that appear in the (Q17) query tail to di�erent rule heads.
Suppose that we start by matching the �rst pattern of the tail, i.e., <X r f<T2 title 'abc'>g>.6

5It is sometimes possible to avoid this step, e.g., if QD&AO �nds that no object id fusion is performed on objects
with a given label.

6In general, the order in which we match conditions does not a�ect the �nal result.
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It matches only with the head of (R16.1). This produces the uni�er:

�1 = [(R16:1) : X 7! trep(RN1); T1 7! T2; T 7! 0abc0]

Applying the uni�er �1 to the query and the rule and replacing the query condition, we produce
the following rule.

(Q18) <trep(RN1) tr f<Void Vl Vv>g> :-

<Ro1 r f<RNo1 rn RN1> <T1 title 'abc'>g>@s1 AND

<trep(RN1) r f<Void Vl Vv>g>@m

Observe that this new query has only one condition referring to mediator m. To complete the process,
we match the remaining condition that refers to m with the mediator rules. Pattern <trep(RN1) r

f<Void Vl Vv>g>@m matches with either one of the rules of our speci�cation.
First, it matches with rule (R16.2) thus producing the uni�er �2

�2 = [(R16:2) : RN2 7! RN1; Void 7! Poid; Vl 7! postscript; Vv 7! P]

Second, <trep(RN1) r f<Void Vl Vv>g> matches with (R16.1). In this case we have to take into
consideration that multiple instantiations of rule (R16.1) may contribute title subobjects to the
same tr object. Since we have already used (R16.1) for matching the �rst condition of the query
tail, we must not use (R16.1) again for the matching the second condition. Thus, we introduce
a second instance of (R16.1) (see rule (R16.1.b) below) and we match <trep(RN1) r f<Void Vl

Vv>g> against it, producing the uni�er �3. Note, the second instance of rule (R16.1) must not have
the same variable names as the �rst one.

(R16.1.b) <trep(RNb) tr f<T1b title Tb>g>@m :-

<Ro1b r f<RNo1b rn RNb> <T1b title Tb>g>@s1

�3 = [(R16:1:b) : RNb 7! RN1; Void 7! T1b; Vl 7! title; Vv 7! T1b]

Finally, for each one of the two uni�ers �2 and �3 we develop one datamerge rule, shown below
in datamerge program (DP19). Rule (DR19.1) is obtained by replacing the m condition of (Q18)
with the rule tail of (R16.2) and subsequently applying �2. Similarly, (DR19.2) is derived using the
rule tail of (R16.1.b) and uni�er �3.

(DP19) (DR19.1) <trep(RN1) tr f<Poid postscript P>g> :-

<Ro1 r f<RNo1 rn RN1> <T2 title 'abc'>g>@s1

AND <Ro2 r f<RNo2 rn RN1> <Poid postscript P>g>@s2
(DR19.2) <trep(RN1) tr f<T1b title Tb>g> :-

<Ro1 r f<RNo1 rn RN1> <T2 title 'abc'>g>@s1
AND <Ro1b rf<RNo1b rn RN1> <T1b title Tb>g>@s1

In this particular case one query condition matched only with one rule head. In the worst
case each condition matches with many rule heads potentially yielding an exponential number
of datamerge rules. More precisely, if each of the m query conditions unify with n rules, we
produce nm datamerge rules. This explosion can occur, for instance, if the mediator speci�cation
has variables in label positions. We will study techniques for reducing the number of datamerge
rules in the following sections. The extended version [PGM] presentes formally the general query
decomposition and uni�cation steps necessary for object fusion.
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4.3 Subsumption-Based Optimizations

Datamerge rules are evaluated by sending queries to the sources, yielding bindings for the rule
variables. Since querying sources may be expensive, we want to reduce the number of queries to a
minimum. QD&AO uses two subsumption-based optimizations for this purpose, rule elimination
and query reuse.

Rule elimination: A datamerge rule can be eliminated if the data that it produces are subsumed
by the data produced by another rule.

