
A Query Translation Scheme for Rapid

Implementation of Wrappers�

Yannis Papakonstantinou, Ashish Gupta, Hector Garcia-Molina, Je�rey Ullman

Computer Science Department

Stanford University

Stanford, CA 94305-2140, USA

fyannis,agupta,hector,ullmang@cs.stanford.edu

Abstract

Wrappers provide access to heterogeneous information sources by converting application
queries into source speci�c queries or commands. In this paper we present a wrapper implemen-
tation toolkit that facilitates rapid development of wrappers. We focus on the query translation
component of the toolkit, called the converter. The converter takes as input a Query Descrip-
tion and Translation Language (QDTL) description of the queries that can be processed by the
underlying source. Based on this description the converter decides if an application query is
(a) directly supported, i.e., it can be translated to a query of the underlying system following
instructions in the QDTL description; (b) logically supported, i.e., logically equivalent to a di-
rectly supported query; (c) indirectly supported, i.e., it can be computed by applying a �lter,
automatically generated by the converter, to the result of a directly supported query.

1 Introduction

A wrapper or translator [C+94, PGMW95] is a software component that converts data and queries
from one model to another. Typically, wrappers are used to provide access to heterogeneous
information sources, as illustrated in Figure 1.a. In this case, an application (which could be
a mediator [Wie92]), issues queries in a single, common query language like SQL. The wrapper
for each source converts the query into one or more commands or queries understandable by the
underlying source. The wrapper receives the results from the source, and converts them into a
format understood by the application.

As part of the TSIMMIS project [PGMW95, GM+] we have developed hard-coded wrappers
for a variety of sources, including legacy systems. We have observed, like everyone who has built
a wrapper, that writing them involves a lot of e�ort [A+91, C+94, EH86, FK93, Gup89, LMR90,
MY89, T+90]. However, we have also observed that only a relatively small part of the code deals
with the speci�c access details of the source. A lot of code, on the other hand, is either common
among wrappers (deals with bu�ering, communications to the application, and so on) or implements
query and data transformations that could be expressed in a high level, declarative fashion.

Based on these observations we have developed a wrapper implementation toolkit for rapidly
building wrappers. The toolkit contains a library of commonly used functions, such as for receiving

�This work was supported by ARPAContract F33615-93-1-1339, by NSF IRI 92-23405, by the Center for Integrated

Systems at Stanford University, and by equipment grants from Digital Equipment Corporation and IBM Corporation.

The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding

any copyright notation thereon. The views and conclusions contained in this document are those of the authors and

should not be interpreted as necessarily representing the o�cial policies or endorsements, either express or implied,

of the US Government.

1



Information

  Source  1

(a)

Indirectly supported

Directly Supported

MSL queries

Logically supported

.  .  .
Information

  Source  n

CLIENT APPLICATION

WRAPPER 1 WRAPPER  n

(b)

Figure 1: (a) Accessing information through wrappers (b) Supported queries.

queries from the application and packaging results. It also contains a facility for translating queries
into source-speci�c commands and queries, and for translating results into a model useful to the
application.

In this paper we focus on the query translation component of the toolkit, which we refer to
as the converter. (In Section 6 we will describe the other toolkit components and how the con-
verter is integrated with them.) The implementor gives the converter a set of templates that
describe the queries accepted by the wrapper. If an application query matches a template, an
implementor-provided action associated with the template is executed to produce the native query
for the underlying source. Note, a native query is not necessarily a string of a well-structured query
language (e.g. SQL). In general, the term \native query" may refer to any program used to access
and retrieve information from the underlying source.

EXAMPLE 1.1 To illustrate, consider an application that issues SQL queries. One of the sources
it accesses has limited functionality, as is true for many sources encountered in a heterogeneous
environment. For this illustrative example, assume that the source can only do selection on attribute
dept of some table, followed by a projection. This ability may be speci�ed as the following template.

select $X.$Y from $X where $X.dept=$Z

The symbols $X, $Y, and $Z represent placeholders that have to be bound to speci�c constants to
produce a valid SQL query. Assume that the following query arrives at the wrapper and is given
to the converter:

select emp.name from emp where emp.dept='toy'

.This query matches the template with the bindings $X = "emp", $Y = "name", and $Z = "'toy'".
Given the match, the actions associated with the template would then generate the necessary native
query to do the actual search on the source. For example, if the underlying source was a �le system
the actions could produce a \grep" command to search for the string $Z in say columns 10-20 of
�le $X. Out of the matching lines, it would return the characters between the string $Y and some
termination character. 2

Example 1.1 illustrates a very simple template matching facility that could be easily imple-
mented using Yacc-like tools [LMB92]. However, since the matching facility is based entirely on
string matching, it does not exploit the semantics of the common query language. The following ex-
amples show that if converters \understand" queries they are translating, then they can successfully
handle many more queries.

2



EXAMPLE 1.2 Consider the following query template:

select $X.$Y from $X where $X.sal=$Z1 and $X.dept=$Z2

Syntactically, only queries where the $X.sal and $X.dept appear in exactly the speci�ed order
match this template. The query

select emp.name from emp where emp.dept='toy' and emp.sal=100

would not match the template. If we wanted to process this type of query we would have to de�ne
a second template. In general, we would have to consider an exponential number of orderings of
the terms in the where clause. It is not practical to have all these templates, especially since all of
them would have almost identical actions associated with them. 2

EXAMPLE 1.3 Consider a data source that can only do selections on attribute dept and does
not understand the notion of projecting out attributes. Such a source can be described with the
following template:

select * from $X where $X.dept=$Z

The following query does not match this template because it includes a projection:

select emp.name from emp where emp.dept='toy'

However, the wrapper could process the above query by transforming it into one without a pro-
jection and then doing the projection on the returned answers. This approach would allow the
wrapper to leverage its own capability to handle a much wider class of queries than those speci�ed
by the template.

As we will see, our wrapper toolkit can handle this type of query transformation. When the
converter is given a query, it generates not only commands for the underlying source, but also a
�lter describing additional processing on the results, if any is required. In our example, the �lter
would specify a projection over the name attribute. 2

In example 1.2 the converter must understand the notion of selection and conjunctive logical ex-
pressions. In example 1.3 the converter must understand projections and the fact that a projection
over emp.name can be obtained a-posteriori from a projection over *. While this knowledge gives
the converter the ability to handle more queries, it does mean that the converter must be targeted
to a particular incoming query language. Being language speci�c does not pose a problem for
converters because our goal is to develop many wrappers for a given common query language, so
it is to our advantage to exploit the features of the common query language. Furthermore, most
declarative query languages are based on common principles, so our converter should be easy to
modify to other query languages.

Our converters are targeted for the MSL query language [PGMU]. (SQL was only used in
our initial examples to motivate our ideas.) MSL is a logic-based language for a simple object-
oriented data model, called OEM [PGMW95]. We believe that both OEM and MSL are well suited
for integration of heterogeneous information sources. The converter is con�gured with templates
written in the Query Description and Translation Language (QDTL). Each template is associated
with an action that generates the commands for the underlying source.

Once con�gured, the converter takes as input an MSL query, and generates commands for the
source and a �lter to be applied to the results. (Actually, in our current design, the converter
accepts only a subset of MSL; see Section 2.) The converter will process:

� Directly supported queries. These are queries that syntactically match a template.

3



� Logically supported queries. These are queries that produce the same results as a directly
supported query. We use the notion of logical equivalence to detect queries that fall in this
class.

� Indirectly supported queries. These are queries that can be executed in two steps: �rst a
directly supported query is executed, and then a �lter is applied to the results of the �rst
step. We have appropriately extended the notion of subsumption in order to detect the queries
that fall in this class.

