
Object Exchange Across Heterogeneous Information Sources�

Yannis Papakonstantinou

Hector Garcia-Molina

Jennifer Widom

Department of Computer Science
Stanford University

Stanford, CA 94305-2140

fyannis,hector,widomg@cs.stanford.edu

Abstract

We address the problem of providing integrated access to diverse and dynamic information
sources. We explain how this problem di�ers from the traditional database integration prob-
lem and we focus on one aspect of the information integration problem, namely information

exchange. We de�ne an object-based information exchange model and a corresponding query
language that we believe are well suited for integration of diverse information sources. We
describe how the model and language have been used to integrate heterogeneous bibliographic
information sources. We also describe two general-purpose libraries we have implemented for
object exchange between clients and servers.

1 Introduction

A signi�cant challenge facing the database �eld in recent years has been the integration of het-

erogeneous databases. Enterprises tend to represent their data using a variety of con
icting data

models and schemas, while users want to access all data in an integrated and consistent fashion.

There has been substantial progress on database integration techniques [1,9,13,19]; in addition,

emerging standards such as SQL3 are aimed at eliminating many of the problems.

At the same time, however, the problem of integration has become much more challenging

because users want integrated access to information|data stored not just in standardized SQL

databases, but also in, e.g., object repositories, knowledge bases, �le systems, and document re-

trieval systems. In addition, users want to integrate this information with \legacy" data, and even

with data that is not stored but rather arrives on-line, e.g. over a news wire. As an example, consider

a stock broker tracking a company, say IBM. The broker's information sources may include IBM

product announcements, the stock market ticker tape, IBM pro�t/loss statements, news articles,

structured databases containing historical information (dividends per year), personnel information

(the 100 top-paid executives), general information (the Fortune 500), and so on. Queries may range

�Research sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Material Command,
USAF, under Grant Number F33615-93-1-1339. The US Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation thereon. The views and conclusions con-
tained in this document are those of the authors and should not be interpreted as necessarily representing the o�cial
policies or endorsements, either express or implied, of Wright Laboratory or the US Government. This work was
also supported by the Reid and Polly Anderson Faculty Scholar Fund, the Center for Integrated Systems at Stanford
University, and by Equipment Grants from Digital Equipment Corporation and IBM Corporation.

1

from simple ones over a single source (e.g.,What were IBM sales in 1990?), to simple ones involving

multiple sources (e.g., Get all recent news items where an IBM executive is mentioned), to complex

analyses (e.g., Is IBM stock a good buy today?).

Although there are many similarities, integrating a disparate set of information sources di�ers

from the integration of conventional databases in the following ways:

� Many of the sources contain data that is unstructured or semi-structured, having no regular

schema to describe the data. For example, a source may consist of free-form text; even if the

text does have some structure, the \�elds" (e.g., author, title, etc.) may vary in unpredictable

ways.

� The environment is dynamic. The number of sources, their contents, and the meaning of

their contents may change frequently. For example, the stock broker's company may add or

drop an information source depending on its cost and usefulness; a source that predicts a

company's earnings may periodically rede�ne how it computes the earnings.

� Information access and integration are intertwined. In a traditional environment, there are

two phases: an integration phase where data models and schemas are combined, and an

access phase where data is fetched. In our environment, it may not be clear how information

is combined until samples are viewed, and the integration strategy may change if certain

unexpected data is encountered.

� Integration in our environment requires more human participation. In the extreme case,

integration is performed manually by the end user. For example, the stock broker may read a

report saying that IBM has named a new CEO, then retrieve recent IBM stock prices from a

database to deduce that stock prices will rise. In other cases, integration may be automated,

but only after a human studies samples of the data and determines the procedure to follow.

For example, a human may write a program that extracts yearly sales �gures from IBM letters

to stockholders and then \joins" this data (by year) with a table of dividends.

In light of these di�erences and di�culties, we believe that the goal is not to perform fully automated

information integration that hides all diversity from the user, but rather to provide a framework

and tools to assist humans (end users and/or humans programming integration software) in their

information processing and integration activities. So, what should the framework and tools look

like? There are at least three categories:

1. Information exchange. The various components of an information system need to exchange

data objects (units of information), either for examination by an end user or for integration

with other data objects. For this, there needs to be an agreement as to how objects will be

requested, how they will be represented, what the semantic meaning of each object (and its

components) is, and how objects are actually transported over a network. Once an exchange

format is agreed upon, there need to be tools for translating between an information source

and the exchange format.

2

Query Language
Result translated into common

information format

CLIENT

Query translated into
Query Language of

Info Source
Info Source
Result from

Query in common

SOURCE
INFO

TRANSLATOR

Figure 1: Communication through a translator

2. Information discovery and browsing. Users will want to explore the available informa-

tion, discovering sources, browsing objects, and learning the semantics of objects and their

components. Tools for information discovery and browsing allow humans (and ultimately soft-

ware) to query for sources of interest, to request objects from sources, to navigate through

objects (exploring their components), and to ask questions about the meaning of objects and

their components.

3. Mediators. A mediator is a program that collects information from one or more sources,

processes and combines it, and exports the resulting information [21]. For example, a mediator

could be a program that collects IBM yearly stockholder reports, extracts key �gures, and

exports a table of yearly results. A second mediator might take this table and combine it with

a stock price report to produce a trends analysis for IBM. We envision a variety of tools to

assist the mediator writer, some resembling a programming environment, others presenting a

menu of common ways of combining information.

In this paper we focus particularly on the information exchange problem discussed in point 1,

since we believe this problem needs to be solved before browsing tools or mediators can be con-

structed. To motivate the information exchange problem further, consider an information source

IS that contains bibliographic entries such as those found in many libraries. Some client C (human

or otherwise) wishes to locate all books by author \J.D. Ullman" on the topic of \databases."

Since IS and C are likely to be di�erent, we need a common language and information format for

communication. Client C uses the common language to express a query that requests the desired

object. A front end to IS, which we call a translator, converts the query to a form that IS can

process. When IS responds (with a set of bibliographic entries in some format), the translator

converts the response into an object in the common format and transmits it to C. Finally, C may

choose to translate the object (or the components it wants) into its own internal model. This form

of communication is illustrated in Figure 1.

In Section 2 we present an \object exchange model" (OEM) that we believe is well suited

for information exchange in heterogeneous, dynamic environments. OEM is
exible enough to

3

encompass all types of information, yet it is simple enough to facilitate integration; OEM also

includes semantic information about objects. In Section 3 we describe the query language we

have designed for requesting objects in OEM. In Section 4 we describe how we have used OEM

to integrate several heterogeneous bibliographic information sources. In Section 5 we present a

pair of general-purpose libraries we have implemented that support OEM object exchange between

any client and server processes. The procedures in these libraries provide communication services,

session handling, object memory management, and partial object fetches. Calls to these procedures

are embedded in client programs. In Section 6 we conclude and discuss our ongoing work in

information integration using OEM.