Query reuse: Each query generated by a datamerge rule obtains bindings for variables, but not
all bindings are useful for constructing the fused object. Only variables that appear in the rule
head, or variables that join conditions in the tail, are useful. We may avoid issuing a query if all of
its bindings for useful variables are obtained by another query to the source.

Due to space limitations we only illustrate query reuse and not rule elimination. Let us consider
datamerge rule (DR19.1). To evaluate it, we need to send a query to s1 to evaluate the condition
<Ro1 r f<RNo1 rn RN1> <T2 title 'abc'>g>@s1. This query only contains one useful variable,
RN1. Notice that all RN1 bindings in the above condition are also bindings of RN1 in rule (DR19.2).
Hence, instead of accessing s1 twice, we can reuse the bindings retrieved for (DR19.2) by rewriting
the datamerge program as follows. Note, (DR19.2.b) and (DR19.1.b) correspond to the rewritten
versions of (DR19.2) and (DR19.1).

(DR19.2.b) [ <trep(RN1) tr f<T1b title Tb>g>

bind1(RN1) ] :- <Ro1 r f<RNo1 rn RN1> <T2 title 'abc'>g>@s1
AND <Ro1 r f<RNo1b rn RN1> <T1b title Tb>g>@s1

(DR19.1.b) <trep(RN) tr f<Poid postscript P>g> :- bind1(RN1)

AND <Ro2 r f<RNo2 rn RN1> <Poid postscript P>g>@s2

The notation [ ... ] speci�es multi-head rules. Thus, the data retrieved from the tail of
(DR19.2.b) is used for constructing <trep(RN) tr f<T1b title Tb>g> objects, as well as collect-
ing the RN1 bindings in relation bind1(RN1) (the name bind1 is a unique name generated by the
QD&AO.) Then, the RN1 bindings are used by (DR19.1.b).

We can detect the applicability of the \query reuse" and \rule elimination" rewritings by using
uni�ers. In particular, a datamerge rule condition c can reuse a datamerge rule r if there is a
uni�er � from the tail of r to c and every useful variable of c appears in the head of r. Similarly, a
datamerge rule r0 can be eliminated if there is a datamerge rule r and a uni�er � such that � maps
the tail of r0 to the tail of r and it also maps the head of r to the head of r0.

Note, subsumption based rewritings always improve the datamerge program. The rule elimina-
tion technique always improves a program because there are fewer rules to execute in the rewritten
program. Furthermore, a rule elimination does not a�ect the applicability of the \query reuse" op-
timization because when we remove a rule r we still retain another one that generates data that are
superset of the data generated by r. The query reuse rewriting always improves the datamerge pro-
gram assuming that retrieving bindings from the mediator's storage is more e�cient than retrieving
them from the source.

4.4 Limiting the Number of Datamerge Rules

As mentioned earlier, query processing may yield an exponential number of datamerge rules. In this
section we will study two techniques that can signi�cantly reduce the number of rules and queries
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(DP22) (DR22.1) [ <trep(RN1) tr f<O1 A1 X1>g>

bind1(RN1) ] :- <Ro1 r f<RNo1 rn RN1> <Y year '95>g>@s1
AND <Ro1b r f<RNo1b rn RN1> <O1 A1 X1>g>@s1

(DR22.2) <trep(RN1) tr f<O2 A2 X2>g> :- bind1(RN1)

AND <Ro2 f<RNo2 rn RN1> <O2 A2 X2>g>@s2

(DR22.3) [ <trep(RN2) tr f<O2 A2 X2>g>
bind2(RN2) ] :- <Ro2 r f<RNo2 rn RN2> <O2 A2 X2>g>@s2

AND <Ro2b r f<RNo2b rn RN2> <Y year '95'>g>@s2
(DR22.4) <trep(RN2) tr f<O1 A1 X1>g> :- bind2(RN2)

AND <Ro1 r f<RNo1 rn RN2> <O1 A1 X1>g>@s1

Figure 4: Datamerge program

sent to the sources. Before discussing the techniques we give a concrete motivating example.
Consider mediator (MS20) (that also appeared in non-normal form MSL as (MS5) in Section 3).
(MS20) integrates documents without explicitly mentioning their non-key attributes.