Figure 1.b graphically shows the types of accepted queries. Although QDTL descriptions syn-
tactically look like Yacc grammars { suitably modi�ed for the description of queries, rather than
arbitrary strings { our converter handles a much larger class of queries than the class of directly
supported queries that is handled by Yacc. For example, our converter understands the commu-
tativity of a logical conjunction, while Yacc would expect the terms to appear in a speci�c order.
Furthermore, our converter introduces the following innovations:

� A designer can succinctly and clearly de�ne the functionality of each source through a few
QDTL templates. Note, a QDTL description is more than a list of \parameterized queries"
since it allows the description and translation of in�nite sets of queries (See Section 5.)

� The converter, in cooperation with the �lter processor, automatically extends the query
capabilities of sources that have limited functionality. Note that unlike relational and object
oriented databases, where typically all possible queries over the schema are allowed, arbitrary
information sources, e.g., legacy systems, permit only limited sets of queries. The automatic
extension of query abilities allows us to bring to the same level of functionality di�erent
sources and then more easily integrate them.

� The converter, together with the other functions of the toolkit, make it possible to rapidly
implement wrappers.

One important thing to notice is that the capabilities of wrappers can be \gracefully extended."
That is, one can quickly design a simple wrapper with a few templates that cover some of the
desired functionality, probably the one that is most urgently needed. Then templates can be added
as more functionality is required.

We start our paper with a brief description of the OEM model and the MSL query language.
Then in Section 3 we give a detailed example that shows how QDTL is used. Indirectly supported
queries and the notion of query subsumption are further discussed in Section 4, while Section 5
introduces additional powerful QDTL features such as nonterminal templates and metapredicates.
In Section 6 we discuss the architecture of wrappers and the wrapper toolkit; we also discuss how
the converter is used by the wrapper toolkit to rapidly implement wrappers. Section 7 focuses on
the query translation algorithm at the heart of the converter. This is the algorithm that maps
input queries to templates and generates �lters. The section gives an example-driven description
of the algorithm, and the full details can be found in the Appendix A. Finally, Section 8 discusses
related work, and Section 9 presents some conclusions and future work. A proof of the correctness
of the algorithm can be found at [P+].

2 The OEM Model and the MSL Language

When integrating heterogeneous information sources one often faces unstructured information
whose form may change dynamically. Many applications that have to deal with such informa-
tion use some type of self-describing data model where each data item has an associated descriptive

4



label. Applications include tagged �le systems [Wie87], Lotus Notes [Mar93], the Teknekron In-
formation Bus [O+93], LOOM frames [MY89], electronic mail, RFC1532 bibliographic records,
and many more. For this reason we have selected a self-describing model, in particular the Ob-
ject Exchange Model (OEM) [PGMW95], as the common data model exported by our wrappers.
OEM captures the essential features of models used in practice, generalizing them to allow arbi-
trary nesting and to include object identity. OEM does not directly support classes, methods, and
inheritance; however, classes and methods can be emulated [PGMW95].

To illustrate OEM, consider the following objects (one object per line):

<ob1, person, fsub1,sub2,sub3,sub4,sub5g>
<sub1, last name, 'Smith'>

<sub2, first name, 'John'>

<sub3, role, 'faculty'>

<sub4, department, 'CS'>

<sub5, telephone, 415-5141292>

Each OEM object consists of an object-id (e.g., sub4), a label that explains its meaning (e.g.,
department), and a value (e.g., 'CS'). Object-id's can be of di�erent types, but for this paper we
may think of them as terms that are used to link objects to their subobjects. Labels are strings
that are meaningful to the application or the end user. A value can be a scalar such as an integer
or a string, or it can be a set of (sub)objects (e.g., the value of the \person" object).

At each source, some OEM objects are de�ned to be top-level or root objects. (Of course, the
source itself probably does not store OEM objects; this is only the \illusion" created by the wrapper
above that source.) Top-level objects provide \entry points" into the object structure from which
subobjects can be requested, as explained below.

An application can request OEM objects from a wrapper using the MSL query language [PGMU].
In this paper we will use only a subset of MSL. In particular, we will consider only conjunctive
queries that extract a single object together with all its descendants { i.e., direct or indirect sub-
objects. (In Section 9 we discuss why we make these restrictions.)

To illustrate, consider the following query that searches for top-level person objects (i.e., objects
with person label) containing a last name subobject with value 'Smith'. The matching objects,
together with their last name, first name, ... subobjects, are then retrieved.

(Q1) *P :- <P person f<L last name 'Smith'>g>

The query consists of a single head and a single tail separated by the :- symbol. Variables
are represented by identi�ers starting with a capital letter, such as P and L. The tail describes the
search pattern, while the head is the object-id of the objects that will be retrieved.1 Intuitively,
we match the tail pattern against the object structure exported by the wrapper, thereby binding
the variables to object components of the wrapper's object structure. The result consists of all
the objects (and their descendants) whose object-ids get bound to the variable that appears in the
head.

Now we give more details about the matching process. Tails are based on patterns of the form
<object-id label value>, where each �eld may be a constant or a variable. When a �eld (object-id,
label, or value) contains a constant then the pattern binds successfully only with OEM objects that
have the same constant in the corresponding �eld. On the other hand, when the �eld contains a
variable the pattern can successfully bind with any OEM object (modulo the restrictions imposed

1The * in the head of the query indicates that subobjects are retrieved too. Without the asterisk, a single object

is retrieved.

5



by the other �elds in the pattern) and the variable binds to the contents of the corresponding �eld.
If a variable X appears multiple times in a tail, all occurrences of X must bind to the same contents
for the tail to successfully bind to an OEM object.

If a pattern A contains a value that has curly braces and more patterns B;C; ::: inside, then
pattern A binds to OEM objects with a set value. The objects that bind to pattern A have one or
more subobjects, some of which bind to the patterns B;C; :::. For example, query Q1 requires that
person objects have a last name subobject with value 'Smith'. Note that we allow the person

objects to have subobjects other than last name as well.
For notational convenience we remove object-id variables from object patterns when the object-

id is not useful, i.e. when it appears exactly once in the query. For instance, in query Q1, variable
L is not used in the head nor in other parts of the tail. Therefore we can replace the pattern <L

last name 'Smith'> in Q1 by <last name 'Smith'> without a�ecting the query. Thus, notation-
ally a pattern with two �elds represents a three �eld pattern with a unique but unspeci�ed variable
in the �rst �eld.

3 A Detailed Example of Query Translation

We illustrate the use of our converter and QDTL using the following simple example. Say we wish
to build a wrapper for a university \lookup" facility that contains information about employees
and students. (This example is motivated by an actual service o�ered by our department at
Stanford). The lookup facility is accessed from the command line of computers and o�ers limited
query capabilities. In particular, it can return only the full records of persons, including all �elds
such as \last name", \�rst name", and \telephone." There is no way for the user to retrieve only
one �eld, e.g., the telephone number, for a person. Furthermore, the only queries that are accepted
by the lookup facility are:

1. Retrieve person records by specifying the last name, e.g.,

(L2) lookup -ln Smith

2. Retrieve person records by specifying the �rst and the last name, e.g.,

(L3) lookup -ln Smith -fn John

3. Retrieve all person records by issuing the command

(L4) lookup

The queries accepted by the lookup facility can be easily described in our Query Description
and Translation Language (QDTL). As discussed in Section 1, a QDTL description consists of a
set of templates with associated actions. Below we state description D1 that consists of three query
templates QT1.1, QT1.2, and QT1.3. For simplicity, we do not yet state the associated actions.

(D1) (QT1.1) Query ::= *O :- <O person f<last name $LN>g>
(QT1.2) Query ::= *O :- <O person f<last name $LN> <first name $FN>g>
(QT1.3) Query ::= *O :- <O person V>

Each query template appears following the ::= and is a \parameterized query." The identi�ers
preceded by $, such as $LN and $FN, are constant placeholders representing expected constants in
the input query. Upper case identi�ers, such as O, are variable placeholders denoting variables that
are expected at that point in the input query. Note, the variable appearing in the query does not
have to have the same name as the template variable.

Each template describes many more queries than those that match it syntactically. More
speci�cally, each template describes the following classes of queries:

6



� Directly supported queries. A query q is directly supported by a template t if q can be derived
by substituting the constant placeholders of t by constants and the variables of t by variables.
For example, query Q1 is directly supported by template QT1.1 by substituting O with P and
$LN with 'Smith'.