2 Object Exchange Model

The �rst question to be addressed is: with so many data models around, why do we need another

one? In fact we do not need another new model. Rather, we adopt a model that has been in use for

many years. The basic idea is very simple: each value we wish to exchange is given a label (or tag)

that describes its meaning. For example, if we wish to exchange the temperature value 80 degrees

Fahrenheit, we may describe it as:

htemperature-in-Fahrenheit, integer, 80i

where the string \temperature-in-Fahrenheit" is a human-readable label, \integer" indicates the

type of the value, and \80" is the value itself. If we wish to exchange a complex object, then

each component of the object has its own label. For example, an object representing a set of two

temperatures may look like:

hset-of-temperatures, set, fcmpnt1, cmpnt2gi

cmpnt1 is htemperature-in-Fahrenheit, integer, 80i

cmpnt2 is htemperature-in-Celsius, integer, 20i

A main feature of OEM is that it is self-describing. We need not de�ne in advance the structure

of an object, and there is no notion of a �xed schema or object class. In a sense, each object contains

its own schema. For example, \temperature-in-Fahrenheit" above plays the role of a column name,

were this object to be stored in a relation, and \integer" would be the domain for that column.1

Note that, unlike in a database schema, a label here can play two roles: identifying an object

(component), and identifying the meaning of an object (component). To illustrate, consider the

following object:

hperson-record, set, fcmpnt1, cmpnt2, cmpnt3gi

cmpnt1 is hperson-name, string, \Fred"i

1Of course, if we are exchanging a set of objects where each object has the same structure and labels, then it

would be redundant to transmit labels with every member of the set. We view this as a data compression issue and

do not discuss it further here. From a logical point of view, we assume that each object in our model carries its own

label.

4

cmpnt2 is ho�ce-number-in-building-5, integer, 333i

cmpnt3 is hdepartment, string, \toy"i

Like a column name in a relation, the label \person-name" identi�es which component in the

person's record contains the person's name. In addition, the label \person-name" identi�es the

meaning of the component|it is the name of a person. We would not expect to �nd a dog's name

\Fido" or \Spot" in this component.

Thus, we suggest that labels should be as descriptive as possible. (For instance, in our example

above, replacing \person-name" by \name" would not be advisable.) In addition, if an information

source exports objects with a particular label, then we assume that the source can answer the

question What does this label mean?. The answer should be a human-readable description|a type

of \man page" (similar in
avor to Unix Manual pages). For example, if we ask the source that

exports the above object about \person-name," it might reply with a text note explaining that this

label refers to names of employees of a certain corporation, the names do not exceed 30 characters,

and upper vs. lower case is not relevant.

It is particularly important to note that labels are relative to the source that exports them.

That is, we do not expect labels to be drawn from an ontology shared by all information sources.

For example, a client might see the label \person-name" originating from two di�erent sources that

provide personnel data for two di�erent companies, and the label may mean something di�erent

for each source; the client is responsible for understanding the di�erences. If the client happens

to be a mediator that exports combined personnel data for the two companies, then the mediator

may choose to de�ne a new label \generic-person-name" (along with a \man page"), to indicate

that the information is not with respect to a particular company. Mediators are discussed further

in Section 4.2.

We believe that a self-describing object exchange model provides the
exibility needed in a

heterogeneous, dynamic environment. For example, personnel records could have fewer or more

components than the ones suggested above; in our temperatures set, we could dynamically add

temperatures in Kelvin, say. In spite of this
exibility, the model remains very simple.

As mentioned earlier, the idea of self-describing models is not new|such models have been used

in a variety of systems (see Section 2.2 for a discussion of these models and systems). Consequently,

the reader may at this point wonder why we are writing a paper about a self-describing model, if such

models have been used for many years. A �rst reason is that we believe it is useful to formally cast

a self-describing model in the context of information exchange in heterogeneous systems (something

that has not been done before, to the best of our knowledge), and to extend the model to include

object nesting as illustrated above. To do this, a number of issues had to be addressed, as will be

seen in subsequent sections. A second reason is to provide an appropriate object request language

based on the model. Our language is similar to nested-SQL languages; however, we believe that

the use of labels within objects leads to a language that is more intuitive than nested-SQL (see

Section 3).

5

2.1 Speci�cation

Each object in OEM has the following structure:

Label Type Value Object-ID

where the four �elds are:

� Label: A variable-length character string describing what the object represents.

� Type: The data type of the object's value. Each type is either an atom (or basic) type (such

as integer, string, real number, etc.), or the type set or list. The possible atom types

are not �xed and may vary from information source to information source.

� Value: A variable-length value for the object.

� Object-ID: A unique variable-length identi�er for the object or � (for null). The use of

this �eld is described below.

In denoting an object on paper, we often drop the Object-ID �eld, i.e. we write hlabel,type,valuei,

as in the examples above.

Object identi�ers (henceforth referred to as OID's) may appear in set and list values as well

as in the Object-ID �eld. We provide a simple example to show how sets (and similarly lists) are

represented without OID's, and to motivate the kind of OID's that are used in OEM. Then we

discuss OID's in set and list values.

Suppose an object representing an employee has label \employee" and a set value. The set

consists of three subobjects, a \name," an \o�ce," and a \photo." All four objects are exported

by an information source IS through a translator, and they are being examined by a client C. The

only way C can retrieve the employee object is by posing a query (see Section 3) that returns the

object as an answer.

Assume for the moment that the employee object is fetched into C's memory along with its

three subobjects. The value �eld of the employee object will be a set of object references, say

fo1; o2; o3g. Reference o1 will be the memory location for the name subobject, o2 for the o�ce, and

o3 for the photo. Thus, on the client side, the retrieved object will look like:

hemployee, set, fo1, o2, o3gi

o1 is location of hname, string, \some name"i

o2 is location of ho�ce, string, \some o�ce"i

o3 is location of hphoto, bitmap, \some bits"i

On the information source side, the employee object may map to a real object of the same

structure, or it may be an \illusion" created by the translator from other information. Suppose IS

is an object database, and the employee object is stored as four objects with OID's id0 (employee),

id1 (name), id2 (o�ce), and id3 (photo). In this case, the retrieved object on the client side would

6

have id0 in the Object-ID �eld for the employee object, id1 in the Object-ID �eld for the name

object, and so on. The non-null Object-ID �elds tell client C that the objects it has correspond to

identi�able objects at IS.

Now suppose instead that IS is a relational database, and that the employee \object" is actually

a tuple. Hence, the name, o�ce, and photo objects (attributes of the tuple) do not have OID's,

so their Object-ID �eld at the client side will be � (null). The employee object may have an

immutable tuple identi�er, which can be used in the Object-ID �eld at the client. Alternatively,

the employee's Object-ID �eld at the client might contain �, or it might contain an SQL statement

that retrieves the employee record based on its key attribute.

So far we have assumed that the client retrieves the employee object and all of its subobjects.

However, for performance reasons, the translator may prefer not to copy all subobjects. For exam-

ple, if the photo subobject is a large bitmap, it may be preferable to retrieve the name and o�ce

subobjects in their entirety, but retrieve only a \placeholder" for the photo object. In this case, the

value �eld for the employee object at the client will contain fo1; o2; id3g. This indicates that the

name and o�ce subobjects can be found at memory locations o1 and o2, but the photo subobject

must be explicitly retrieved using OID id3.

Thus, at the client, sets and lists contain elements that may be of two forms, as follows. We

assume there is an internal tag that indicates the form of each element.

� Local Object Reference: This identi�es an object stored at the client. It will typically be a

memory location, but if local objects are cached in an object database, then object references

could be Local OID's in this database.