(MS20)
(R20.1) <trep(RN1) tr f<O1 A1 X1>g>@all :- <Ro1 r f<RNo1 rn RN1> <O1 A1 X1>g>@s1
(R20.2) <trep(RN2) tr f<O2 A2 X2>g>@all :- <Ro2 r f<RNo2 rn RN2> <O2 A2 X2>g>@s2

Let us assume that query (Q21) is sent to mediator (MS20).

(Q21) <X tr f<Void Vl Vv>g> :- <X tr f<Y year '95'> <Void Vl Vv>g>@m

The label yearmay come either from s1 or s2. This intuition is captured by the standard query/rule
matching process (see Section 4.1) that results in the datamerge program (DP22) of Figure 4.

Observe that this simple query results in many datamerge rules and, consequently, in many
queries sent to s1 and s2. In general, if a query asks for reports with attributes l1,...,ln and
the mediator speci�cation does not indicate the origin of l1,...,ln, we must create and execute
datamerge rules that correspond to all possible partitions of the set l1,...,ln between s1 and s2,
i.e., we need a number of rules that is exponential in n.

Learning about the sources

One of the strengths of MSL is its ability to integrate sources without having a \schema" that
describes the type of information found there. However, this lack of schema may result in the large
number of rules we have illustrated. In particular, a schema could help us rule out in advance
queries that will never return an answer, and hence reduce the number of rules. For instance, in
(DP22), if we know that year information may not come from s1 then we can remove rules (DR22.1)
and (DR22.2) since they both require that a year be found at s1.

Even though the mediator does not have a schema, it could achieve the same e�ect by asking at
run time if source s1 had any objects with year label. If no such objects existed at s1, the mediator
could eliminate all datamerge rules that require a year at s1. (In practice, we can interleave query
decomposition with this label checking, so the rules would never have to be created.)

The label queries we have described could be addressed to a lexicon service residing either at
the source or the wrapper for the source. The service could answer label queries based on its
knowledge of the domain (e.g., only medical terms de�ned in a known dictionary are used as labels
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in a given structure), based on index structures (e.g., the source provides a label index for speeding
up queries), or based on a local schema if there happens to be one (e.g., the data at this source is
stored in a relational database).

There are many variations to the idea of lexicon services; we only mention two briey here.
One variation is a service that answers more complex queries regarding the relationship between
labels. For instance, we may want to ask if s1 contains any top-level objects with label r that in
turn contain a year subobject. If there are no such objects, then we can rule out s1 queries even
if s1 has year labels somewhere. Another variation is to cache label information from previous
queries at the mediator itself. In this case, the lexicon service would reside at the mediator, but
its information could be out of date. Thus, this information could not be used to rule out sources,
but could be used to order queries so we would �rst probe the sources most likely to have matching
data. This is very useful if the end-user wants some results quickly or does not want to perform an
exhaustive search.

Local evaluation of conditions

We now consider a second technique for reducing the number of datamerge rules. The key observa-
tion is that we are generating large numbers of queries because we are pushing all conditions to the
sources. Thus, we may try to reduce the number of datamerge rules by pushing fewer conditions,
i.e., locally evaluating some of the conditions.

For example, suppose that a query Q contains conditions on three labels l1, l2, and l3. Query
Q is run against a mediator that merges data from sources s1 and s2. Suppose that both sources
know about these labels. We may reduce the number of datamerge rules by considering �rst the
l1 condition only. That is, we evaluate an intermediate query that retrieves data from the sources
based on the l1 condition only. The result of this intermediate query contains the objects in the
result of Q, but may contain additional objects. Then, we use additional datamerge rules that apply
the l2 and l3 conditions to the intermediate result. There are two bene�ts to this: First, the total
number of datamerge rules is smaller. In general, if there are n labels in the conditions, we now
generate a number of rules proportional to n, not exponential on n. Second, fewer of these rules
generate queries for the sources; the rest can be evaluated at the mediator.