� Logically supported queries. A query q is logically supported by template t if q is logically
equivalent to some query q0 directly supported by t. Two queries q and q0 are equivalent if
they produce the same result regardless of the contents of the queried source. For example,
the following queries are logically supported by template QT1.2 although they are not directly
supported:

*O :- <O person {<first_name 'John'> <last_name 'Smith'>}>

*O :- <O person {<last_name 'Smith'>}> AND <O person {<first_name 'John>}>

*O :- <O person {<LO last_name 'Smith'>}>

AND <O person {<LO L V> <first_name 'John'>}>

All these queries are equivalent to the following query Q5, that is directly supported by the
template QT1.2:

(Q5) *O :- <O person f<last name 'Smith'> <first name 'John'>g>

� Indirectly supported queries. A query q is indirectly supported by a template t if q can be
\broken down" into a directly supported query q0 and a �lter that is applied on the results
of q0. We give a de�nition of indirect support in Section 4; for now we present an example.
Consider the following query:

(Q6) *Q :- <Q person f<last name 'Smith'> <role 'student'>g>

This query is not logically supported by any of the templates of description D1. However,
our converter realizes that this query is subsumed by the directly supported query

(Q7) *Q :- <Q person f<last name 'Smith'>g>

This means that the answer to Q7 contains all the information that is necessary for answering
Q6. Thus, the converter matches Q6 to template QT1.1 as if it were Q7, binding $LN to
'Smith' and O to Q. In addition, the converter generates the �lter:

*O :- <O person f<role 'student'>g>

The �lter is an MSL query that is applied to the result of query Q7 to produce the result of
query Q6.

Note, we often say \the description d supports directly, logically, or indirectly the query q" meaning
that a template t of d supports directly, logically, or indirectly the query q.

7



3.1 Formulation of the Native Query

QDTL templates are accompanied by actions that formulate the native queries for the source. For
our converter, the actions are written in C, although we could have selected any other language.
Let us extend description D1 with actions that formulate native queries such as L2, L3, and L4.

(D2) (QT2.1) Query ::= *O:- <O person f<last name $LN>g>
(AC2.1) f sprintf(lookup query, 'lookup -ln %s', $LN) ;g
(QT2.2) Query ::= *O :- <O person f<last name $LN> <first name $FN>g>
(AC2.2) f sprintf(lookup query, 'lookup -ln %s -fn %s', $LN, $FN) ; g
(QT2.3) Query ::= *O :- <O person V>

(AC2.3) f sprintf(lookup query, 'lookup') ; g

To illustrate, consider again the input query Q5:

*O :- <O person {<last_name 'Smith'> <first_name 'John'>}>

This query matches template QT2.2. by binding placeholder $LN to 'Smith' and $FN to 'John'.
Then, the action AC2.2 that consists of the C function

sprintf(lookup_query, 'lookup -ln %s -fn %s', $LN, $FN)

is executed. In this action, $LN and $FN behave as C variables that at execution time contain
the values 'Smith' and 'John' respectively. The e�ect of this action is to write the string
'lookup -ln Smith -fn John' in the variable lookup query.

This completes the job of the converter on this query. Then, the implementor-provided part of
the wrapper takes over, submits the string lookup query to the source and waits for an answer.

4 Query Subsumption

In Section 3 we said that query Q6 was subsumed by Q7 because the former had an additional
condition on the \role" subobject. Thus query Q6 selects a subset of the objects obtained by the
subsuming query Q7.

A di�erent type of subsumption, speci�c to object oriented data, occurs when the subsumed
query extracts subobjects obtained by the subsuming query. For example, consider the following
query Q8 that retrieves the first name subobjects of person objects with last name 'Smith'

(Q8) *F :- <O person f<F first name X> <last name 'Smith'>g>

Query Q8 is subsumed by the following query Q9, that retrieves the full person objects of persons
with last name 'Smith' and an unspeci�ed �rst name.

(Q9) *O :- <O person f<F first name X> <last name 'Smith'>g>

Notice that Q8 and Q9 have exactly the same conditions. However, Q9 subsumes Q8 because the
person objects retrieved by the latter contain the first name objects required by the former. The
following de�nitions formalize the notions we have illustrated.

De�nition 4.1 (Object containment) Object O is contained in another object O0 if and only if

� Either O and O0 are identical, i.e., they have identical object-id, label, and value; or

� O is a subobject (direct or indirect) of O0.

8



2

De�nition 4.2 (Query subsumption) A query q is subsumed by another query q0 if each answer
object for q is contained in some answer object of q0.2 2

De�nition 4.3 (Indirect support) A query q is indirectly supported by a query q0 if

1. q0 subsumes q, and

2. there is a �lter query f that when applied on the result of q0 produces the result of q.

A �lter query is formally de�ned by De�nition A.1 in Appendix A. We will say that a template t
indirectly supports a query q if t directly supports a query q0 that indirectly supports q. 2

Note, query subsumption does not necessarily imply indirect support. For example, consider
the following query

(Q10) *F :- <person f<F first name X>g>

that subsumes Q8, since it retrieves all first-name objects. However, Q10 does not indirectly
support Q8, since given a first-name object in the result of Q10, we can not tell whether it is a
subobject of a person with last name 'Smith'.

4.1 Maximal Supporting Queries

Notice that given a query q there may be more than one queries that support q, and these queries
may not be logically equivalent. For example, query Q6 on page 7 is supported by query Q7 and
also by the query

(Q11) *O :- <O person V>

that retrieves all person objects.
Note, query Q11 also subsumes query Q7. Thus, Q7 derives fewer unnecessary answers than

Q11. From a performance point of view it is better for the wrapper to send Q7 to the source (after
the necessary transformation to a native query) rather than Q11, because the former contains more
conditions of the original query Q6. Indeed, for our example, query Q7 is the best query directly
supported by description D1 that supports query Q6 because Q7 pushes to the source as many
conditions as possible. We will say that Q7 is a maximal supporting query for Q6.

De�nition 4.4 (Maximal supporting query) A query qs is a maximal supporting query of
query q with respect to description d, if

� qs is directly supported by d,

� qs indirectly supports q, and

� there is no directly supported query q0

s that indirectly supports q, is subsumed by qs, and is
not logically equivalent to qs.

2

2Note, more general forms of query subsumption may be de�ned.

9



Note, there may be more than one maximal supporting query for a given query. For example,
assume that a source allows us to place a condition on exactly one subobject of the person objects.
This source is speci�ed by the QDTL description (actions not shown):

(D3) (QT3.1) Query ::= *O :- <O person f<$L $V>g>

For this source, consider input query Q5. This query has two maximal supporting queries:

(Q12) *O :- <O person f<last name 'Smith'>g>
(Q13) *O :- <O person f<first name 'John'>g>

Our converter actually considers all possible maximal supporting queries by considering di�erent
ways in which the input query can match the templates of a description. Choosing the optimal
maximal subsuming query (when there is more than one) requires knowledge of the contents,
semantics, and statistics of the database; our initial implementation does no optimization and
simply selects one of the maximal supporting queries. Then, the converter executes the actions
associated with that particular maximal query. We give additional details in Section 6.

5 Nonterminals and Other QDTL Features

QDTL allows the use of nonterminals to construct grammars that describe more complex sets of
supported queries. To illustrate, say that our lookup facility lets us place selection conditions on zero
or more of the �elds of its records. That is, we can issue commands such as 'lookup -fn John',
'lookup -fn John -role faculty', 'lookup -role student', and so on. Explicitly listing all
possible combinations of conditions in our templates would be impractical. (If there are 10 lookup
�elds, there would be 210 templates.)