� Remote OID: This identi�es an object at the information source.2 Each Remote OID is

either lexical or non-lexical. Lexical OID's are printable strings, and they may be speci�ed

directly in our query language (see Section 3). Non-lexical OID's are \black boxes," such

as the tuple identi�ers or SQL queries described above. Clients may pass non-lexical OID's

to translators using special interfaces, but since the OID's are not printable, they cannot be

used in queries. Remote OID's could be classi�ed further by other properties [6], such as

whether they are permanent or temporary [4]. (Or, OID's could include a \valid timestamp"

specifying when they expire.) We do not consider these further classi�cations here, although

we may incorporate these concepts in a future extension of our model.

Note that, regardless of the representation used in set and list values, the translator always

gives the client the illusion of an object repository. Thus, we can think of our employee object as:

hemployee, set, fcmpnt1, cmpnt2, cmpnt3gi

cmpnt1 is hname, string, \some name"i

cmpnt2 is ho�ce, string, \some o�ce"i

cmpnt3 is hphoto, bits, \some bits"i

2We assume that identi�ers are unique for each information source. Uniqueness across information sources can be

achieved by, e.g., prepending each object identi�er with a unique ID for the information source.

7

where each cmpnti is some mnemonic identi�er for the subobject. We use this generic notation for

examples throughout the paper.

A �nal issue regarding OEM is that of duplicate objects at the client. Suppose, for example,

that set object A at the information source has B and C as subobjects. Both B and C are of

set type, and both have as subobjects the same object D. A query at a client retrieves A and all

of its subobjects. Will the client have a single copy of object D, or will objects B and C point

to di�erent copies of D? Our model does not require a single copy of D at the client, since this

would place a heavy burden on translators that are not dealing with real objects at the information

source. However, if both copies of D have the same (non-null) Object-ID �eld, then the client can

discern that the two objects correspond to the same object at the source. Also note that we do

not require translators to discover cyclic objects at the source. Suppose, for example, that A has

B as a subobject and B has A as a subobject. If the client fetches A from a \smart" translator,

the translator would return only two objects, a copy of A and a copy of B. Each object's set value

would be a reference for the other object. However, a \dumb" translator is free to return, say,

four objects, A1, B1, A2, B2, where A1 references B1, B1 references A2, A2 references B2, and B2

contains the empty set to indicate that for performance reasons the chain was not followed.

2.2 Related Models and Systems

In this section we contrast OEM with other similar models and systems. We focus particularly on

the di�erences between OEM and more conventional object-oriented models, and we discuss the

motivation behind our design of OEM.

Labeled �elds are used as the basis of several data models or data formatting conventions. For

example, a tagged �le system [20] uses labels instead of positions to identify �elds; this is useful

when records may have a large number of possible �elds, but most �elds are empty. Electronic

mail messages consist of label-value pairs (e.g. label \From" and value \yannis@cs.stanford.edu").

More recently, Lotus Notes [15] has used a label-value model to represent o�ce documents, and

Teknekron Software Systems [16] has used a self-describing object model for exchange of information

in their stock trading systems. In [13] and [14] self-describing databases are proposed as a solution

to obtaining the increased
exibility required by heterogeneous systems.

Recent projects on heterogeneous database systems (e.g., [1,3,11]) have applied object-oriented

(OO) data models to the problem of database integration. OEM di�ers from these and other OO

data models in several ways. First, OEM is an information exchange model. OEM does not specify

how objects are stored at the source. OEM does specify how objects are received at a client, but

after objects are received they can be stored in any way the client likes. OEM explicitly handles

cross-system OID's (e.g., in Section 2.1 an employee object at the client points to a photo object

at the source). In a conventional OO system there may also be client copies of server objects, but

there the client copy is logically identical to the server copy and an application program at the

client is not aware of the di�erence.

8

A very important di�erence between OEM and conventional OO models is that OEM is much

simpler. OEM supports only object nesting and object identity; other features such as classes,

methods, and inheritance are omitted. (Incidentally, [4] claims that the only two essential features

of an OO data model are nesting and object identity.) Our primary reason for choosing a very

simple model is to facilitate integration. As pointed out in [2], simple data models have an advantage

over complex models when used for integration, since the operations to transform and merge data

will be correspondingly simpler. Meanwhile, a simple model can still be very powerful: advanced

features can be \emulated" when they are necessary. For example, if we wish to model an employee

class with subclasses \active" and \retired," we can add a subobject to each employee object with

label \subclass" and value \active" or \retired." Of course this is not identical to having classes

and subclasses, since OEM does not force objects to conform to the rules for a class. While some

may view this as a weakness of OEM, we view it as an advantage, since it lets us cope with the

heterogeneity we expect to �nd in real-world information sources.3

The
exible nature of OEM can allow us to model complex features of a source in a simple

way. For example, consider a deductive database that contains a parent relation and supports the

recursive ancestor relation through derivation rules. If we wish to provide an OEM model of this

data in which it is easy to locate a person's ancestors, we can make the object that corresponds

to each person contain as subobjects the objects that correspond to his/her parents. It is then

simple to pose a query in our OEM query language (see Section 3) that retrieves all of a person's

ancestors. In addition, a user can browse through a person's \family tree" using the browsing

facility described in Section 4.1.

A �nal distinct di�erence between OEM and conventional OO models is the use of labels in

place of a schema. Clearly, it would be trivial to add labels to a conventional OO model (e.g., all

objects could have an attribute called \label"). The only di�erence then is that in OEM labels are

�rst-class citizens. We believe this small change makes interpretation and manipulation of objects

more straightforward, as discussed in the next section. Note that the schema-less nature of OEM is

particularly useful when a client does not know in advance the labels or structure of OEM objects.

In traditional data models, a client must be aware of the schema in order to pose a query. In our

model, a client can discover the structure of the information as queries are posed.

3 Query Language

To request OEM objects from an information source, a client issues queries in a language we refer

to as OEM-QL. OEM-QL adapts existing SQL-like languages for object-oriented models to OEM.

The basic construct in OEM-QL is an SQL-like SELECT-FROM-WHERE expression. The syntax is:

3Note that some proposed interchange standards, e.g. CORBA's Object Request Broker [8], tend to be signi�cantly

more complex than OEM.We expect that if such standards are adopted, OEM could be used to provide a simpler, more

\client-friendly" front end. Other proposed standards, such as ODMG's Object Database Standard [5], are directed

towards interoperability and portability of object-oriented database systems, rather than towards facilitating object

exchange in highly heterogeneous environments.

9

SELECT Fetch-Expression

FROM Object

WHERE Condition

The result of this query is itself an object, with the special label \answer":

hanswer, set, fobj1, obj2, : : :, objngi

Each returned subobject obji is a component of the object speci�ed in the FROM clause of the

query, where the component is located by the Fetch-Expression and satis�es the Condition. Details

are given below. We assume that the Object in the FROM clause is speci�ed using a lexical object-

identi�er, and that for every information source there is a distinguished object with lexical identi�er

\root." (Sources may or may not support additional lexical identi�ers.) Certainly the query

language may be extended with a call interface that allows non-lexical object identi�ers in FROM

clauses.

The Fetch-Expression in the SELECT clause and the Condition in the WHERE clause both use the

notion of a path, which describes a traversal through an object using subobject structure and labels.