The tradeo� here is as follows: If we push many conditions down we restrict the amount of
retrieved data but we increase the number of rules and queries. If we push fewer conditions, we have
fewer queries but we retrieve more data. Balancing this tradeo� is a cost-based optimization issue
that is not currently addressed by the interpreter. The current implementation always pushes the
maximum number of conditions to the source, under the assumption that simultaneous conditions
on many labels are rare.

4.5 Plan Generation

Our remaining logical optimizations are applied during or after physical plan generation. Thus, we
start by briey describing how physical plans are obtained. ([PGMU] explains this in more detail.)
Then, in the remainder of the paper we discuss logical optimizations to the physical plans.

The cost-based optimizer receives the datamerge program and creates a physical datamerge pro-
gram that consists of a list of (possibly parameterized) queries that will be sent to the sources, along
with a description of how to combine query results. To illustrate, let us consider the datamerge pro-
gram (DP22). (Assume that (DP22) could not be simpli�ed any further using lexicons.) (PDP23),
in Figure 5, is one of the possible physical datamerge programs (from now on referred as physical
programs) for (DP22). The notation @(Q24,s1) in physical rule (PDR23.1) indicates that query
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(PDP23) (PDR23.1) [ <trep(RN) L V>, bind1(RN) ] :- <trep(RN) L V>@(Q24,s1)

(PDR23.2) <trep(RN) L V> :- bind1(RN)

AND(=>) <trep(RN) L V>@(Q25,s2)

(PDR23.3) [ <trep(RN) L V>, bind2(RN) ] :- <trep(RN) L V>@(Q26,s2)

(PDR23.4) <trep(RN) L V> :- bind2(RN)

AND(local) <trep(RN) L V>@(Q27,s1)

(Q24) <trep(RN) tr f<O1 A1 X1>g> :- <r f<rn RN> <Y year '95>g>@s1

AND <r f<rn RN> <O1 A1 X1>g>@s1
(Q25) <trep(RN) tr f<O2 A2 X2>g> :- <r f<rn $RN> <O2 A2 X2>g>@s2
(Q26) <trep(RN) tr f<O2 A2 X2>g> :- <r f<rn RN> <Y year '95'>g>@s2

AND <r f<rn RN> <O2 A2 X2>g>@s2
(Q27) <trep(RN) tr f<O1 A1 X1>g> :- <r f<rn RN> <O1 A1 X1>g>@s1

Figure 5: A Physical Datamerge Program

(Q24) should be sent to s1 and the result should be treated as a \data source" for the rule. The
query obtains from s1 all data about reports with year '95'. Rule (PDR23.1) then saves the
retrieved reports and stores the RN bindings in bind1.

The => annotation in rule (PDR23.2) indicates that we perform a nested-loops join of bind1(RN)
and <trep(RN) L V>@(Q25,s2). That is, for every binding r of RN in bind1, we instantiate a
parameterized query (Q25), by replacing RN with r, and we send the instantiated query to s2.
Similarly, the local annotation that appears in (PDR23.4) indicates that we perform a local join
of bind2(RN) with <trep(RN) L V>@(Q27,s1). The join policy decision is made by estimating the
cost of each option using information about the sources (e.g., \does the source have an index on
report number?", \what is the expected cardinality of bind1(RN)?", and so on.) We will not deal
in this paper with these cost-based optimization problems.

Query Subsumption Optimization In Section 4.3 we showed how to eliminate redundant rules
from a datamerge program and how to reuse the results of some rules. We now revisit subsumption
and demonstrate that once the actual queries have been formulated some query calls may be saved
by reusing the results of other queries.

For example, query (Q24) is subsumed by query (Q27) because (Q27) retrieves all the reports
of s1 whereas (Q24) retrieves only the reports with year '95'. Furthermore, once we have the
result of (Q27) we may locally apply the condition on year and hence compute the result of (Q24).
The optimizer captures this relationship between (Q24) and (Q27), eliminates (Q24), and modi�es
rule (PDR23.1) to use the subsuming query (Q27). Note the condition on year that is applied on
the result of (Q27).