With nonterminals, this functionality can be described succinctly. For instance, assuming only
three �elds, first name, last name, and role, we can use the following description (without
actions for now):

(D4) /* A description with nonterminals */

(QT4.1) Query ::= *OP :- <OP person f OptLN OptFN OptRoleg> /*Query Template*/

(NT4.2) OptLN ::= <last name $LN> /*Nonterminal template*/

(NT4.3) OptLn ::= /* empty nonterminal template*/

(NT4.4) OptFN ::= <first name $FN>

(NT4.5) OptFN ::= /* empty */

(NT4.6) OptRole ::= <role $R>

(NT4.7) OptRole ::= /* empty */

Nonterminals are represented by identi�ers that start with an underscore ( ). Every nonterminal
has a de�nition that consists of a set of nonterminal templates. For example nonterminal OptRole

is de�ned by nonterminal templates NT4.6 and NT4.7.
A query q is directly supported by a query template t that contains nonterminals if q is directly

supported by one of the expansions of t. An expansion of t is obtained by replacing each nonterminal
n of the query template t with one of the nonterminal templates that de�ne n. For example, the
query

(Q14) *O :- <O person f<last name 'Smith'> <role 'professor'>g>

is directly supported by template QT4.1 because Q14 matches with the expansion

10



(E15) *OP :- <OP person f<last name $LN> <role $R>g>

This expansion is derived from query template QT4.1 by replacing the nonterminal OptLN with
the nonterminal template NT4.2, the nonterminal OptFN with the nonterminal template NT4.5,
and the nonterminal OptRole with the nonterminal template NT4.6.

5.1 Actions and Attributes Associated with Nonterminals

Nonterminal templates have associated actions, just like query templates. When a query success-
fully matches with a template, the action for the nonterminal template used during the matching
is executed. In addition, every nonterminal n is associated with an attribute that is accessible from
the templates that use n and the templates that de�ne n. These attributes are similar to the
attributes that Yacc (in general context-free grammar parsers) associate with nonterminals, and
are used to generate the native query of the underlying source.

Description D4 can be augmented with code to generate the required lookup native query as
follows. Note that in the C code, a nonterminal attribute is represented by $ followed by the name
of the nonterminal.

(D5) (QT5.1) Query ::= *OP :- <OP person f OptLN OptFN OptRoleg>
(AC5.1) f sprintf(lookup query, 'lookup %s %s %s', $ OptLN,

$ OptFN, $ OptRole)g ;

(NT5.2) OptLN ::= <last name $LN>

(AC5.2) f sprintf($ OptLN, '-ln %s', $LN) ; g
(NT5.3) OptLN ::=

(AC5.3) f $ OptLN = '' ; g
(NT5.4) OptFN ::= <first name $FN>

(AC5.4) f sprintf($ OptFN, '-fn %s', $FN) ; g
(NT5.5) OptFN ::=

(AC5.5) f $ OptFN = ''; g
(NT5.6) OptRole ::= <role $R>

(AC5.6) f sprintf($ OptRole, '-role %s',$R) ; g
(NT5.7) OptRole ::=

(AC5.7) f $ OptRole = '' ; g

As discussed earlier, query Q14 is directly supported by description D5. When nonterminal
OptLN matches the <last name 'Smith'> clause in the query, its associated code is executed,
storing the string '-ln Smith' in $ OptLN. Similarly, '-role professor' is stored in $ OptRole.
When the query matches template QT5.1, variable lookup query is assigned the string 'lookup

-ln Smith -role professor', which is sent to the lookup facility.

5.2 Recursion

Nonterminal templates may recursively contain nonterminals. This 
exibility allows us to describe
in�nite sets of expansions. The following description { that describes queries with an arbitrary
number of conditions on the person subobjects { illustrates recursion

(D6) /* This query description involves recursion */

(QT6.1) Query ::= *OP :- <OP person f Cond g>
(NT6.2) Cond ::= <$Label $Value> Cond

(NT6.3) Cond ::=

11



The query template above directly supports query Q14. To see this we �rst expand Cond with
the nonterminal template NT6.2, yielding

(E7) Query ::= *OP :- <OP person f <$Label $Value> Cond g>

Expanding Cond again we obtain:

(E8) Query ::= *OP :- <OP person f <$Label $Value> <$Label1 $Value1> Cond g>

Note that in the second expansion we replaced the placeholder names with new names $Label1 and
$Value1. This policy is essential to avoid confusion with names from other expansions. Finally,
we expand Cond with the nonterminal template NT6.3 (i.e., the \empty" template) to produce an
expansion that directly matches query Q14.

In some cases we may want to force placeholder names obtained by expanding nonterminals to
be the same as existing placeholder names in the query template. By using parameters as arguments
of QDTL nonterminals we can force di�erent templates to refer to the same variable or placeholder
(refer to [P+] for details).

5.3 Metapredicates

Descriptions D4 and description D6 accept similar queries, with the exception that D6 accepts any
subobject label. For example, D6 will accept the query

*P :- <P person {<M fuel 'gasoline'>}>

(and an action, not shown in description D6, may translate it into the string 'lookup -fuel

gasoline') while D4 will not.
We can force D6 to check for particular labels (and e�ectively schemas) by using metapredicates.

This capability gives us the same functionality as D4 with a more compact speci�cation. To
illustrate, consider the following modi�cation of the description D6:

(QT9.1) Query ::= *OP :- <OP person f Cond g>
(NT9.2) Cond ::= <$Label $Value> Cond personsub($Label)

(NT9.3) Cond ::=

The metapredicate personsub($Label) checks whether the constant that matches $Label is a
valid label for some subobject of person. The metapredicate personsub() is implemented by
a C function of the same name. The wrapper implementor provides this function together with
description D9.

The converter treats metapredicates simply as additional conditions that must hold for a query
to match a template. In our example, after we expand query template QT9.1 with the nonterminal
template NT9.2 and then with the nonterminal template NT9.3 we get:

*OP :- <OP person {<$Label $Value> personsub($Label)}>

Matching this expansion with query Q1 requires that we bind $Label to 'last name' and $Value

to 'Smith'. This binding implies that personsub('last name') must hold. The C function
personsub is thus invoked, and if it answers \yes" the expansion matches the query.

12



Constituents

Native Query
    Submit Collect

Result

Packager

Filter Processor

Extractor

Native Query

Parse Trees/Filters of Maximal

CLIENT

WRAPPER QDTL Description

DRIVER

Server Support Library

Query

Client Support Library

Query

OEM Objects

Object Components

INFORMATION

     SOURCE

Native Query Native Result

Query
Filter Filter

OEM Result  of Supporting Query

OEM Result

OEM Result

Native Result String

Extracted Information

Estimator
   Cost Query/Description

    Matching

Supporting Queries

Parse Tree of
"optimal" supporting query

Action Execution

Parse Tree of

directly/logically

supported query

CONVERTER

DEX Template

Figure 2: The Architecture of a Wrapper

6 Wrapper Architecture

Figure 2 shows the architecture of the wrappers generated with our toolkit. The shaded boxes
represent components provided in the toolkit; the wrapper implementor provides the driver that
has the primary control of query processing and invokes various services of the toolkit { as is shown
in Figure 2. The implementor also provides the QDTL description for the converter, as well as the
Data EXtraction (DEX) template for the extractor component of the toolkit.

Our wrappers behave as servers in a client-server architecture, where the clients are mediators or
generic client application programs. Clients use the client support library to issue queries and receive
OEM results (see Figure 2). The server support library component of the toolkit receives queries
from the client and dispatches the driver for query processing. The driver invokes the converter,
which �nds a query that supports the input query and returns the native query constituents. The
latter are values assigned to variables of the driver that are used to construct the native query. For
example, variable lookup string of description D2 contains the only native query constituent for
the \lookup" wrapper.

The driver then submits the native query to the underlying information source and receives the
result from the source. The driver uses the extractor to extract information from the received result
and then uses the packager to pack the result components into OEM objects. Finally, if during the
query/description matching a �lter was produced, the driver passes the OEM result and the �lter
to the �lter processor.

Subsection 6.1 discusses the converter architecture in more detail. Then, Subsection 6.2 dis-
cusses the extractor, while Subsection 6.3 discusses the �lter processor.