For example, the path \bibliography.document.author" describes components that have label

\author," and that are subobjects of an object with label \document" that is in turn a subobject

of an object with label \bibliography." Paths are used in the Fetch-Expression to specify which

components are returned in the answer object; paths are used in the Condition to qualify the

fetched objects or other (related) components in the same object structure. A path speci�ed in

a Fetch-Expression may be terminated by the special symbol \OID," in which case only object

identi�ers are returned in the answer object, rather than the objects themselves.4 A syntax and

semantics for the basic constructs of OEM-QL is given in the Appendix. In the remainder of this

section we provide a number of examples that serve to illustrate its capabilities.

For the examples, suppose that we are accessing a bibliographic information source with the

object structure shown in Figure 2. (Note that we are using mnemonic object references; recall

Section 2.) Let the entire object (i.e., the top-level object with label \bibliography") be the dis-

tinguished object with lexical object identi�er \root". Note that although much of this object

structure is regular|components have the same labels and types|there are some irregularities.

For example, the call number format is di�erent for each document shown, and the third document

uses a di�erent structure for author information.

Example 3.1 Our �rst example retrieves the topic of each document for which \Ullman" is one

of the authors:

SELECT bibliography.document.topic

FROM root

WHERE bibliography.document.author-set.author-last-name = "Ullman"

4If there are qualifying objects without OID's, these objects are not returned in the answer object.

10

hbibliography, set, fdoc1, doc2, : : : , docngi

doc1 is hdocument, set, fauthors1, topic1, call-number1gi

authors1 is hauthor-set, set, fauthor1
1
gi

author11 is hauthor-last-name, string, \Ullman"i

topic1 is htopic, string, \Databases"i

call-number1 is hinternal-call-no, integer, 25i

doc2 is hdocument, set, fauthors2, topic2, call-number2gi

authors2 is hauthor-set, set, fauthor12, author
2

2
,author32gi

author1
2
is hauthor-last-name, string, \Aho"i

author2
2
is hauthor-last-name, string, \Hopcroft"i

author32 is hauthor-last-name, string, \Ullman"i

topic2 is htopic, string, \Algorithms"i

call-number2 is hdewey-decimal, string, \BR273"i
...

docn is hdocument, set, fauthorsn , topicn, call-numberngi

authorsn is hsingle-author-full-name, string, \Michael Crichtoni

topicn is htopic, string, \Dinosaurs"i

call-numbern is h�ction-call-no, integer, 95i

Figure 2: Object structure for example queries

Intuitively, the query's WHERE clause �nds all paths through the subobject structure with the se-

quence of labels [bibliography, document, author-set, author-last-name] such that the object

at the end of the path has value \Ullman." For each such path, the FROM clause speci�es that one

component of the answer object is the object obtained by traversing the same path, except ending

with label topic instead of labels [author-set, author-last-name]. Hence, for the portion of the

object structure shown in Figure 2 the query returns:

hanswer, set, fobj1, obj2gi

obj1 is htopic, string, \Databases"i

obj2 is htopic, string, \Algorithms"i 2

Example 3.2 Our second example illustrates the use of \wild-cards" and an existential WHERE

clause. This query retrieves the topics of all documents with internal call numbers.

SELECT bibliography.?.topic

FROM root

WHERE bibliography.?.internal-call-no

The \?" label matches any label. Therefore, for this query, the document labels in Figure 2 could

be replaced by any other strings and the query would produce the same result. By convention,

11

two occurrences of ? in the same query must match the same label unless variables are used (see

below). Note that there is no comparison operator in the WHERE clause of this query, just a path.

This means we only check that the object with the speci�ed path exists; its value is irrelevant.

Hence, for the portion of the object structure shown in Figure 2 the query returns:

hanswer, set, fobj1gi

obj1 is htopic, string, \Databases"i 2

Example 3.3 In Example 3.2, the wild-card symbol ? was used to match any label. We also allow

\wild-paths," speci�ed by the symbol \�". Symbol � matches any path of length one or more.5

Using �, the query in the previous example would be expressed as:

SELECT *.topic

FROM root

WHERE *.internal-call-no

The use of � followed by a single label is a convenient and common way to locate objects with a

certain label in a complex structure. Similar to ?, two occurrences of � in the same query must

match the same sequence of labels, unless variables are used. 2

Example 3.4 Our next example illustrates how variables are used to specify di�erent paths with

the same label sequence. This query retrieves each document for which both \Aho" and \Hopcroft"

are authors:

SELECT bibliography.document

FROM root

WHERE bibliography.document.author-set.author-last-name(a1) = "Aho"

AND bibliography.document.author-set.author-last-name(a2) = "Hopcroft"

Here, the query's WHERE clause �nds all paths through the subobject structure with the sequence

of labels [bibliography, document, author-set], and with two distinct path completions with

label author and with values \Aho" and \Hopcroft" respectively. The answer object contains one

\document" component for each such path. Hence, for the portion of the object structure shown

in Figure 2 the query returns:

hanswer, set, fobjgi

obj is hdocument, set, fauthors2, topic2, call-number2gi

authors2 is hauthor-set, set, fauthor12, author
2

2,author
3

2gi

author1
2
is hauthor-last-name, string, \Aho"i

author2
2
is hauthor-last-name, string, \Hopcroft"i

author32 is hauthor-last-name, string, \Ullman"i

topic2 is htopic, string, \Algorithms"i

call-no2 is hdewey-decimal, string, \BR273"i 2

5Note that our use of wild-card symbols is similar to, e.g., Unix, X-windows, etc.

12

Example 3.5 Our next example illustrates how object identi�ers may be retrieved instead of

objects.6 This query retrieves the OID's for all documents with a Dewey Decimal call number:

SELECT *.OID

FROM root

WHERE *.dewey-decimal

In this query, since the path in the FROM clause ends with \OID," only object identi�ers are returned.

Hence, for the portion of the object structure shown in Figure 2 the query returns:

hanswer, set, fid1gi

where id1 is the OID for the object referred to as doc2 in Figure 2. 2

Example 3.6 Although we have used only equality predicates so far, OEM-QL permits any pred-

icate to be used in the Condition of a WHERE clause. The predicates that can be evaluated for a

given information source depend on the translator and the source. Suppose, for example, that a

bibliographic information source supports a predicate called author that takes as parameters a

document and the last name of an author; the predicate returns true i� the document has at least

one author with the given last name. Then the query in Example 3.4 might be written as:

SELECT bibliography.document

FROM root

WHERE author(bibliography.document, "Aho")

and author(bibliography.document, "Hopcroft")

One of the translators we have built (see Section 4) is for a bibliographic information source called

Folio that does in fact support a rich set of predicates. All of the predicates supported by Folio are

available to the client through OEM-QL. 2

In the Appendix we provide a grammar for the basic OEM-QL syntax and a semantics speci�ed

as the answer object returned for an arbitrary query. The basic OEM-QL described in this paper

is certainly amenable to extensions. For example, here we have allowed only one object in the FROM

clause, so \joins" between objects cannot be described at the top level of a query. The language

can easily be extended to allow multiple objects in the FROM clause. Similarly, the SELECT clause

allows only one path to be speci�ed; \constructors" can be added so that new object structures

can be created as the result of a query. While these extensions are clearly useful, and we plan to

incorporate them in the near future, we also expect that many translators (especially translators

for unstructured and semi-structured information sources) will support only the basic OEM-QL

(some may even support just a subset), since supporting the full extended language may result in

unreasonable increase of the translator's complexity. One useful extension we plan for OEM-QL,

6Here the client is explicitly requesting OID's instead of objects. In other cases OID's may be retrieved instead

of objects for e�ciency; recall Section 2.1.