(PDR23.1.b) [<trep(RN) L V>, bind1(RN)] :-

<trep(RN) L f<Y year '95'>g>@(Q27,s1)

Detecting query subsumption is again done through uni�ers. In particular, a query q is sub-
sumed by a query q0 if there is a uni�er � that maps the tail of q0 to the tail q and furthermore
all variables that appear in �(head (q)) also appear in �(head (q0)). With a few extensions to the
uni�cation process, we can also derive the condition that has to be applied on the subsuming query.

Note that query subsumption optimization can only be performed after we know which queries
will be sent to sources, i.e., after the physical plan is generated. Our earlier logical optimizations
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could also be performed at this latter stage, but it is much better to do them as early as possible to
simplify plan generation. This leads to the following strategy: �rst do as many logical optimizations
as possible, then generate plans, and �nally perform the remaining optimizations.

4.6 Optimization of Negation Operations

In Section 3.4 we argued that information blocking is e�ective for removing inconsistencies and
establishing priorities between information drawn from various sources. In general, all speci�ca-
tions involving information blocking contain NOT conditions that guide blocking. The performance
challenge is to avoid issuing queries that retrieve information that is blocked. The interpreter can
reduce to a minimum the number of queries sent to the sources and the amount of retrieved data, for
a wide class of queries and information blocking mediator speci�cations. Due to space limitations,
here we only sketch the techniques that are used.

Let us consider mediator speci�cation (MS7) that exports all s1 reports and s2 reports with
numbers that do not appear in s1. In the simplest case, the query speci�es the required report num-
ber RN, say '123'. In this case we develop a physical datamerge program that contains (PDR28).
The important point is that we evaluate the NOT provides('123') condition of (PDR28) before
we emit the query Q that obtains data for '123' from s2. (We omit Q.) . Thus, if '123' is provided
by s1 we avoid sending Q to s2.

(PDR28) <trep(RN) tr f<O2 A2 X2>g> :- NOT provides('123') AND
<trep(RN) tr f<O2 A2 X2>g>@(Q,s2)

In other cases, avoiding the retrieval of \blocked data" is more complicated, or even impossible.
For example, consider query (Q13) that requests reports with title 'abc'. The best strategy here
depends on the expected number of matching reports at each site. For instance, assume that the
number of 'abc' reports retrieved from s1 is not large. To be speci�c, say that only reports
'123', '136, and '253' have title 'abc'. In this case the best strategy is probably to send to s2

query (Q29) with explicit negation conditions for each one of the s1 reports. (In general it has a
NOT RN=b for every b that is a member of provides.)

(Q29) <trep(RN) tr f<O2 A2 X2>g> :- <Ro2 r f<RNo2 rn RN> <O2 A2 X2>g>@s2
AND NOT RN='123' AND NOT RN='136' AND NOT RN='253'

If the number of reports retrieved from s1 is large it may be preferable to ship relation provides

to s2 and then send to s2 a query that requests all reports whose report numbers do not appear
in provides. If s2 is not willing to accept a full relation from the mediator, another option is to
retrieve from s2 all reports with title 'abc' and test locally whether these reports are also provided
from s1. If they are, the s2 version can be discarded. In this last case, blocking could not really
be exploited to reduce the data retrieved from s2.

5 Discussion and Related Work

Object fusion is an important data integration task. It involves collecting and grouping information
about the same real-world entity, and removing inconsistencies and redundancies. The task becomes
harder when we do not have complete knowledge of the structure of the underlying data, as in the
World Wide Web, for instance.

In this paper we have shown that the OEM data model and the MSL mediator speci�ca-
tion language, each extended with semantic object-ids, provide a conceptually simple yet powerful
framework for object fusion. The key features of this framework are:
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� Conceptual simplicity: MSL is an object-oriented logic. The rules use a small but general set
of features that consists of: (a) semantic object-id's, (b) negation, and (c) variables that can
range over object-id's, labels, and values.

� Groupings of fused information: Multiple MSL rules can monotonically and independently
add information to fused objects by specifying the semantic object-id of the fused object. The
combined use of negation and attribute variables allows the speci�cation of complex conict
resolution schemes.

� Adaptability: Fusion speci�cations can be adapted to various levels of knowledge about the
sources. At one end, the designer knows little about the contents and structure (if any) of a
source, so he writes \generic" speci�cations that can handle any structure. At the other end,
the source has some known regularity, so the designer can improve the quality and run-time
e�ciency of object fusion.