13



QT5.1

NT5.5

ac51()

NT5.2 ac52() NT5.6 ac56()

_OptLN   _OptFN  _OptRole

$LN = "Smith" $R = "professor"

ac55()

Figure 3: The parse tree

6.1 Converter Architecture

To illustrate, let us assume that the converter is given description D5 that directly supports query
Q14 (see Section 5). The query/description matching component of the converter produces the parse
tree of Figure 3 that contains all the information about the expansions and substitutions obtained
while matching the query and the description. The parse tree is used by the action execution
component of the converter to execute the actions that generate the native query constituents.
Note, the converter { unlike the Yacc processor { performs the query/description matching and the
action execution in two separate phases because there may be more than one maximal supporting
queries, and consequently more than one parse trees. The converter executes actions only after it
selects one of the parse trees.

The nodes of the parse tree correspond to the templates that were used for the matching. For
readability, in Figure 3 we have named (top left corner) the nodes of the tree using the labels of the
corresponding templates in description D5. Also, every node contains a pointer to a C function,
such as ac52(), ac55(), etc, containing the code for the corresponding action. The root node of
the parse tree corresponds to query template QT5.1 that matched with the query and points to
nodes corresponding to the nonterminal templates { NT5.2, NT5.5, and NT5.6 { that were used.
Every node contains a list of the constant placeholders that appear in the template, along with the
matching constants.

If there are multiple maximal supporting queries, the query/description matching component
passes all the corresponding parse trees to the cost estimator that chooses one of the parse trees
either by an arbitrary choice or by cost-based selection. The later technique assumes that the
wrapper has access to cost estimates of the functions provided by the underlying sources, catalog
estimates, and so on. In our current implementation, our cost estimator does not perform cost
optimization and selects the �rst parse tree. However, we believe it is important to have the
cost optimizer framework in place initially so that optimization may be added later. Once a
parse tree is selected, the action executor does a postorder traversal of the parse tree and invokes
the corresponding action functions. The actions have access to the list of [constant placeholder,
matching constant] pairs.

6.2 Information Extraction

Often, legacy systems return data as semi-structured strings. In these cases, the Data Extractor
(DEX) can be used to parse the result and identify the required data. DEX is con�gured with
a description of the source's output and information regarding which parts should be extracted.
We use a brief example to illustrate how DEX works. Suppose that our sample \lookup" facility
returns results as a sequence of text lines, of the form:

14



Record 1

Last Name: Smith

First Name: John

Role: Student

Record 2

Last Name: ...

The goal of the extractor is to extract the last-name, first-name, and role �elds of the \lookup"
result. This is achieved by giving the following DEX template to the extractor.

MATCH STRING (lookup_result)

{ records_number = 0 ;}

( Record # \n

Last Name\:\ $$(lookup_array[records_number].last_name) \n

First Name\:\ $$(lookup_array[records_number].first_name) \n

Role\:\ $$(lookup_array[records_number].role) \n

{ records_number++ ; }

)*

Note, inside the $$(...) structures appear the names of C variables of the driver. For our running
example we may assume that the following data structure has been declared in the driver:

struct lookup type f char[40] last name ;

char[20] first name ;

char[30] role ; g lookuparray[200] ;

The above pattern speci�es the expected syntax of the string lookup result (that contains the
result of lookup), speci�es which parts of the output string will be extracted, and in which variables
of the driver they will be placed. Our extractor can be viewed as a modi�cation of the Yacc and
Lex tools for the more speci�c problem of information extraction.

6.3 Result Creation and Filter Processing

After the extractor gathers the information in the appropriate data structures of the driver, and
the packager constructs the OEM result objects, the �lter processor applies the �lter on the OEM
result objects. The �lter is produced by the converter while matching the input MSL query with
the QDTL description. The �lter is an MSL query and is applied to the output of the packager in
a 2-step process by the �lter processor: First the �lter processor creates an algebraic description of
the MSL query and then it executes the algebraic description. The algebraic operations can \�nd
the subobjects of an object," \compare the object-id/label/value of an object to a constant," and
so on.

7 The Query Translation Algorithm

Answering whether a MSL query q is supported by a QDTL description d is a hard problem. Often
we need to reason with descriptions that support in�nitely many queries (for instance, descrip-
tion D6). Fortunately, the problem can be reduced to a well-studied problem in deductive database
systems. In this section, we discuss how to reduce the \support" problem for QDTL descriptions
and MSL queries to a relational context, and we extend existing results from deductive database
theory to solve the support problem.

15



7.1 Correspondence of OEM to Relational Models

In this subsection we discuss how to relationally represent OEM objects, MSL queries, and QDTL
descriptions. Note that, the principles of our algorithm can be applied to other object-oriented
models as well. For applying our algorithm, the MSL queries and QDTL descriptions are actually
converted to relational terms. The objects in the underlying sources are not converted. We discuss
how they might be represented relationally to better explain the algorithm.

OEM objects are represented relationally by 
attening them into tuples. Each object is rep-
resented using tuples of three relations, namely top, object, and member. OEM objects can be
converted mechanically to the relational representation using a few straightforward rules: For an
object o with object-id oid, label l, and an atomic value v, we introduce the tuple

object(oid; l; v)

If o is a set object with object-id oid and label l, then we introduce the tuple
object(oid; l; set)

Assuming that o has subobjects oi; 1 � i � n, identi�ed by oidi ; 1 � i � n we introduce n tuples
member(oid; oidi)

where 1 � i � n. Finally, if o is a top-level object identi�ed oid, we also introduce the tuple
top(oid)

The relational representation of MSL queries is obtained similarly by querying the top, object,
and member relations that represent the object structure referenced in the query.

EXAMPLE 7.1 Consider the query

*O :- <O person f<LM last name 'Smith'>g>

The above query selects top-level objects O, i.e., the subgoal top(O) must hold. Object O is a person
set-object, i.e., the subgoal object(O; person; set) must hold. O must have a subobject identi�ed
by LM, i.e. member(O; LM) must hold. Finally, LM must be a last name object with atomic value
'Smith', i.e., object(LM, last name, 'Smith') must hold. We collect all the object-id's O that
satisfy the stated conditions into a relation answer. Thus, the MSL query can be written as the
following datalog query:

answer(O) :- top(O), object(O, person, set),

member(O,LM), object(LM, last name, 'Smith')
2

The general algorithm for converting an MSL query to a relational form is given in [P+]. A
similar algorithm for translating a QDTL description to a relational description is described in [P+].
We illustrate the translation via an example.

EXAMPLE 7.2 Consider description D6 from Subsection 5.2. The equivalent relational repre-
sentation is:

(R10) Query ::= answer(OP) :- top(OP), object(OP, person, set), Cond(OP)

Cond(OP) ::= member(OP, OS), object(OS, $Label, $Value), Cond(OP)

Cond(OP) ::=

Note, the nonterminal Cond has been replaced by the nonterminal Cond(OP) that has one pa-
rameter. We need this parameter because we have to denote that object OS that appears in the
nonterminal template associated with Cond is a subobject of OP. We associate with every tem-
plate of the relational representation, the action of the corresponding template of the original QDTL
template. 2

16



7.2 Algorithm

In this section we illustrate the algorithm that for a given MSL query written relationally, �nds
maximal supporting queries from a QDTL description also written relationally. If the query is
indirectly supported, the algorithm derives the �lter MSL query that needs to be applied to the
OEM objects picked by the underlying source.

First we illustrate the process of �nding a supporting query given the description D and the
query Q. Then we show how description D can be expressed as a (possibly recursive) Datalog
program P (D). We show that the problem of determining if a description D supports query Q,
is the same as the problem of determining if program P (D) contains3 (subsumes) query Q and
a corresponding �lter query exists. Thus, a supporting query is found in two steps: (a) �nd a
subsuming query, and (b) �nd the corresponding �lter. We extend an existing algorithm that
checks containment (from Section 14.5 of [Ull89]), to answer step (a). We refer to the containment
algorithm from [Ull89] as QinP. We extend the algorithm to handle step (b).