13

and we expect will be supported by most translators, is the ability to express queries about labels

and object structure: we expect that clients will frequently need to \learn" about the objects

exported by an information source before meaningful queries can be posed.

3.1 Related Languages

Many query languages for object-oriented and nested relational data models are based on an ex-

tension of SQL with path expressions, e.g. [10,11,12,17]. As stated earlier, OEM-QL can be viewed

as an adaptation of these languages to the speci�cs of OEM.

In OEM-QL, path expressions range only over objects, while in most other languages they range

over the schema and the objects. For example, consider the WHERE condition document.author =

"Smith". In OEM-QL, we simply �nd all objects with label document that have a subobject with

label author and value \Smith." In a conventional OO language, we would have to identify a class

document with an attribute named author. Then we would range over all objects of class document

looking for the matching name. We believe that the simplicity of ranging over objects only leads

to a more intuitive language and a more compact language de�nition.

A signi�cant feature of OEM-QL is that it lets us query information sources where there is no

regular schema. A conventional language breaks down in such a case, unless one de�nes an object

class for every possible type of irregular object. (Note that such a schema would have to be modi�ed

each time a di�erent object appeared.) Of course, if a particular information source does have a

schema and a regular structure, the translator for that source should take advantage of the schema.

For example, suppose all objects are stored in a relational database, and the translator receives

the WHERE condition document.author = "Smith". The translator could �rst check that there is

a relation document with attribute author and, if so, could use an index to fetch the matching

objects. Thus, the fact that the model and language do not require a schema does not mean that

a schema cannot be used for query processing.

4 Implementation of Translators, Browsers, and Mediators

We have argued that OEM and its query language are designed to facilitate integrated access to

heterogeneous data sources. To support this claim, in this section we describe how we have applied

OEM to a particular scenario. The scenario consists of a variety of bibliographic information

sources, including a conventional library retrieval system, a relational database holding structured

bibliographic records, and a �le system with unstructured bibliographic entries. Using our OEM-

based system, these sources are accessible through a general-purpose user interface that allows

evaluation of queries and object exploration.

Our �rst operational translator accesses the Stanford University Folio System. Folio provides

access to over 40 repositories, including a catalog of the holdings of Stanford's libraries, and several

commercial sources such as INSPEC that contain entries for Computer Science and other published

articles. Folio is the most di�cult of our information sources, partly because the translator must

14

emulate an interactive terminal. The translator initially must establish a connection with Folio,

giving the necessary account and access information. When the translator receives an OEM-QL

query to evaluate, it converts the query into Folio's Boolean retrieval language. Then it extracts

the relevant information from the incoming screens and exports the information as an OEM answer

object. The Folio translator is written in C and runs as a server process on Unix BSD4.3 systems.

We have also implemented several simple mediators that re�ne the objects exported by the trans-

lator (see Section 4.2). Translators for the other bibliographic sources are nearly complete|they

have involved substantially less coding because the underlying sources (e.g., a relational database)

are much easier to use. Our translators and mediators are discussed further in Section 4.2.

We have also implemented OEM Support Libraries to facilitate the creation of future transla-

tors, mediators, and end-user interfaces. These libraries contain procedures that implement the

exchange of OEM objects between a server (either a translator or a mediator) and a client (either

a mediator, an application, or an interactive end-user). The Support Libraries handle all TCP/IP

communications, transmission of large objects, timeouts, and many other practical issues. A Unix

BSD4.3 and a Windows version of the package have been implemented and demonstrated. The

Support Libraries are described in Section 5.

Finally, we have implemented a Heterogeneous Information Browser that lets a user submit

queries and explore resulting objects.7 The Browser is implemented in Visual C++ and runs under

Windows. The next subsection describes the Browser in more detail. We believe the Browser

illustrates the desirability of a simple model and language from the point of view of a user who

may not be familiar with the underlying information.

4.1 The Heterogeneous Information Browser

The Heterogeneous Information Browser (HIB) provides a graphical user interface for submitting

queries and exploring results. We illustrate its operation by walking through a particular interac-

tion. Refer to Figure 3.

When the HIB is opened, it displays a menu of known translators and/or mediators (hereafter

referred to as TM's). Each entry of the menu speci�es the name of a TM, the site where it can be

found, the communication protocol it uses, and other information that may be needed for locating

the TM and connecting to it. The user may select any of the TM's on the menu, or the user may

enter a new TM not listed.

After a connection is established, an information exchange session starts. The user can either

type a query directly into the Active Query window, or he may select one of the Frequently-Asked-

Queries shown in the Queries window. If a Frequently-Asked-Query is selected, it is copied to

the Active Query window. (Typically, these are �ll-in-the-form queries, so the user must complete

the missing parts.) Frequently-Asked-Queries may come from two places: (1) the user may cache

previously formulated queries; or (2) the source may provide a list of common queries (we have

7In [18] it is argued that user interfaces and browsers will play an important role in exploring heterogeneous

information sources.

15

Figure 3: Querying and Object Browsing

not implemented this feature yet). For example, a translator for Folio may provide templates for

�nding documents by author, title, and subject, by far the most common queries. The ability to

suggest common queries is especially important for \low end" TM's that do not implement the full

OEM-QL. In such a case, the user needs guidance as to what queries the source will be able to

process.

If a submitted query is valid and successfully executed by the TM, the answer object is returned

to the HIB. The user can then navigate through the object structure of the answer. This is better

understood if we think of the answer as a tree (or a graph, in the most general case), where the

atom objects are the leaves, and the set objects are the internal nodes. Initially, the root and

its immediate subobjects are displayed in the object viewer, as illustrated in the left window of

Figure 3. Here, the root (label answer) is a set of six documents (label doc). The user can move

from the current node to another node by clicking on any of the highlighted direction buttons at

the bottom of the window. If a button is not activated, there is no object in that direction. For

example, in the left window of Figure 3 one cannot move UP because there are no objects \above"

the root. However, the user can move DOWN to the �rst child of the answer object; the result is

shown in the right window of Figure 3. During navigation, the object viewer always shows two

levels of the structure (which can be generalized to k levels). Thus, when the current object is a

document (label doc) one can see its components, i.e., the TITLE, AUTHOR, and so on (right window).

If an atom value is too large to be seen in the viewer (e.g., the abstract of a document), the user

can click on it to open a full window that displays the value.

At any time, the user can click on the HELP button to display the \man page" for the label of

the current object. As discussed in Section 2, each TM answers the question What does label X

mean? by returning a manual entry. This entry describes in English the meaning of the label and

how the value of the object should be interpreted. For example, the entry for the author label

16

under Folio would explain that names consist of a last name followed by a �rst name or initials, it

would specify the maximum length allowed, it would explain how multiple authors are displayed,

and so on. We feel this is a very useful feature of our approach: any time one sees a data value, it

is accompanied by a label, and one can immediately �nd the meaning of the label. This is not only

useful to the end-user, but also to the mediator implementor who needs to understand the data

that is being integrated or processed.8

Notice that the self-describing nature of OEM makes it easy for a user to navigate through

unknown objects. If a user knows nothing about a particular source, he can simply pose the query:

SELECT ?