Our work builds on many prior results and experiences, and we briey review here some of
them. Many projects have dealt with data integration and fusion (e.g., [LMR90, Gup89, A+91,
C+94, S+, FK93, HM93, H+92, TRV95, K+93].) Most of them base fusion on a precise description
of the schemas exported by the sources, along with designer provided descriptions of the semantic
connections between the entities of the schemas ([HM93, H+92] are representative of this approach.)
[MIR94, MI93] consider the problem of schema integration from the perspective of information
capacity. Also, CASE tools have adopted the approach of thoroughly modelling the source data
semantics (e.g., [DIS, Inc]). Thorough classi�cations have been developed for the various schematic
and semantic conicts that may be found in schemas, and corresponding techniques are suggested
for conict resolution [BLN86, DH86, ME84, K+93]. Some approaches go one step further by
modeling the sources as knowledge bases (see e.g., [EL85, ACHK93]) and use this knowledge to
perform integration. Unlike these approaches, in the present paper, we assume minimal knowledge
of the structure and contents of the sources.

Querying and integrating semistructured data is also considered in [C+94, FK93, Q+, PGMU,
ACM93, PDS95]. We believe that approaches based on the relational model (and corresponding
view de�nition languages) are not applicable here. (Indeed, one may argue that they are insu�cient
even for relational database integration [KLK91].) Object-oriented database systems do provide
more exibility. However, their strict type system sometimes is a handicap [C+94, BDH+95]. Also,
primitives for data integration found in these systems are still quite limited, with some exceptions
like work on views in the context of OQL (e.g., [SAD94]).

MSL is an object-oriented logic, but has certain simplifying features. In particular, a number of
problems are avoided by not considering sets as �rst-class citizens. (Variables may explicitly refer
only to existing sets of objects.) Indeed, in absence of negation and semantic object-id's, MSL can
be viewed simply as a variant of datalog (see [Ull88]). In the extended version of paper [PGM]
we present the reduction of MSL to datalog with function symbols and negation. In absence of
recursion, MSL can be viewed as a variant of OQL [Cat94]. However, unlike datalog and OQL,
MSL makes it possible to handle both unstructured and structured data.

MSL's handling of semantic object-ids is based on a particular use of Skolem functions as
�rst introduced in object-oriented systems in [Mai86] and re�ned in [KKS92, CKW93, KL89].
Automatic creation and manipulation of object-id's based on Skolem functors are considered in
depth in [HY90]. It is observed in [AK89] that object-id based set formation (as provided by
the object-id based fusion) can replace explicit (LDL-like [NT88]) grouping operators. They also
advocate a ptime sublanguage by prohibiting recursion through object creation. The architecture
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we use prevents such potentially dangerous/expensive form of recursion: objects are created in a
mediator based on the objects in lower level sources (that can themselves be mediators).

[LSS93] proposes a logic with higher-order syntax and �rst-order semantics for schema integra-
tion and evolution and also demonstrates the need for higher order views. MSL achieves the same
e�ects with the use of label variables. ([KLK91] achieves the same objective by assuming special
virtual relations that contain the metadata information of the repositories relation.)

Finally, though MSL can be reduced to a variant of datalog [Ull89], query execution against me-
diators cannot be achieved by a simple modi�cation of datalog evaluation mechanisms because the
environment (i.e., remote heterogeneous sources) is radically di�erent from a conventional database.
In this paper we presented a variant of top-down depth-�rst resolution [GN88] to formulate the
queries that will be sent to the sources and also push conditions to the sources. Beyond this, we also
investigated optimizations needed for reducing the number and volume of data that are retrieved
from the sources during object fusion.

As a concluding remark, we note that we have developed a prototype system that fully im-
plements the query decomposition and evaluation algorithm described here. It also features the
subsumption based optimizations and some of the optimization techniques of Section 4.6. The sys-
tem has been demonstrated on a collection of heterogeneous bibliographic sources. We are currently
working on including the rest of the optimization techniques we have described into the prototype.
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