Algorithm QinP gives a yes/no answer to the containment question and thus to the subsumption
question. Thus, we further extend the algorithm to �nd the actual maximal supporting queries, the
corresponding �lters, and also the native query constituents for the underlying source. We describe
in detail the extended algorithm X-QinP in the Appendix. We continue with examples to illustrate
the required extensions.

EXAMPLE 7.3 (Finding Supporting Queries) This example illustrates, in relational terms,
how to �nd supporting queries for a MSL query from a QDTL description. We use this example
in the rest of this subsection.

Consider the query Q16 that selects all person objects that have a subobject with label
last name and value 'Smith':

(Q16) answer(O) :- top(O), object(O, person, set), member(O,N),

object(N, last name, 'Smith')

Consider the description D11 that supports queries that select person objects that have at least
one subobject that has a speci�ed label and a speci�ed value.

(D11) (QT11.1) Query ::= answer(P) :- top(P), object(P, person, set), Cond(P)

(NT11.1) Cond(P) ::= member(P,X), object(X,$L,$V)

By expanding template QT11.1 using nonterminal expansion rule NT11.1 we obtain expansion
(E17).

(E17): answer(P) :-top(P), object(P, person, set), member(P,X), object(X,$L,$V)

(E17) is identical to query Q16 by substituting appropriately variables and placeholders. Thus,
D11 directly supports Q16.

Alternatively, consider query Q18 that picks person objects with speci�ed values of subobjects
last name and ssn.

(Q18) answer(O) :- top(O), object(O, person, set), member(O,L),

object(L, last name, 'Smith'), member(O,S),

object(S, ssn, '123')

3A query Q is contained in a program P if for all databases, P derives a superset of the answers derived by Q.

17



Description D11 does not directly support query Q18 because the query imposes selection conditions
on two subobjects whereas the description supports queries with only single subobject selections.
However, E17 produces two queries that indirectly support Q18:

� E19 enforces the selection condition on subobject last name.

(E19): answer(O) :- top(O), object(O, person, set), member(O,L),

object(L, last name, 'Smith')

� E20 enforces the selection condition on subobject ssn.

(E20): answer(O) :- top(O), object(O, person, set), member(O,S),

object(S, ssn, '123')

2

As illustrated above, nonterminals in a query template are expanded to yield expansions of
the query template that match the query of interest. If a nonterminal is de�ned using a recursive
template, then the query template has an in�nite number of expansions. To �nd a supporting
query requires checking if query Q matches one or more of the in�nite number of expansions.

In the next section we show how to reduce the problem of �nding a supporting query in a
description to the problem of determining whether a conjunctive query is contained in a Datalog
program. We extend a known solution to the latter problem to �nd all the supporting queries, the
corresponding �lter queries, and the corresponding native query constituents.

7.2.1 Expressing Descriptions as Recursive Datalog Programs

In description D11, if we replace the query template with the rule de�ning predicate answer, and
replace ::= with :- in the nonterminal template NT11.1, then we get a Datalog program that
uses constant placeholders in addition to variables and constants.4 The constant placeholders are
similar to variables except that they match a subset of the constants which the variables match, and
placeholders are used in the actions that produce the native query constituents. We use P (D) to
refer to the Datalog program corresponding to description D. The process of �nding an expansion
of a query template in a description D that matches a target query Q, is the same as determining
if the Datalog program P (D) produces a rule E that de�nes predicate answer and matches query
Q. Rule E matches query Q if the head of E maps to the head of Q, and each subgoal of E maps
to some subgoal of Q (with appropriate restrictions on how to map variables, placeholders, and
constants). Query Q16 and expansion (E17) in Example 7.3 illustrated this case.

Note, in our framework both Q and E are conjunctive queries [Ull89] extended with placeholders.
From existing work on the containment of Datalog queries we know that the existence of a mapping
from E to Q is a necessary and su�cient condition for the containment of E in Q.5 Thus, the
problem of determining if a description D supports a conjunctive query Q is the same problem
as determining if some rule produced by Datalog program P (D) contains query Q (modulo the
existence of a �lter query). Furthermore, for Datalog this question is the same as asking if the
program P (D) contains Q. Algorithm QinP from [Ull89] answers exactly this question.

7.2.2 Applicability and Extensions of Algorithm QinP

First, we illustrate how the containment algorithm QinP �nds subsuming queries given a query and
a description. Then we illustrate the extensions that need to be made to Algorithm QinP.

4Templates with empty expansions are handled as explained in the Appendix.
5The containment results used in this paper, hold in the presence of constant placeholders.

18



EXAMPLE 7.4 (Applying Algorithm QinP) Consider query Q18 from Example 7.3.

(Q18) answer(O) :- top(O), object(O, person, set), member(O,L),

object(L, last name, 'Smith'), member(O,M),

object(M, ssn, '123')

and the description D11

answer(P) :- top(P), object(P, person, set), Cond(P)

Cond(P) :- member(P,X), object(X,$L,$V)

To determine if program P(D11) contains query Q18 Algorithm QinP does the following: First the
algorithm \freezes" Q18, i.e., it replaces each variable in each subgoal of Q18 by a corresponding
\frozen" constant and puts the resulting frozen facts in a database DB(Q18). The frozen constant
for a variable is represented by a constant of the same name in lower case and with a bar on it.
The over-bars distinguish frozen constants from regular constants.

top(�o), object(�o, person, set), member(�o,�l), object(�l, last name, 'Smith'),

member(�o, �m), object( �m, ssn, '123')

Then, the program P(D11) is evaluated on DB(Q18) to check if the program derives the frozen
head of Q18, namely \answer(�o)". If yes, then it is the case that the program contains the query.

While evaluating the program on the frozen database, constant placeholders in P(D11) are
assigned only regular constants and not frozen constants, because frozen constants correspond to
variables in the target query. Variables in P(D11) are assigned either frozen or regular constants.
2

The above example illustrates that Algorithm QinP gives only a yes/no answer to the subsump-
tion question. That is, if program P (D) derives the frozen head of query Q then we know that D
subsumes Q. However, the algorithm does not �nd the particular subsuming query (for instance,
(E19) in Example 7.3). The algorithm does not �nd the selection conditions that are not enforced
by each subsuming query (for instance, (E19) does not enforce ssn = '123'). Finally, algorithm
QinP does not retain enough information to build the native query constituents. Algorithm X-QinP
provides this functionality and �nds all the maximal supporting queries (if there are multiple such
queries). We illustrate these points via a set of examples.

EXAMPLE 7.5 (Multiple Subsuming Queries) Example 7.3 shows that query Q18 is indi-
rectly supported by Description D11 (page 17) via two subsuming queries (E19) and (E20). We
discuss in more detail how to obtain (E19).

(E19): answer(O) :- top(O), object(O, person, set), member(O,L),

object(L, last name, 'Smith')

(E19) is obtained by algorithm X-QinP, because program P(D11) derives the frozen head of query
Q18 using frozen base facts top(�o), object(�o,person,set), member(�o,�l), and
object(�l,last name,'Smith'). (E20) is obtained similarly. As guaranteed by extended algo-
rithm X-QinP, (E19) and (E20) are maximal. 2

Note, in Example 7.5 the subsuming queries (E19) and (E20) do not use all the frozen facts
obtained by freezing the target query Q18. Facts not used to derive a subsuming query correspond
to unenforced selection conditions and constitute the residue for that query. For instance, for

19



subsuming query (E19) the frozen facts member(�o,�s) and object(�s,ssn,'123') constitute the
residue. A non-empty residue implies that the subsuming query does not enforce all the selection
conditions of the input query. Thus, we need to formulate a �lter MSL query that when applied to
the OEM objects picked by the subsuming query, gives the same result as the input query. A �lter
query may not always exist as illustrated by the following example.