FROM root

and then browse. As he examines the retrieved labels and their \man pages," he can learn the

meaning of each component. Then he can pose more re�ned queries.

4.2 Translators and Mediators

In this section we illustrate how OEM is used for translation and mediation in the context of

our heterogeneous bibliographic information source scenario. The general architecture is shown in

Figure 4. Translators are built for all participating bibliographic sources. On top of the translators

we use mediators [22] to support objects and queries that are more re�ned than the objects and

queries supported by lower-level translators or mediators. In particular, the mediators directly

above the translators reconcile discrepancies between sources (e.g., di�erences in the structure of

objects, the naming of labels, the format of values, etc.), simplifying the task of the mediator that

combines information from multiple sources.

To illustrate the operation of the translators and mediators, consider the Folio information

source and its translator. The Folio translator T receives OEM-QL queries and issues Folio queries.

The set of queries q(T) that T is able to translate and execute should have two properties:

1. The translation of any q(T) query into a corresponding Folio query should be as simple as

possible, to minimize the translation implementation e�ort.

2. The set q(T) should preserve as much as possible the power of the underlying query language.

Ideally, there should be no Folio query that does not have a corresponding query in q(T).

We have satis�ed both properties in the case of Folio by supporting predicates in OEM-QL that

correspond directly to the access methods that Folio provides. As an example, Figure 4 shows a

typical query entering Folio, asking for the bibliographic entries where the last name of one of the

authors is \Ullman" and the �rst name starts with \J." The corresponding query in OEM-QL is:

8The requirement of providing a \man page" for each label could be viewed as a burden, but if the meaning of

information is not documented, there is no hope for heterogeneous information access!

17

Sybase

Translator

Flat Files

Translator

Folio

Mediator M1

WHERE document.authors.author.last-name = ’Ullman’

SELECT document
FROM Library

 AND document.authors.author.first-name=’J’

WHERE author(document, ’Ullman’)

SELECT document
FROM Library

 AUTHOR : Ullman,J.’ >

Sybase

Flat

Files

Folio
Translator T

Mediator M

Mediator Mu

Mediator M2 3

Citation 1
TITLE : New Frontiers in database system Research

AUTHOR : Ullman,J.
 . . .

find author Ullman J

o2 is <document, string, ’...’>

 o1212 is < first-name, string, ’J’>

<answer, set, {o1,o2}>
o1 is <document, set, {o11, o12}>

 o11 is < title, string, ’New Frontiers in Database System Research’ >

 o12 is < author-set, set, {o121} >

 o121 is < author, set, {o1211,o1212}>

 o1211 is < last-name, string, ’Ullman’>

o2 is < document, set, {o21, o22} >

. . .

WHERE document.authors.author.last-name = ’Ullman’

SELECT document
FROM Library

 AND document.authors.author.first-name=’J’

 o1212 is < first-name, string, ’J’>

<answer, set, {o1,o2}>
o1 is <document, set, {o11, o12}>

 o11 is < title, string, ’New Frontiers in Database System Research’ >

 o12 is < author-set, set, {o121} >

 o121 is < author, set, {o1211,o1212}>

 o1211 is < last-name, string, ’Ullman’>

o2 is < document, set, {o21, o22} >

. . .

<answer, set, {o1 ,o2}>

’TITLE : New Frontiers in Database System Research

o1 is <document , string,

Figure 4: Translation and Mediation Architecture

SELECT collection.document

FROM Folio

WHERE author(collection.document, "Ullman J")

From this query, T only needs to translate the author predicate to the corresponding author search

construct.

As illustrated in Figure 4, translator T uses a straightforwardmapping to translate the citations

returned from Folio (as a string) into an OEM object. Mediator M1 re�nes the structure of the

objects exported by T , by extracting the basic components of each bibliographic object (e.g.,

authors, title). In addition, M1 supports a wider and more generic set of queries than T . For

example, M1 is able to translate the incoming query shown in Figure 4 to the outgoing one.

A key design criterion here is modularity. Since the translators are likely to be the most complex

components (they must deal with the idiosyncrasies of the information sources), our goal is to keep

18

the work of the translators to a minimum. Once a translator produces its object in some OEM

format, additional work can be done by mediators. Note that [7] suggests an average of 6 months

e�ort to implement a translator for a conventional DBMS. In our experience, the total e�ort can

be reduced substantially by shifting work from translators to mediators, and by using the Support

Libraries described in Section 5.

The top level mediator Mu in Figure 4 combines the information from several sources into a

single document collection. The simplest implementation of this mediator performs a union of all

the collections. When Mu receives a query, it e�ectively \broadcasts" the query to all mediators

at lower levels, then merges the answers. Certainly more sophisticated mediation techniques could

be useful, such as recognizing and eliminating duplicate results. In the following subsection we

describe some initial ideas we have for specifying and implementing mediators.

4.2.1 Mediator Generation

Implementing mediators is a non-trivial task, so our eventual goal is to develop tools for mediator

generation. (Similar tools can be used for translator generation, but we focus on mediators here.)

The approach described in this section has not yet been implemented, but the ideas are presented

to illustrate the type of generators we expect OEM will lead to.

The object translation work of mediatorM1 in Figure 4 (i.e. the \upward" direction) could be

described by the following \rule":

document replaced by derive_structure(document)

This rule speci�es that whenever M1 receives an object O from T , M1 replaces each (sub)object Oi

of O that has label document by a (sub)object O0

i
created by derive structure(Oi). The function

derive structure() may be implemented in a conventional programming language. However, we

are currently developing object-pattern-matching and string-pattern-matching tools that describe

object transformations in a high level \label-driven" language. In this way we will often eliminate

the need for conventional programming of mediators.

Mediator generators can also describe the process of query translation (the \downward" direc-

tion). One approach that easily tackles simple cases relies on templates that describe how predicates

(or groups of predicates) in incoming queries are replaced by predicates (or groups of predicates)

in outgoing queries. For example, M1 might use the following query rewriting templates, where X

and Y represent variables to be matched:

T1. document.authors.author.last-name = "X"

AND document.authors.author.first-name = "Y" => author(document, "XY")

T2. document.authors.author.last-name = "X" => author(document, "X")

T3. document.authors.author.first-name = "Y" => author(document, "Y")

Then, all queries processed by M1 will be matched against the above templates. For example, if

the query:

19

SELECT document

FROM Library

WHERE document.authors.author.last-name = "Ullman"

is received by M1, template T1 will be matched. Variable X will be instantiated to Ullman and the

following query will be generated for T :

SELECT document

FROM Library

WHERE author(document, "Ullman")

As is commonly done in rule systems, our templates may be given an evaluation priority. Assume

that T1, T2, and T3 are in decreasing priority. The query received by M1 in Figure 4 matches all

three templates. Since template T1 has highest priority, it is used for the translation shown in the

Figure.

5 The OEM Support Libraries

OEM and OEM-QL are designed for a client to send queries and obtain corresponding answer

objects from a server. The server may be a translator or a mediator, while the client may be a

mediator or an end-user program (such as the HIB described in Section 4.1). We have implemented

general-purpose OEM Support Libraries that provide the common functionality needed for object

and query exchange. There are two main components: the Client Support Library (CSL) and the

Server Support Library (SSL).

Figure 5 illustrates how the Support Libraries are used. The implementor of client applications

links CSL with the client program in order to create programs with embedded CSL calls; CSL calls

are used to establish connections with TM servers, to send OEM-QL queries, and to receive OEM

objects.9 CSL procedures handle all low level communications, and deposit retrieved objects in

a main memory object bu�er. At the server side, the SSL handles incoming connections, bu�er

management, and management of \slave" processes to execute queries. Note that if a server S

obtains its information from another translator or mediator, then S also acts as a client, so it also

uses the CSL.

We expect that our Support Libraries will expedite the implementation of mediators, translators,

and end-user programs. In addition, implementing these libraries has brought to the surface a

number of interesting issues regarding the exchange of objects when one or more participants

are not inherently object-oriented. As far as we know, these issues do not arise in conventional,

homogeneous object-oriented systems (or at least not in quite this way). Here we discuss one of

the most important issues that has arisen, namely that of partial object fetches.

9Interactive (as opposed to embedded) OEM-QL queries can be posed using the browser described in Section 4.1,

which is built on top of the Support Libraries.

20

Client

Support

Library Software

Translator
 or
Mediator

INFO
SOURCE

CSL calls

objects
Main Memory

Object Buffer

Client

Support

Library

Client Application Program
Information Source

Dependent Software

Translator

Server Support Library

Server Support Library

Mediator

TM Source-Dependent

Figure 5: Use of the OEM Support Libraries

In many cases it is extremely ine�cient to send the complete answer object to the client in one

step. In particular:

1. The client has to wait until the full answer is retrieved from the information source before

examining the object. This prevents \pipelined" operation, where the client starts processing

subobjects as they arrive. The problem is exacerbated if we have a string of mediators

between the source and the client: the client cannot begin processing the answer until all of

the intermediate TM's have completed their work.

2. The answer object may be very large. Once a client inspects part of the answer object, the

client may determine that it does not need some portions of the answer object, or perhaps

does not need the object at all.

To avoid these problems, the Support Libraries provide a partial fetch mechanism that enables

clients to retrieve only parts of the answer object. The mechanism is used as follows. When the

client wishes to request an object, it calls a query() function, passing the OEM-QL query as

a parameter. The client can then fetch either the full answer object (including subobjects) by

calling the getFullObject() function, or the client can fetch only the root of the answer object

by calling the getRootObject() function. In the latter case, additional getFullObject() and/or

getRootObject() calls are used to fetch the subobjects.

Calls to the getRootObject() function lead to incomplete objects in the client's memory. To

illustrate, consider an answer object A whose value is a set of three subobjects, B, C, and D. As

discussed in Section 2.1, the copy of A placed in the client's memory can identify its subobjects in

21

a variety of ways. For example, if subobject B has been fetched to memory, then A will contain a

reference to B's memory location. If subobject C is a very large object and the server decides not to

transfer it (as in, e.g., the bitmap object described in Section 2.1), then A will contain an OID for

C. With partial object fetch there is a third possibility: a subobject, say D, may be \unfetched,"

i.e. it may be in the server's bu�ers, or not yet returned by the underlying source. The reference to

an unfetched subobject is something that only the Support Libraries understand, and it is speci�c

for the particular call in progress.

Consider what happens when a client wants to examine an unfetched object. One option is to

support on-demand retrieval of any unfetched objects. However, this allows the client to traverse

answer objects in arbitrary order, implying that the server must cache the entire answer object.

Such on-demand fetching would be very di�cult for translators such as the one for Folio (recall

Section 4). The Folio bibliographic source returns a stream of documents, and the translator has no

control over the order of the records. For on-demand service, all records would have to be stored by

the translator. If the user poses a query that is too broad, the answer object might be enormous.

Consequently, instead of on-demand service, the Support Libraries provides a stream model for

retrieving unfetched objects. A \preorder traversal" of the answer object is used, and the client

must perform partial fetches in this order. To illustrate, suppose that after a �rst getRootObject()

call, the client retrieves an object A whose set value contains three unfetched references, u1, u2, and

u3. If the client decides that the number of documents is too large, the client may choose to submit

a di�erent query. Otherwise, if the �rst document is desired, the client issues a getRootObject()

call with u1 as a parameter. The �rst subobject is fetched; suppose it is another set with unfetched

references u11 and u12. Next the client fetches u11, which happens to be the title of the document.

Based on this, the client may decide it wants to skip the rest of the u1 object. It can do so by

issuing a getRootObject() call with u2; this causes the u1 subobjects that were not fetched to be

discarded. Thus, even though the client is constrained to traverse the answer object in a particular

order, uninteresting parts can be skipped. At the server side, the uninteresting parts still have to

be fetched, but they can be discarded without being transmitted to the client.

Due to space limitations, our description of the OEM Support Libraries and their services has

been cursory. Our goal has not been a full description of the Support Libraries, but rather an

illustration of the challenging practical issues that arise when there is an \impedance mismatch"

between the way an information source provides objects and the way a client wishes to see them.

We believe that our Support Libraries provide a general-purpose framework for handling many of

these issues.

6 Conclusions and Future Work

We are developing a complete environment and set of tools for integrated access to diverse and

dynamic heterogeneous information sources. Exchange of information in our environment is based

on the Object Exchange Model (OEM) introduced in this paper. OEM retains the simplicity of

relational models while allowing the
exibility of object-oriented models. Objects in OEM have

22

a very simple structure, yet the model is powerful enough to encode complex information. For

exibility, OEM objects are self-describing. This approach eliminates the need for regular structure

or a prede�ned schema. However, when structure or schema are present, they can be exploited by

OEM translators and mediators.

OEM objects are requested using a declarative query language OEM-QL, which is based on

nested-SQL query languages. We have found OEM-QL to be both expressive and easy to use. In this

paper we have de�ned the basic constructs of OEM-QL. We are extending the query language along

the lines discussed in Section 3. In addition, we plan to add language constructs and underlying

support for data modi�cation operations and for monitors (or active rules).

We have experimented with OEM and OEM-QL by implementing OEM-based access to several

quite di�erent bibliographic information sources. Our implementation so far has served a number

of purposes:

� It has helped us re�ne and ratify our design of the model and query language.

� We have uncovered a number of important issues and generic functionalities in the imple-

mentation of OEM-based object exchange. This led to our development of the OEM Support

Libraries described in Section 5.

� We have realized a need for browsing tools, leading to the Heterogeneous Information Browser

described in Section 4.1.

� We have used a layered architecture for translators and mediators (recall Figure 4), which we

believe expedites the integration of heterogeneous information sources.

Implementation is currently underway to incorporate additional bibliographic information

sources into our system. We are also implementing a translator for the Sybase relational database

system, and a browser based on Mosaic and the World Wide Web system. Meanwhile, we are be-

ginning to explore techniques for information mediation using OEM. In Section 4.2.1 we described

our initial ideas for mediator generation. We plan to re�ne these concepts to develop a number

of useful mediators that combine bibliographic information from multiple sources. We expect that

our powerful but simple object exchange model and query language will provide the appropriate

platform for quickly achieving this goal.