EXAMPLE 7.6 (Existence of a Filter query) Consider a query Q that for all persons with
last name 'Smith' picks the subobject corresponding to the first name. Consider a query tem-
plate T that picks the first name subobjects of all persons. Algorithm X-QinP infers that T gener-
ates a query Qs that subsumes Q along with the residue member(P,LN), object(LN, last name,

'Smith'), i.e., the parent objects of the picked first name subobjects have last name value
'Smith'. This unapplied selection condition cannot be enforced on the result of query Qs be-
cause there is no way to infer from the result what first name is associated with which last name.
Thus, no �lter query exists for query Qs. Algorithm X-QinP discards subsuming queries for which
no �lter query may be formulated. For instance, we discard a subsuming query if its residue refers
to an object that is not a subobject of the result of the subsuming query. We also discard queries
based on other criteria described in the Appendix.

Algorithm X-QinP generates �lter queries for subsuming queries that are retained and thus are
supporting queries. A conservative �lter query may consist of all the conditions in the input query
that can be applied on the result of the supporting query. In this case, some conditions may be
redundant. Our algorithm derives optimal �lter queries, that is, removes all redundant conditions.
Below we illustrate the �lter MSL query produced by the algorithm for query (E19).

*O :- <O person f<S, ssn, '123'>g>
2

The last extension to algorithm QinP handles the actions that are executed by the converter
to generate the native query constituents. The actions are associated with the nonterminal and
query templates of a description D. When we reduce a query template or nonterminal template
T of a decription D into a rule R of the datalog program P (D) we associate with R the action
that is associated with the template T . Then, the problem of executing the actions associated
with the templates of D reduces to the problem of executing the actions associated with the
corresponding rules of P (D). Algorithm X-QinP tracks the rules used to derive a supporting query
and subsequently executes the actions associated with these rules to produce the native query
constituents.

7.3 Performance of X-QinP

In the worst case, X-QinP is exponential in the number of conditions in the query plus the number
of templates in the description. Nevertheless, in many practical cases X-QinP is polynomial. For
example, if both the query and the templates have explicitly speci�ed labels and there is no recursive
template (e.g., description D4) X-QinP needs time proportional to the product of the query size
and the number of templates. Furthermore, we expect the number of conditions and templates to
be relatively small, so running time should be acceptable.

8 Related Work

Integration of heterogeneous information sources has attracted great interest from the database
community[Wie92, LMR90, T+90, Gup89, A+91, C+94, FK93]. Signi�cant work has been done

20



on integrating and querying data that is in the same model as the integration system. However,
underlying sources may have di�erent data models, thus making necessary the existence of wrappers,
and consequently, the facilitation of the wrapper construction. [EH86] points out that typically
the construction of a wrapper requires \6 month work". Indeed, there are existing techniques for
translating schemas and queries of a data model A (say, relational) to schemas and queries of a data
model B (say, an object-oriented data model)[QR95, A+91]. Our query translation methodology
is di�erent from the above cited work in two ways:

1. We provide a toolkit that can translate queries from our common data model to queries of
any data model, i.e. we are not bound to a speci�c \target" data model. Note, the underlying
information sources may even not have a well-de�ned data model.

2. We assume that the source may have limited query capabilities, i.e., not every query over the
schema of the underlying source can be answered.

We contribute in two ways to the problem of limited query capabilities (that has been recently
recognized [RSU, C+94] as being very important in integration of arbitrary heterogeneous infor-
mation sources): First, we provide a concise language for description of query capabilities. Second,
we automatically increase the query capabilities of a source.

The problem of �nding a supporting query is related to the problem of determining how to
answer a query using a set of materialized views in place of some of the base relations used by
the query [LY85, L+, RSU]. This work uses a �xed set of prespeci�ed views to answer a query.
However, we use an in�nite set of views that are speci�ed via templates. The templates can specify
views like \all relations obtained by applying a single selection predicate to any relation," thus not
requiring that the relation name be known. Alternatively, arbitrary numbers of selection conditions
can be speci�ed, thereby allowing in the set of \available" views, views that have arbitrarily long
speci�cations. Another di�erence from [LY85, L+, RSU] is that our focus is on object oriented views
and queries and not relational views even though we use some of the same tools, like containment.

9 Conclusions

In this paper we have presented a toolkit that facilitates the implementation of wrappers. The
heart of the toolkit is a converter that maps incoming queries into native commands of the un-
derlying source. The converter provides the translation 
exibility of systems like Yacc, but giving
substantially more power, i.e. translating a much wider class of queries.

The wrapper toolkit is currently under implementation, with the server support library, ex-
tractor, and packager already built and tested. These components, with hard-wired converters,
have been used to build wrappers for Sybase, a collection of BiBTex �les stored on a Unix �le
system, and a bibliographic legacy system. We are currently implementing the QDTL con�gurable
converter described in this paper; it should be operational by the summer of 1995.

In the future, we plan to extend the power of QDTL descriptions and of the converter to handle
a larger class of queries. The currently handled class of conjunctive MSL queries will be extended
by using a containment checking algorithm more general than algorithm QinP. Also, we plan to
extend the algorithm to detect when multiple queries of the underlying source together support the
given application query.

21



Acknowledgements

We are grateful to Jennifer Widom, Andreas Paepcke, Vasilis Vassalos, and the entire Stanford
Database Group for numerous fruitful discussions and comments.

References

[A+91] R. Ahmed et al. The Pegasus heterogeneous multidatabase system. IEEE Computer, 24:19{27,
1991.

[C+94] M.J. Carey et al. Towards heterogeneous multimedia information systems: The Garlic approach.
Technical Report RJ 9911, IBM Almaden Research Center, 1994.

[EH86] A. K. Elmagarmid and A. A. Helal. Heterogeneous Database Systems. TR-86-004, Program of
Computer Engineering, Pennsylvania State University, University Park, 1986.

[FK93] J.-C Franchitti and R. King. Amalgame: a tool for creating interoperating persistent, heteroge-
neous components. In Advanced database systems. N.R Adam, B.K. Bhargava (editors), (ISBN
3-540-57507-3) Springer-Verlag, 1993, pages 313-36.

[GM+] H. Garcia-Molina et al. The TSIMMIS Approach to mediation: Data models and languages (ex-
tended abstract). To appear in 1995 NGITS workshop. Also available by ftp at db.stanford.edu
as pub/garcia/1995/tsimmis-models-languages.ps.

[Gup89] A. Gupta. Integration of Information Systems: Bridging Heterogeneous Databases. IEEE Press,
1989.

[LMB92] J.R. Levine, T. Mason, and D. Brown. Lex & Yacc. O'Reilly & Associates, Inc., Sebastopol,
CA, 1992.

[L+] A.Y. Levy et al. Answering queries using views. To appear in PODS, 1995.

[LMR90] W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous databases.
ACM Computing Surveys, 22:267{293, 1990.

[LY85] P.A. Larson and H.Z. Yang. Computing queries from derived relations. In Proc. VLDB Conf.,
pages 259{69, 1985.

[Mar93] D. S. Marshak. Lotus Notes release 3. Workgroup Computing Report, 16:3{28, 1993.

[MY89] R. MacGregor and J. Yen. LOOM:integrating multiple AI programming paradigms. Proc. Intl.
Joint Conf. on Arti�cial Intelligence, August 1989.

[O+93] B. Oki et al. The Information Bus|an architecture for extensible distributed systems. In Proc.
of the 14th ACM Symposium on Operating System Principles, pages 58{68, Asheville, NC, 1993.

[P+] Y. Papakonstantinou et al. A query translation scheme for rapid implementation
of wrappers (extended version). Available by ftp at db.stanford.edu as the �le
~/pub/papakonstantinou/1995/querytran-extended.ps.

[PGMU] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker: A mediation sys-
tem based on declarative speci�cations. Available by ftp at db.stanford.edu as the �le
~/pub/papakonstantinou/1995/medmaker.ps.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous
information sources. In Data Engineering Conf., pages 251{60, March 1995.

[QR95] X. Qian and L. Raschid. Query interoperation among object-oriented and relational databases.
In Data Eng. Conf., pages 271{9, 1995.