Acknowledgements

We are grateful to Ed Chang for implementing the Heterogeneous Information Browser, to Ashish

Gupta, Laura Haas, and Dallan Quass for valuable comments, and to the entire Stanford Database

Group for numerous fruitful discussions.

23

References

[1] R. Ahmed et al. The Pegasus heterogeneous multidatabase system. IEEE Computer, 24:19{27, 1991.

[2] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies for database
schema integration. ACM Computing Surveys, 18:323{364, 1986.

[3] E. Bertino. Integration of heterogeneous data repositories by using object-oriented views. In Proceedings
of the 1st International Workshop on Interoperability in Multidatabase Systems, pages 22{29, Kyoto,
Japan, April 1991.

[4] R. G. G. Cattell. Object Data Management. Addison-Wesley, 1991.

[5] R. G. G. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann, 1994.

[6] F. Eliasen and R. Karlsen. Interoperability and object identity. SIGMOD Record, 20:25{29, 1991.

[7] A. K. Elmagarmid and A. A. Helal. Hetrogeneous database systems. Technical Report TR-86-004,
Program of Computer Engineering, Pennsylvania State University, University Park, PA, 1986.

[8] Object Request Broker Task Force. The Common Object Request Broker: Architecture and Speci�ca-
tion, December 1993. Revision 1.2, Draft 29.

[9] A. Gupta. Integration of Information Systems: Bridging Heterogeneous Databases. IEEE Press, 1989.

[10] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 59{68, San Diego, California, June
1992.

[11] W. Kim et al. On resolving schematic heterogeneity in multidatabase systems. Distributed And Parallel
Databases, 1:251{279, 1993.

[12] H. F. Korth and M. A. Roth. Query languages for nested relational databases. In Nested Relations and

Complex Objects in Databases, pages 190{204. Springer-Verlag, 1989.

[13] W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous databases. ACM

Computing Surveys, 22:267{293, 1990.

[14] L. Mark and N. Roussopoulos. Information interchange between self-describing databases. IEEE Data

Engineering Bulletin, 10(3):46{52, September 1987.

[15] D. S. Marshak. Lotus Notes release 3. Workgroup Computing Report, 16:3{28, 1993.

[16] B. Oki et al. The information bus|an architecture for extensible distributed systems. In Proceedings of

the Fourteenth ACM Symposium on Operating System Principles, pages 58{68, Asheville, NC, December
1993.

[17] M. A. Roth, H. F. Korth, and A. Silberschatz. Extended algebra and calculus for nested relational
databases. ACM Transactions on Database Systems, 13:389{417, 1988.

[18] A. Silberschatz, M. Stonebraker, and J. D. Ullman. Database systems: Achievements and opportunities.
Communications of the ACM, 34:110{120, 1991.

[19] G. Thomas et al. Heterogeneous distributed database systems for production use. ACM Computing

Surveys, 22:237{266, 1990.

[20] G. Wiederhold. File Organization for Database Design. McGraw Hill, New York, 1987.

[21] G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer, 25:38{49,
1992.

[22] G.Wiederhold. Intelligent integration of information. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 434{437, Washington, DC, May 1993.

24

A Appendix

Here we provide a rigorous speci�cation of the query language that was described informally in

Section 3. The syntax of the language is given in the grammar of Figure 6. We discuss two points

regarding label variables and predicates, then we de�ne the semantics of queries in our language.

The parenthesized variable following each label in a path is optional. However, if a label L

does not include a variable, then L is assigned a variable automatically as follows: L's variable

is the concatenation of L's position number in its path together with the name of the near-

est speci�ed variable to the left of L; if there is no variable to the left of L then L's variable

is L's position number. For example, the path \bibliography.document(d).topic" becomes

\bibliography(1).document(d).topic(3d)". This scheme ensures that two labels in di�erent

paths have the same variable if and only if they should refer to the same object component. (Recall

from Section 3 that two labels L1 and L2 refer to the same object component when they appear in

paths that are speci�ed identically from the beginning of the path through L1 and L2.) \Wild-card"

labels (?) and \wild-path" labels (*) are assigned variables in the same manner.

The predicates that may be speci�ed in a Condition are not �xed and may vary from information

source to information source, as described in Section 3. Our syntax provides a general notation for

arbitrary predicates over multiple arguments. We assume that most information sources support

commonly used binary predicates (e.g. equality and inequality over integers), and for convenience

we allow these predicates to be written using conventional in�x notation, as in the examples of

Section 3.

We now de�ne the semantics of an arbitrary query Q. Let O be the object speci�ed in Q's

FROM clause. We de�ne the semantics in two steps. First we de�ne the set of components of object

O that satisfy query Q. Then we de�ne the object A that is returned as the answer to Q. In our

de�nitions we often refer to the label-variable pairs that constitute the paths in Q's SELECT and

WHERE clauses; for brevity we refer to these pairs as LV's.

The �rst de�nition formalizes the notion of \path traversals" discussed in Section 3.

De�nition A.1 (Valid Binding) A binding is a mapping from each LV appearing one or more

times in query Q to an object component in O. A binding is valid if:

1. Each LV is bound to an object whose label matches the LV's label. If the LV's label is ? or *,

then any object label matches.

2. If an LV with a label that is not * appears as the �rst element on a path, then the LV is

bound to object O.

3. Let LV lv2 follow LV lv1 on a path. Then lv1 is bound to an object o of type set or list. If

lv2 does not have label *, then lv2 is bound to a subobject of o. If lv2 has label *, then lv2 is

bound to a direct or indirect subobject of o.

4. For each predicate in Q's WHERE clause, if each path appearing in the predicate is replaced by

the value of the object bound by the last LV on that path, then the predicate is satis�ed. 2

25

Query ::= SELECT Fetch-Exp FROM Object WHERE Condition

Fetch-Exp ::= Path j Path.OID

Path ::= Label j Label.Path

Label ::= string [(variable)] j ? [(variable)] j * [(variable)]

Object ::= string /� lexical object identi�er �/

Condition ::= true

j Path

j predicate(Value1, Value2, : : : , Valuen)

j Condition1 and Condition2

Value ::= Path j constant

Figure 6: Query language syntax

With this De�nition we can specify the object components of O that satisfy query Q.

De�nition A.2 An object component o satis�es query Q if and only if there is a valid binding

such that o is bound to the last LV in the path speci�ed in Q's SELECT clause. 2

Next we specify the structure of the answer object A that is returned as a result of query Q.

We consider two cases separately: (1) when the path speci�ed in Q's SELECT clause does not end

with \OID"; (2) when the path speci�ed in Q's SELECT clause does end with \OID".

De�nition A.3 (Answer Object: Non-OID) The answer object for a query Q whose SELECT

path does not end with \OID" is:

hanswer, set, fobj1, : : :, objngi

obj1 is h: : :i

� � �

objn is h: : :i

where obj1, : : :, objn are exactly those object components of O that satisfy query Q according to

De�nition A.2. 2

Now suppose query Q's SELECT path does end with \OID". In this case the answer object includes

only the identi�ers for the relevant object components, and not the objects themselves.

De�nition A.4 (Answer Object: OID) The answer object for a query Q whose SELECT path

ends with \OID" is:

hanswer, set, fOID1, : : :, OIDngi

where OID1, : : :, OIDn are the object identi�ers for exactly those object components of O that

have non-� OID's and satisfy query Q according to De�nition A.2 2

26