[RSU] A. Rajaraman, Y. Sagiv, and J. Ullman. Answering queries using templates with bind-
ing patterns. To appear in PODS 95. Also available by ftp at db.stanford.edu as
pub/rajaraman/1994/limited-opsets.ps.

22



[T+90] G. Thomas et al. Heterogeneous distributed database systems for production use. ACM Com-
puting Surveys, 22:237{266, 1990.

[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 2. Computer Science
Press, New York, 1989.

[Wie87] G. Wiederhold. File Organization for Database Design. McGraw Hill, New York, 1987.

[Wie92] G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer,
25:38{49, 1992.

23



Appendix

A Extended Algorithm QinP

A.1 Extended Algorithm

Now we state a variant of algorithm QinP. Algorithm QinP gives a yes/no answer to the containment
question and thus to the support question, modulo the existence of a �lter query. We extend the
algorithm to �nd the maximal supporting queries, to construct the corresponding �lter queries, and
and to construct the corresponding parse trees.

In particular, we extend and modify the algorithm QinP in the following ways:

1. we keep track of which speci�c expansion of the Datalog program actually contains the query
and thus infer the conditions that constitute the residue for the expansions,

2. we keep track of the implied equalities. An implied equality arises when we map a variable to
a constant. For example, consider the query

(Q21) answer(O) :- top(O), object(O,L,V)

that supports the query

(Q22) answer(O) :- top(O), object(O,person,V)

Note, we have to �lter the result of Q21 to keep only the objects with label person. We will
say that the corresponding �lter has to check the implied equality L = person. Thus, we
keep the subgoal object of Q22 in the residue, though it maps to the object subgoal of Q21.

3. we �nd \maximal" expansions that have as many conditions of the target query as is possible
given the description,

4. we relax the condition that the head of the expansion is the same as the query head to allow
the head of the expansion to represent a parent object of the query head,

5. we check that the residue conditions can be evaluated, and

6. we construct the �lter that evaluates them.

The algorithm X-QinP follows four basic steps (there are comments in the algorithm that
indicate the start of each step):

� Step 1: Find the queries with minimal residue with respect to the input query.

� Step 2: Select the maximal subsuming queries, i.e. the minimal residue queries that pick
objects that contain the required objects.

� Step 3: Select the maximal supporting queries, i.e. check the existence of an appropriate
�lter query for every selected maximal subsuming query.

� Step 4: For every maximal supporting query construct an optimal �lter query, in the sense
that the constructed �lter query has as few conditions as possible.

24



Note, in order to simplify the description of our algorithm we do not include metapredicates
and we do not describe the execution of actions.

Input

Conjunctive Query Q where head is of the form answer(X)
Description P (D) (recursive Datalog program that

de�nes answer and uses EDB member, object, top)
Output

A set of maximal supporting queries, associated �lters, and associated parse trees
Method

Minimize the query Q (see [Ull89]), i.e. remove all rendundant subgoals
Freeze the query Q { replace each variable A with a constant �a

% Start of Step 1 : Computation of minimal residue instances
% add the frozen facts to DB along with the set of underlying facts and implied equalities
For each ground fact f obtained from the frozen body of Q add to DB

the �ve-tuple < f; U; I; A; P > where
U = ffg % set of underlying facts for f
I = fg % set of implied equalities used to derive f
A = fg % set of residue facts resulting from I

P = f % parse tree associated with the fact
The �ve-tuple < f; U; I; A; P > is called an \instance of fact f".
% Apply the rules of P (D) to the facts in DB to generate all possible ground facts
% along with their underlying facts, implied equalities, and parse trees
For all rules that have an empty body, \h( �H) : �"

Add the fact < h(c); fg; fg; fg; nil > to DB for all constants and frozen constants c in DB.
Loop

For 1 � i � k where k is the number of rules in description P (D) do
Let rule ri be:

h( �H) : �p1( �X1); : : : ; pn( �Xn)
where �X is the set of variables and placeholders in �H [ �X1 [ : : :[ �Xn

For each assignment � that:
1. maps variables V in �X to constants and frozen constants
2. maps every placeholder V in �X to a constant
3. there exists a vector [t1; : : : ; tn]

such that tj =< �(pj( �Xj)); Uj; Ij ; Aj; Pj > and tj is in DB

do % derive \optimal" instances of �(h( �H))
Initialize sets Itemp and Atemp to fg.
For each variable V in �X that � maps to a constant

Add the mapping V ! �(V ) to Itemp % Add an implied equality
Find a �(pj( �Xj)), such that V 2 Xj , insert �(pj( �Xj)) in Atemp

% For each valid instantiation of rule ri, add an instance of a fact to DB

(A) For every vector [t1; : : : ; tn] where tj =< �(pj( �Xj)); Uj; Ij; Aj ; Pj > and tj is in DB

Let tnew =< fnew ;Unew ; Inew; Anew ; Pnew > =
< �(h( �H));

Sn
j=1(Uj);

Sn
j=1(Ij) [ Itemp;

Sn
j=1(Aj) [Atemp; node(ri; [P1; : : : ; Pn]) >

For all t 2 DB of the form < fnew ; Ut; It; At; Pt >

% Discard tnew if it uses fewer subgoals and

25



% has more implied equalities than some t 2 DB

If Unew � Ut and Inew � It
continue with next iteration of (A)

% Discard t if it uses fewer subgoals and has
% more implied equalities than tnew
If Ut � Unew and It � Inew
Remove t from DB

% Add \better" or incomparable new instances
Add tnew to DB

Until no new instances of facts are derived

% Step 2: Find all maximal subsuming queries
For each instance t =< f; Ut; It; At; Pt > in DB such that

assuming that answer(�x) is the frozen head of query Q, either
f = answer(�x), or
f = answer(�y) and there is a sequence of member facts

member(�x; �s1); : : : ; member( �sn; �y), i.e. �y is reachable from �x
residue(t) = ((subgoals in frozen tail(Q)) minus Uf ) union Af

% Step 3: Check if an appropriate �lter f exists for the query q represented by t
% if f exists then q is a maximal supporting query
if t =< answer( �w); Ut; It; At; Pt > satis�es the following conditions

1. for every subgoal object(�z; L; V ) or member(�z; �z0) there is a sequence of member facts
member( �w; �s1); : : : ; member( �sn; �z), n � 0, i.e. �z is reachable from �x

2. there is no frozen constant �v that appears in more than two subgoals such that
an instance of �v appears in residue(t) and
another instance of �v is not reachable from �w via member facts

% Step 4: Construct �lter and maximal subsuming query
For each instance t =< f; Uf ; If ; Af ; Pf > do

Initialize store to be the empty set
For each subset S of body(Q) such that S is a superset of residue(t) do

if Q is equivalent to \head(Q) : �NV (Uf); S" then
% NV replaces each frozen constant �x with a unique variable X 0 except

% the argument of f that is replaced by the unfrozen variable X
add S to store

Eliminate all S 2 store if 9S0 2 store such that S0 � S

For each remaining S 2 store

output query head(Q) : �f; S as the �lter query.
else discard t

De�nition A.1 (Filter of a query qs with respect to input query q) Assume that qs de�nes
the predicate answers and q de�nes the predicate answer. A �lter qf of qs wrt q is any query of
the form

answerf(X) : �answers(Y ); hcond(Y )i

where hcond(Y )i is a set of subgoals member and object such that

� every subgoal member(Sp; Sc) of hcond(Y )i is reachable from Y ,

26



� every subgoal object(O; label; value) of hcond(Y )i is reachable from Y , and

� answerf (x) holds if and only if answer(x) also holds

2

De�nition A.2 (Indirect support of a query q by a query qs) A client query q is indirectly
supported by a query qs if there is a �lter of qs with respect to q. 2

De�nition A.3 (Minimal residue instance) Any instance t =< ft; Ut; It; At; Pt > is called
minimal residue instance if there is no t0 =< ft0 ; Ut0 ; It0; At0; Pt0 > such that Ut � Ut0 and It0 � It.
2

27


